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1. Introduction

The quasiconformality of Jordan arcs and curYes in the sense of Lehto
and. \rirtanen [5] is closely related to the possibility of extending quasicon-

formal mappings of plane domains. The extension problem v'as first treated
by Tienari [8], and some of the results were generalized by Väisälä [9].
However, the conditions for quasiconformality of arcs and curYes contained

in l8l are rather implicit; cf. also Pfluger [7]. Accordingly, it has been natural
to ask for more direct characterizations. A solution of this kind was estab-

lished for Jordan curves by Ahlfors [2]. He shoryed t]rat quasiconformal

curYes can be chatacterized b;' a surprisingly simple metrical condition;

in this paper we say that a Jordan a.Ic or curve has bounded distortion if it
satisfies such a cond-ition. The main results in [2], [8], [9], and this work
are essentially based on the important paper i3l by Beurling and Ahlfors
about the boundary correspondence under quasiconformal mappings'

It has been arr open question whether the quasiconformality of a Jordan
arc can also be characterized by the distortion of the arc. The answer is

affirmative for closed arcs, rvhich is proved in Section 4. In Section 5 it is

first shown that, in the case of open arcs, bounded clistortion implies

quasiconformality but not conversel;r. A characterization of quasiconfolm-

ality for open arcs is obtained in terms of a measure of local distortion.
With the help of the local distortion lIe also give bounds for the maximal
dilatation which appeals in the definition of quasiconformality of Jordan
arcs and curves. In order to obtain a best possible lorver bound u-e have

used recent results concerning topological angles introduced b.v Agard
and Gehring [1] in connection rrith quasiconformal mappings.

2. Quasicontormal atcs and curves

2.1. We consider sense-preserving homeornorphisms J : G'-- G', u'here

G and G' are domains in the extended plane. The maximal tlilatatiol
of snch a mapping / is d.enotecl b;r l((fl . The definition in terms of
quadrilaterals may be found in [5], p. 17. ff Kff) ( @ , the mapping /
is said to be quasiconformal, and if K(f) < K < a, "f i. called K'
quasiconformal.
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2.2. Let y be a Jordan arcr) or curve in the extended plane. We say
that y is K-quasiconformal if there is a /(-quasiconformal mapping / of
a domain G = y such that, /(Z) ir a line segment or a circle respectivelv.
If y is K-quasiconformal for some K , it is called quasiconformal. We
denote

K(y) : 
rirfi )K(!) 

,

where .F'(y) is the set of all sense-preserving plane homeomorphisms / of
domains G = y such that "f(Z) is a line segment or a circle respectively.
Then y is quasiconformal if and only if K(y) is finite, and if y is K-
quaslconformal, the inequality K(y) < 1( holds.

It follows from an extension theorem ([5], Satz II.8.l) that if 7 is closed,
the domain G in the definition of quasiconformality of y can be chosen
to be the whole plane. An immediate consequence of this is the result, that,
a closed Jordan arc is quasiconformal if and only if it is a subarc of a quasi-
conformal curve (see l5], p. f02).

2.3. Open quasiconformal arcs and quasiconformal currres are related
to the extension of quasiconformal mappings according to the follov'ing
lemma.

Lemma 1. Let G and, G' be dunains with y and, y' as open Jree bouncl-
ary arcsz) or Jree bound,ary curaes respecti,aely. If y and, y' are K- ancl
K'-quasi,conformal respecti,aely and if f :(]-->(]' is a Ko-quas,iconformal
mapping wi,th y and, y' correspond,i,ng to each other, then f can be ertend.ed,

to a KzKrK'z -quasi,conformal mapping oJ a d,omain conta,i,ning G U y .

This lemma is a slightl;r modified form of Satz II.8.2 in [5], and for the
proof we refer to [5].

2.4. Local, quasi,conJormal,i,ty. \Ye also define a concept of local quasi-
conformality in the following m&nner (cf. [O]). A Jordan arc or curve 7 is
called (K-)qunsi,conformal, at the poi,nt z e y , if z belongs to a (.I{-)
qnasiconformalsubarc T,C? openin y.If e isapointof Tt \\,adenote

K(y , ") 
: inf K(y") ,

rvhere the infimunn is baken over all subarcs 7, c T containing z and open
in y.Then 7 isquasiconformalat zey ifandonlyif K(y,z) isfinite.
If 7 is"I{-quasiconformal at zel, then K(y,z)<K.

1) A Jordan arc is here defined to be homeomorphic to
of an open Jordan arc is then not necessarily a Jordan

2) We define a free boundarv arc of a domain as in

a line segment,. The closure
A,TC.

[5], p. L2.
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clearly quasiconformality of 7 implies quasiconformality at every

point z e y . Tt has also been proved that a Jordan curve is quasiconformal

if it is quasiconformal at all of its points (181, Satz 12, and [5], p. 108)' \Ve

give this and. the corresponding result for closed Jordan arcs in the corollary

of Theorem 4.

3. Boundeil distortion ol Jordan arcs and curves

3.1. we introduce now the condition of Ahlfors appearing in [2]. Let

14, zz, zs, zal, denote the absolute yalue of the cross ratio of the sequellce

21 t z2 t zs 1 24. X'or finite distinct points 21 , z2 t zs 1 zq wa have then

-., 3r-:al z»-?t'
21 tz2,zg1zl': ,rr- r, 3r- z;

\\re say that a Jorclan alc or culYe 1.' has boutzcled di,stortion if there exists

anumber c, l(c.--co, slrchthat

,a, , i4; i2; ?8, ; ,Zl , 22 1 24, ZB', { C

for ail sequences z1 t zz t zs, za of successive points of 7 . We call c(7) , the

supremum of the left side of (1), tlne clistorti,on of y . This is clearlv invariant

orrd"r linear transformations. The distortion c(y) equals I if and only if
7 is contained in a line or a circle.

In [a] a Jorclan curve lying in the three dimensional space and satis-

fying (I) is called a c-circle. For other forms, equivalent to (1) in case of
Jord"an currres, r't'e refer to [21 and [5], p. 101, 107.

Remark. The condition for Jorclarr arcs given in [5], p. 107 (bescliränkte

Schv'enkung), is equivalerrt to (I) only if the arc is closed'

3.2. If y is a Jordan arc, and 21', arld wz are two points of 7 , rye

denote throughorit this paper b)' y(r, , wr) lhe open subarc of y s'hich

has the end-points ?L,L ancl Llz. The euclidean diameter of a set A is

denoted hy d(A) .

tr'or later applications r]'e consider a closed. Jordan arc 7 wit'h co as

one end-point. Fixing ?t: q in (1), rve obtain the simple condition

:1 zzi, -L l,r, zsi I c1z, - zsi

for successive finite points zt, ?2, z, of y . with the above notation 7
also satisfies the condition

d(y(zr,z)) lc1zr-zzl

(2)

(3)

for finite points z1 t zz e Y
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3.3. The remarkable result that a Jordan curve is quasiconformal if
and only if it has bounded distortion was first proved by Ahlfors in t2l.
For a slightly different proof, see [5], Satz II.8.6. In this paper we have the
result as a corollary of Theorem l.

ff a Jordan arc or curve 7 has bounded distortion, it follows directly
from the definition that every subarc of y has bounded distortion. Since
a closed quasiconformal arc is a subarc of a quasiconformal curve, and
quasiconformal cunres have bounded distortion, we have the result, that,
closed quasiconformal arcs have bounded distortion. We shall show in the
next section that the converse also holds.

3.4. Local d,istortion. In analogy with the concept of local quasicon-
formality we now introduce a measure of local distortion in the following
manner. Let y be a Jordan erc or curve and let z be a point of 7 . We call

c(y , z): inf sup 
k(z' ' z-') * lc(z' ' z')

rz z2€ysp1,ts\ k(", , zr) '

where & is the spherical metric, and the infimum is taken over all subarcs
?,C? containing z arrd openin y,lhedistorti,onof y atthepoi,nt z. Tf
z + @, the spherical metric can here be replaced by the euclidean. \\re
call further

co(y) : sup c(y , z)

t}ae mari,mal,local, ili,storti,on of y and say that 7 has bound,ed,local d,istortion
if co(7) is finite.

We prefer to choose c(y , z) as a measure for local distortion rather than

c*(y , z) : ,f,! 
"rr,, ,

where 7, varies as above. There are two reasons for this. For one thing,
c(y , z) is simpler in calculation than c*(y , z). Secondly, a sharp lower
bound for K(y) is easily obtained in Section 5 in terms of. co(y) .

In the following sense c(7 , z) is equivalent to c*(y, e): The inequality
c(y , z) 1 c*(y, a) holds, and there is an upper bound for c*(y, z) depend-
ing only on c(y , z) . To show lhat c(y , z) I c*(y, z) is true, suppose
first that z+@, take e)0, and let, T,D a beasubarcof 7 open
in 7 and containing the point z. Given zney,,zr*z, we choose a
g>0 suchthat (r-dl@*e)>l-e, where r:lzr-zl . Assume
a <c(y, z). There existpoints zie lz,i:1,2,3, such that lz; - zl I Q ,

lhat zr 2 22 1 zs I 24 are successive, and that

ldl - 
Pgl

(4)



Snrro RrcxilraN, Characberization of quasiconforma,l arcs

Tlren \,*r-za't,lzr-z4l >r- A

ln F i I t4 4 I 4 I 

-ielti4rsZrdgi -I- idlskZttu4tPBi -

and

l-
l']-

izr- z'i < r -+- g.
I !- a I ',ndzi t,d3 L4: -T- ',47

Hence

I i- I Ip4l l*Z - -A l

t:ry ', 'rry 1 I

t{l ^,8 i ILZ *Li

Accordingly, the assertion is proved in case z * q ' It is easy to show that'
c(y , z) is invariant under linear transformations. Since this holds trivially
for c*(y , z) , we conclude that the asserted inequality is true also if z : Q .

An upper bound for c*(y ,z) in terms of c(y, a) is obtained by elementary

estimates.
The connection between local distortion and quasiconformality is

discussed in Section 5.

If y is a closed Jordan arc or a Jordan curYe, then 7 has bounded
local distortion if and only if the distort'ion of 7 at every point z € 7 is

finite. In this case, also the property of having bounded distortion in the
large can be characterized locally:

Lemma 2. A closed, Jord,an q,rc or a Jord,an cxlrae y has bound,eil d,i,storti,on

i,f and, only i,f c(y , z) i,s Ji,nite at euery poifi z e y .

The proof of this lemma is included in the proof of Satz II.8.7 in [5]
the case where 7 is a Jordan curye. The proof for closed Jordan arcs

similar (.f. the remark on p. 9).

I-,err.il& 2 cloes not hold for open arcs. The

1n

1S

open Jordan arc

(5)

has bounded
However, y

local distortion, because c(y , z) - I at every point, z e y

does not have bounded distortion.

3.5. connecti,on wi,th topological angles. The inner measure of a topological

angle, defined in [1], is closelv related to the local distortion. A pait (y, , yr)

of two closed Jordan arcs h arrd y, forms a topological angle at a point,

zo * a if both 7, and y, have zo as an end-point and if zo is the only
point y, and. y, have in common. The inner meastlre A(yr, yr) of this
topological angle (7, , Iz) is defined as follows:

A(h, yz) : lim inf 2 arc sin (,tr(2, , zs, zz))-r,
'1,'åT'o

where .l is defined by (+).

Let now (h, Tz) be a topological angle at" zo. Then T : Tt U 7, is a

Jordan arc, and the distortion c(y , zs) of y at the point, zo is defined.

ft follows directly from the definitions that the following inequality holds:

l1
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(6) t 
c1, 

^,If 7, and yz are line segments, there is equalit;z in (6). It is also easSr to
see by examples that there exist topologicalangles (yr, yr) tvith A(yr, yr)
greater than the right side of (6).

4. Characterization of closed quasicontormal arcs

4.I. The main purpose of this section is to pro'r,e Theorem 1, u'hich
shorys that the cprasiconformality of a closed Jordan arc can l:e charac-
terized by the distortion of the arc. Before starting the proof lr-e introduce
some notation.

If not otheru,ise stated, let 7 be in this section a closed Jordan arc.
Let o m.ap Cr, the complement' of y, conformally onto the upper lialf
plane H . The mapping o induces a natural one-to-one corespondence
bet'vreen f, the set of boundary elements of Cr, and the boundarv
0H of ä. \\'e denote this natural extension of rts , r,r,hich is a mapping
of C, U.l- onto the closure E of H, by the same symbol a-;.

Let now e1 , (2, ig , fr be four distinct points of l- such that tlie sequence
r,r(11) ,...,o(ir) has positive orientationrvithrespect to H. \\re call
the pair consisting of the domain C, and the sequence ir,. . , ='1 &11 &rc-
quadrilateral and denote it by Cr(h,..., Cn). This is a naturai modifi-
cation of the concept of quadrilateral corresponding to Jordan domains
(seee.g. [5],p. l5). The modulw M(C.(L,...,en)) of C.,(ir,...,1'+)
is defined to be the urodulus of the quadrilateral H(c,t(i1), . . . , o(ia)) .

It is clear that this definition of the modulus of an arc-quadrilrrteral does
not depend on the choice of the conformal mapping ro . The n- and ö-

sides of Cr(er, . . . ,lo), denoted i, ir, i, ia and å, ir, !', ;', respectivelv.
are defined to be the subsets of .f corresponding to tl-re n- ancl ö-sides
of Il(c,t(år) , . , utan)) (t51, p. 15) rl]rcler the niaplrinq' ot.

An erc joining points e and ;' of f in C',, is ar] oilerl

n c Cy such that, rt(") -- tota):{rr(i) ,o(,''')i. If Å is the
arcs joining points of opposite a-sides of C.,(_1, , . ,;'n) LL Cy

lus lt(A) of A ([5], Ir. 139) is equal to ^lI(C ,(ir, ,. . , eil) .

Let p and q tre the end-points of y in the follou,i*g.
mapping a) so that the points p , 0 ancl Q , cc correspond t,o
on the boundary. Let P be the natural projection of f onto T
\lre denote by z- and z-r- the points of f for u'hich P(z-) -.
w(z-) is non-positive, and a(z*) is non-negative. Then p-

Jordan arc

famil.r,- of
, tire modu-

tr{-e fix the
each other
. If ze )')

- pr ancl
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e- : gt, and there is no confusion if these are simply denoted by p and
q respectively. We also fix a natural order on the points of 7 so that p <-t1 .

4.2. lVe are now ready to state the lemmas 'u'hich are needed in he

proof of Theorem 1.

Lemma 3. Let y haae bou,ncled d'i,storti,ott, and suppose that the end-Ttotnt

q is @. Thenthereeri,stsaconstant krl@ deltenditzgonlyon c:c(T)
s'uch that the cond,i,tion

I
, < M(Cr("{,"{,2{,oo)) I k,
,"L

holds for fini,te poi,nts z.11 22, zs e / sati,sfying 4 I zz I zg and

M(C, (a, z{ ,zi , zl )) : I .

Proof.Let' zr,z.2, ?otrd a, satisfy the conditions in the lernma. We show-

first that
d^

(7) -FA, I rl, l2ciloe2-

holds, where d" is the euclidean distance between the arcs y(zr, zr\ and

T@r, a) , and do : lzt - zzl .

To prove the left inequality of (7), suppose

do
;';;= t d,,
öc'e'''

l3

and set rL:-- cd o allcl T2 : 2cdoez'. It fo]loli-s
a point za such that the disk {z , ,z z0' ( rr}
Let h be a function defined as follorn's:

q3z): I ro* 2 12 zoi '

I "rL
I o elser,r,here .

from (3) that there erists
corltains the arc y(zz, zs) .

l- A I -/iz, - zo! 3Tz,

Let B- be an arc joining points ( e zrz, and ('€el oc in Cr. Denote

z: PG) and z' : P(C'). Then z e yQr, zr) . lf 
"' 

ey(p A, it follovrs

from (3) LtraL d,o l clz - z') , and. so d(p-) ) drl". Assume "' efrl7r'1 ,

and let D' be the component, of H - ot(B-) which has 0 as a boundary
point. Denote D : o-l(D') , and let G be the dornain rvhich is bounded

by the Jordan curve p-- U y(z,z') and. which contains the point, p. Then
y(p,w)cG and weöG, where w:min{2,"'}. The boundary of D
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consists of. y(p , ul and the Jordan curve AG . Hence it follows that
D: G - ytg,*1, because p eG. On the other hand, 217?2ei,D, and.
so 21 , z, e G. Since q e G, u.e have d(G) : d(äG) and thus do < dQG) .

The diameter d@G) is at most d(P-) + d(y(z , z')) , anrl so we have

(8) do < d,(p-) -r d(y(z , z')) .

Btrt, from lz z'I < d(§-) < dolQc) we obtain then
c lz - z'i, uhich is in contradiction with (3), and so in any

, z')) > dolt

ca§e

(e)

Hence, in vierv of our

From this and from
z" e §- such that l,="

least I and ure obtain

d(§-) ._\ d0
/-- 

%

assutllption,

'iz 
- ?ol I r, it follows that there exists a point

- zol > 12 . The gr-length of §- is therefore at
the estimate (t51, p. 139)

I
.M (c r(n , ,, , ,-, J) - IYI (c 

'(zs ' 
zz 

' 
zl 

' 
co)) <

2n fdr:^ /-<t.
(un 3\" I r
\"rrl

u-hich contradicts the assumption of the lemma.
To prove the right side of (7), u'e observe as above that there exists a

zi such that, the arc y(2, , z2) is contained in the disk {e I l" - "'ol 
I cd} .

Tf 2cdoez" I d,o , the arc y(z.t , q) lies outside a concentric disk with radius
2cd,oezo -Zccl,o, and the a-sides of Cr(@,zl ,zi,zt) as point sets are
thus separated by a circular annulus lr-hose radii have a ratio greater than
e2o . The use of a similar pr-function as alrove yields the contradiction
M(Cr( oo, zt,22,4)) < 1

\{te no}!' derive the upper bound for

8c2 e2'"

) , if 1?, z;i
clo

0 elsewhere ,

where ai is as before. From the left inequality in (7) it follou-s that the
gr-length of every arc joining the a-sides of Cr(z{,2{,2{,oo) in C, is
at least I . Hence we have the estimate

I l,?a.

qz@)- 
{

M (C ^,(r{ , zt , z{, cc )) by defining

l cctrr- it^
8c2 e2l )
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M(c,(z{,2{,2{,oo)) < I l r, d,o : n(Y)' @ * #-\'
: n(8a'e2' I L)2 : kr.

Let now 0+ be an arc joining the ä-sides of Cr(zl,z{,2i, o) in Cr.
As above we obtain the corresponding inequality (9) for p+. Ilsing the
right side of (7) we have then for the euclidean length 7(B+) of t3+ the
inequality

do

15

ss(z)

do
zo" < cd," + Tr%* ,

where zo is as before. Since the arc y(2, , zs) is contained in the disk

{zllz - zrl3cd"}, it follows from (10) and the definition of g, that eYery

arc joining the ä-sides of Cr(zi,zi,z{,o) in Cy has a or-length at
least I . Hence

t I 4c2e2'\2 I d" \2

W.kri{A,*» <"\ a l\'a"* +c%*) 
(k''

The lemma is proved.
Lemma 4. Let y haue bound,ed, distortion anrT sugtpose that the end,-point

q ds oo. Thenthereeuistsaconstant kz( @ depend,i,ngonlyon c:c(y)
such that for euery gto'int ue y, u lp, a, the cond,iti'on

! a ur1r,1xc-,p ,tc= ,a)) I lc,

^2
hokls.

ProoJ. Denote do: lu - pl, andlet cv beanarc joiningpoints ie w-p
and (ew+a in Cy, As in the proof of Lemma 3, we obtain first the
inequality

; < d(o) + rl(y(z , z')) ,

( 10)

To obtain the lou'er

where /, -: PG)
euclidean length
is contained in a

bound, wo define

( 4c2e2n

: l-a: ' ir i?

I n else*'here ,

do

a,

?, 
1

(2

and. z'
I(") of
disk t

P(e') , alld tlr.en by a similar argument for the
the inequalit;' t(*) Z dol\c) . The arc y(p , w)

lz-zollcclo).If
do

d",if lz-zot, lcdo{ *2c'to0

0 elser,rrhere,

q(e) -
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then the gJength of every arc joining the o-sides of Cr(w-,p,u+,@)
in Cy is at least I , and

M(c,(w-,p,u+, @)) 
= "(?o)'(,u, * *)' : n(zcz I L), : kz.

The loryer bound llk, follows by symmetry.
Lemma 5. Let E be a stri,ctly i,ncreasing Juncti,on of the real l,ine onto

itsel,f arch that p(0) : 0 , anil d,enote

v@lt)-E@)
lp\n ,t) : 

f1*1 _ ,01" _,

for t) 0. Let 9 sati,sfythefoll,owingcond,itions:
lo . Ihere eni,sts a Qr ( @ such tltctt

!=rw,r) (qr
Qr

for t)0, anil r-t> 0 or r+r<0.
2o. There erists a Qz ( oo such that

I = rto ,t) l Qz
Qz

for t) O.
Then there eri,sts a g < oo d,epeniling onlg on p, and, p, such that

(u) *.rO,r){q
for att r a,nd, for t ) O , tn)t ,i,s to say, I i,s g-quasisymmetric.

Proof. Assumethat r,f )0 and r-t<0. Weconsiderfirstthe
case tr > f 12 . Then we have by 2o

v@) - E@ - t) < v@)- e(- tr) < (1 + az) s @),

and by lo

E@ * t) - q(r) > EQx) - p(r) > ! c@ .
Qr

This implies the lower bound U(p,(er* f )) fonl@ , t). In order to obtain
ån upper bound we note first that E@) - q(n - t) > C@) and then use
lo as follows:

v@ + t) - v@) < @(3r) - EQr)) * (q(2r) - s(,-))
< (e, + t) (eQr) - v@D ( qr(s, * t)E(o) .

16



SBrpo RrcxuaN, Characterization of quasiconforrnal arcs L7

follows:

sz(sr * ,))r(;) ,

ASHence V@

v@) v@

v@+t)

v@) v@

+

+"zt-'("r(*i, *u)),
is the modu,lus of the un'it

From these inequalities we obtain

t
,1r 1 qrkr + l» <'P(r ' l) 

( Qz(Qr + r)2'

The equation (Il) is thus satisfied with

Q: max{er(S, * I), pr(g, * 1), gr(1 * gz(qr + l)), A2(Q1 + t)2}

: Qz(Qr + lF.

In the c&se tr < 0, n +r> 0, the equation (11) with the same A

follows by symmetry. AII the other cases are included in lo and 2o, and
so the lemma is proved.

The following distortion lemma is a result of Agard and Gehring ([I],
Theorem 2).

Lemma 6. Suppose that f is a K-quasi,conformal magtpi,ng of the ertend,eil
plane and, that f(oo) : .o . ?hen for each tri,gi,e of distinct finite gtoints
?,12 221 Zg2

sin

atisfrom 0 to r, a,nd

di,sk slit alorug the re(rl

a : &rc sin (,?,(2, ,zz,zr)l-t,
§ : arc sin Q"$@r),f("r),f(zr)))-r,

with tr" d$ined, by the formula $) in Secti,on 3. Thi,s inequality ,is sharp.

Theorem 1. A cl,osed Jord,an arc y is quasi,conformal if ancl, onl,g i,f it
has bound,ed, distorti,on.

Proof. Suppose first that the distortion c : c(y) of y is finite. We
may assume that 7 has oo &s one end-point, because linear transforma-
,
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tions affect neither the quasiconformality nor the distortion of y Let
a:CrU l--> E be fixed as on p. 12v-ith q: oo. Wedefineastrictly
increasing function g of the real line onto itself by setting

v@)_
\c, 

,

-co(*-)-n) 0 and zey

Hence q(0) : 0 , and we wiII show that g satisfies also the other con-
ditions of Lemma 5. Assume f > 0 and r -t>. 0, and let zr,z,2, &rrd
zR be points of y such thab - w(zr): n - t, - a(z;): a, and

-co(z;):r*t. Then M(Cr(@,zl,z{,zl)):1, and by Lemme 3

there exists a constant k depending only on c such that

lVI (C ,(z{ , z{ , z{, .o )) I k,

But this implies ([5], p. 84, 85) that there exists a Qr ( € depending only
on k, such that

a(z{) - a(z{)
u(z{) - ot(zi)

{qr

lr, if r
I r(r*) , if

I

I
Qr

Since the case tr + t < 0 is trivial, it follows from the definition of q that
the condition lo of Lemma 5 holds with constant gr. To prove 2o, let z

be a point of 7 such that -a(z-):t)O. Then it follou's similarly
from Lemma 4 that there exists & Qz ( oo depending onl-v on c such that

I t»(z+)

- I ..-^ ( az.

This implies 2' by the definition of g . Hence g is g-quasisymmetric
with q depending only on c . Then ?-1 is also p-quasisymmetric, and
there exists a ff-cluasiconformal mapping g : H --> l/ with 1( depending
only on c such that g induces the boundary correspondence g-1 (t3l).
Let h be the conformal mapping z --> z2 of ä onto C11*, rvhere Ra is
the positive real axis. The construction of the composed .K-quasiconformal
mapping ho9"tt:Cr-tCE+ is carried out in such a way that it can be

extended to a homeomorphism / of the rvhole plane onto itself. But / is
then -I(-quasiconformal, because R-.. is an anal5,tic arc ([5], Satz I.8.3).
Since /(7) : R+, the arc 7 is ff-quasiconformal.

n'or the converse, suppose 7 is quasiconformal, and let f be a K-
quasiconformal mapping of the extended plane onto itself such t'hat, f(y)
is aline segment. Let zrez2zzsrzn beasequence of successive points of y.
and let g arrd ä be linear transformations such tbat g(zn) : h(l@nD: co .
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Then w : lt, o f o g-t is a K-quasiconformal mapping of the extended
plane keeping the point oo fixed. Since

x(h(f (zr)), h(f @,\), h(f (2,|)) : t

rve obtain, by applying Lemma 6 to the mapping w and using known
properties of p , the inequality

I
sin 7 arc sin (,1(s(2,), s(z),s(z)))-' , ,-(xr(#)) : tr'!(+)

But

p. 9), end so the distortion of y satisfies the inequality(see

tL2)

sin 2 arc

The theorem is proved.
Remark. We point out that in the first

the mapping ,f is K-quasiconformal , K
tion c(),) .

part of the proof of Theorem 1

depending onlv on the distor-

il{tt
sitr p-t L I

4.3. Let, R(y) denote the infimum of the maximal dilatations K(fl ,

/ running over the set of the quasiconformal mappings of the extend.ed

plane which map y onto a line segment. According to the latter part of
Lemma 6, the inequality (12) is sharp in the follou.ing sense: Given 1(,
I <K ( oo, thereexistsaclosedJordanarc y suchthatthereisequality
in (12) with -I( : R(il. The left side of the following equivalent inequality

(13)
2 t L 1\
, fz( sir, , arc sin 

,1r,; ) . K(Y)

is thus a best possible lower bound for R(y) in terms of c(y). A best
possible lower bound for K(y) is obtained in terms of the maximal local
distortion co(y) in the next section.

4.4. The known result corresponding to Theorem
([2]) follows here as a corollarv.

Corollary. A Jordan curue y 'is quas'iconformal

bounded, d'istortion.

I for Jordan curves

if and oruly if il lr,as

Proof. Suppose lhat c: c(y) is finite. Let yr,lz, .. . be a sequence

of closed subarcs of 7 such that, TtcTzC... and that the end-points

19
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conr,ergetoapoint of 7. Then c(y"){c,?L:1,2,..., and thereexist
K-quasiconformal mappings f" of. the extended plane, K depending only
ott c ) such that ,f"(2") is a subarc of the unit circle. In addition, we can
normalize the mappings f, so that, they form a normal famil),. Then there
exists a subsequence converging lo a K-qrasiconformal mapping / of the
whole plane. Bfi f(y) is then the unit circle, and so 7 is K-quasiconformal.
The converse statement can be proved exactly as in Theorem l.

Clearl;z the inequality (13) holds and is sharp also in the case where 7
is a Jordan curve if .K17; has the corresponding meaning.

5. Characterization by local distortion

5.1. The question arises whether the quasiconformalitv of an open
Jordan arc can also be characterized by the distortion ofthe arc. The answer
is negative, as is seen by the example orr p. ll. For the arc (5) is quasicon-
formal as an analytic arc, but it does not have bounded distortion. In the
opposite direetion we have, however, the following result.

Theorem 2. An open or a hal,f-open Jordan arc with bound,ed, distortion
is K-quasiconformal, K d,eperudi,ng onl,y on c(7) .

Proof. Let y be an open Jordan arc rvith c(y) < co . We show first
that y is a closed JordanarcoraJordancurve. Let E : I ---> y bea param-
eter representation for y, where 1 is the interval (0,1). Take sequences
s1 1§2,... and t1 ,t2,... ofpointsof .I suchthat lims,:0 and J3l3t
: 1. Let p and g be limit points of the sets {E(rr) , q(s),... } and

{V(tr),V(tz),...} respectivelSz. Then p and g belongtothe set y-y.
Suppose there exists a point ze, - 7 such that a +p,q. Then there
is a sequenca xL11 'tL2 t . . . of points of 1 such that one of the following
conditions holds:

(u) l* '10,, - I

(b) 
,]§ 

'lf,": o

,Qe{V(ur),p(uz),...}

,p e {V(u),V(u),...}

Suppose that (a) holds, and let g be a linear transformation such that
g(q(ui):a forapoint uoel. Given e)0, thereexi.qtpoints
,trt,ut,u*€I such that uoluplurl'tL* andthat 1n1g1ur))-S@)l ,

,n1q1ui) - s(z)l ,lg@(u^)) - s@)l <e. Hence ls@@*)) - s@(u^))l <2e
and 1n1E1w")) - g(q(ui)l > ig@) - g(z)l - 2e . But this is in contra-
diction with the inequality ls@@r)) - s@@i)l < c(y) 1n1q1un)) - g@(u^))l
if e is sufficiently small. The assumption (b) leads similarly to a contra-
diction, and we have proved that i-y:{p,C}.If p+q,1, isa

and z

and z
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closed Jordan arc, and in the ca,se p : q , i is a Jordan curve. Itiseasily
verified that c(y): c(y), and so the assertion follows from Theorem I
and its corollary ancl the remark on p. 19. The proof is similar for
half-open a,rcs.

5.2. In order to obtain a characterization of quasiconformality also valid
for open Jordan &rcs, \ve shall use the concept of local distortion. We start
by establishing the connection with local quasiconformalit5z.

Theorem 3. A Jorclan q,rc or curae y is quasiconformal at z €. y ,f
and, only if 

"(y , 
z) is fi,ni,te. More preci,sely, the ineqnality

2r

2(11) ;

holds. Applyirg Lemma 6 to

F , V!',e Obtain

for successive points 21 1 22 e zs

this it follorn's that c(y , z) is

1\
sirr, ,l<I{1y,2)cty , z)t

ll
lr\sin Z aro

'i,s sharp, and, there exists an upper botutd for K(y , z) whiclu d,epend,s only ott,

c(y,z)'
Proof . Let c(y , z) be finite. Then there exists a subarc y, > z of y

open in y and such that c(1,,) has an upper bound depending only on
c(y , z). Hence, by Theorem 2, y, is K-quasiconformal, ff depending
only on c(y , z) .

Assume that y is /(-quasiconformal at z e y . Then there is a 1(-
cluasiconformal mapping f of a domain G ) a such that f(G n y) is a

segmer,t of the real line. It is no restriction to assume that z : l@ : 0 .

Let UcG be acirculardiskrrithcentre 0, andlet g map f(U) con'
formallvonto U sothat g(0) :0. Then g./ maps D- ontoitself 1(-
qnasiconformally, and reflecting in AL' r'e olrtain a K-quasiconformal
rnapping h of the extended plane s'ith ä(oo) : c6 . The set hp n y)
contains an analvtic arc y[ ) 0 open in h(U ll y) . Since yi has a con-
tinuous tangent, thereexistsforagiven e>0 asubarc Zo)0 of yL

open in h(U n y) , such that for successive points z1 1 z2 7 z, of it, the
condition

I

the mapping lt and using the properties of

1

t I{;\
sin 2 arc sin pr-t (,' , J

+ (u)

of Ta , w'here (e) -> 0 , as s --+- 0 . From
finite and that the inequalit3, (14) holds.
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To prove that (la) is best possible, we make use of the connection with
the inner measure of topological angles. Given e > 0, 0 ( oc <n, and
L < K ( @ , there exists by [I], Theorem 3, a -l(-quasiconformal mapping

J of a domain G and two line segments y, and 7, which form an angle
in G , such that A(h, yz): a and

(15)

and so

(16)

I
sin

4
A(l(yr) , f (vr)) A(y,

.1 I

,*,)) + ,s t-'lur(.,, +

We apply this to the case o( : !r, i.e. when hU Tz is a line segment.
Let y be the Jordan arc f(y1) U f(yr) and z the common point of l0r)
and /(yr) . Then by (6) and (15) we obtain

1

sin -
2

p-,(+) + t,

where (e) + 0 , as r -+ 0 . This proves the statement.
Remark, Tf z e 7 is not an end-point of y , we obtain an upper bound

for K(y , z) in terms of c(y, z) also by enclosing a subarc of y , which
contains the point z , to a Jordan curve as follows: We may assume that
z : 0. Let U : {" I l"l < ,} be a disk such that there exist, points
z',z"eyn0U with 0€y(z',2")cU. We can choose U so thatthe
subarc Tu : l(z', z") satisfies the inequality

sup .X(2, , zz , za) I 2 c(y ,0) .

zse y 
U(zf zs)

ft is not difficult to show that the Jordan curve Jo: TuU L'U L'U {a} ,

where L':{zl argz:o,tgzt, lzl 2r} and Lo:{zl argz:fl,rgtt',
l"l > ,\, has bounded distortion with c(d) depending only on c(7 , 0) .

Then the result of Ahlfors [2] says that Jo is K-quasiconformal,
K depending only on c(y,0). Hence K(y,0) has an upper bound
depending only on c(y ,0) .

Directly from the definitions and Theorem 3 we conclude that the
corresponding inequality

c)i.)l
fil srn

lT t\

zl I
; P\sin z arc

11\
,arcsi:n, )) +(') )K,

holds and is best possible.

sin #) <K(y)
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5.3. We shall now show that a Jordan arc or curve 7 with bounded
local distortion is quasiconformal. Moreover, there exists an upper bound
for K(y) depending only on co(7) . The former result follows for closed
Jordan arcs and Jordan curves from Lemma 2, Theorem l, and its corollary.
We first proye some preliminary results.

Lemma 7. Let y be an ogten Jordan arc. Thenthere eri,sts a simpily con-
nected, rlomain whi,ch has y as a, free bound,ary a,rc.

Proof. According to our definition of a free boundary arc of a domain,
we have to construct a simply connected domain D which has y as a

boundar;z arc such 11r"1 6p - y (1 y : A and. lhab OD- Z is connected.
Fix a natural ordering ( on the points of y . Let zn and ru, be

n : l, 2, . . ., and that the arcs'),(z^,u)n) cover Z. Denote y^: {z eyl
z<z*\ and y'1,:{reylz>u,}1 7t,: I,2,...

Suppose that we have constructed Jordan domains Dn
k- 1,... rtu, such that DnCDn*r, EtrcErq-r, k 1r..

and Er )

' )n I ,

Let nowand
ln+t
Uy

Dr"fi Er : D*fi t, - Enfi y - y(r-, *r), k : I ) .. ., % .

be a Jordan arc with end-points zo*2 and ?zo*, such that J*+r: ln+t
("^*r, ,rn*r) is ilordan curve and that 7,+, fl (D, U E^) : 0 . Denote

&o: ODo- T(z*,aon), B,: OE^- y(z*rw^), and To^: T'^IJ o^lJyi,
yp^:y:UB^Uy':. There is a Jord.an domain U,ar which contains the
arc yo.(2.*r, zu,*r) and for which Uo+tfr (T^1rU y:+ru /,+r) : A . Let A^*,
be the complementary domain of Jn*, which does not intersect D.U E*.
By an argument similar to the one in the proof of Theorem VI.f4.6 in [6],
it is shown that there exists an open Jordarr atc o(n+t c Ao+t O U,*, with
end-points z,*, and un+r. A similar construction applied to Ti, yields

an arc d"*, (X'ig. f ;. Then ä,*, l) y(2,+, , Do+t) and B,*, l) y(z^+r, Do+r)
bound Jordan domains D,*, and ,,1r with the properties D, c Do+r, E,c
Eo4t, D,*, I En+t: D,*rfiT: E"+rllT:T(2,+rt wn+t). If we set
Do: Eo: A, wehaveconstructedsequences Dr, Dr, .. . and Er, Er, . . .

of Jordarr domains with the properties stated above. We assert that the
simply connected domain

o: !,o"
has the required property in the lemma.

Clearly yCAD. Tf zey, there exists a neighbourhood U of z

which is contained in D*U y(z*,w*)U E* for some k. By the construc-
tion of the sets Do it follows that U n @D - f) : A . Hence

AD-yfiy:A.

23
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Figure 1.

It remains to be shou'n that 0D - y is connected. \\re pro\'e first that'

L':it-T and L":y'i-y areconnected' Supposethat yt-y:
AU B, 'where A and, B are non-empty, disjoint, and closed in yr- y'
Since !i - Z is closed, the sets A and B are closed. Ilence there exist

rlisjoint neighbourhoods M=A and .\'=8. There is a sequence

a1 ,a2,.. of successivepointsof 7i suchthat ar1*-re M and urue N,
l;:1,2,... Everysubarc T(az*-r,ar1) hasapoint bne ilI UrY, and

theset {br,br,...} hasalimitpoint beAUB. But beyi-7, and

so '!ye have a contradiction. Hence .L' is connected. The proof for L" is

similar.
Assume that 1D-y:BU?, where S and f are non-empty,

disjoint, ancl closed. Let 7 = § and IY = T be disjoint and open. since

yCOD, rve have L'l) L':-y -yCAD - 7 ' Hence, in r.ielv of connected-

ness, Z' is contained either in § or in T . The sarne holds for L'. It
strffices to consicler the cases L', L" c § aud L' c S, L" c ?1 . Assunre

L',L"cS. Then f ny:O. Takeapoint z€? andacirculardisk
ticw withcentre z such that ynu:0'. since ze 0D, thereexists
a point dn e Dt" 11 IJ for some /c . n'rom t]re monotonicity of the sequence

Dr, Dr,... it follows that clre D* for n) k. But then there exists a

point cne.OD.Ot/ for every nllc, because zQD,,rL:L,2,.."
This implies co € ao for n) k. on the other har.d, there is an zz such

that the end-points z^ of tlne arcs orn belong to V for n)m. Hence

----t-;'/ p^,-
ti--

-'n -^

-"t-,.- \.-===-r.;--
/t ./ r-',/ ,//

/ d- .// ,

-rl
I
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there exists a point ene &n- VUW) for every n>.rnr.ax{k,m\. Let'
e be a limit point of the points e,. Then e is a point of äD which does

not, belong to §U?. But e{y, and sowehave a cont'ratliction. The
pase L' c S , L'c ? leads similarly to a contradiction if we consider end-
points of the arcs i,,n. Hence 0D - y is connected and the lemma is

proved.
Lemma 8. Let G and, G' be doma'i,ns t»ith free bourudarA a,rcs or curaes

y and, y' respectiael,y. Let y, a,nd, y'r,i,:1,?,..., be open subarcsof
y and y' satisfyi,ng the Jol,lowing cond'itions:

nY; : g, 'f i
@,c(Vi) <c'<

If ! : G --> G' 'is a l(gu,asi,conformal magtping, where y, and y'1 corresltond'

to each other, then there ex'ists an ertens'ion of J to a fr-quasi'conformal malryti,ng

g olad,omain i=av03,,k d,epend,ingonlyon K,c, a'nil a'.
Proof. By Theorem 2, vi and 7j are K"' and .I(", -quasiconformal,

where K" and ff", depend onl-v on c and c' . From Lemma I it follows

rhat ! can be extencled to rt : XlXXf, -quasiconformal mappings 9t

of domains &)Gl)yi,i:1,2,... To complete the proof werestrict
the mappings /; asfollows. Thereexistopensets U; )yi,i,:1,2,...,
such that [Jic Gi ancl O,n l).yi: g,(U) n.U.yj - A . We define

J7r J7.

§;:
i-t

UoU g,'( U g-((f -»
Ji:1

Then every set, §i is open and contains yi. lloreover, §r O B;:
gr(§;)Ogi(S):A, if i,+j.Let Tt be the component of §i which

contains the arc 7; . \r[e obtain the required -f-quasiconformal extension

S of f defirred in the domain

Ti) G

by setting

lf@, if zeG,
s\z): 

[r,@), if ze Ti

5.4. If the distortion c(y) of. a Jordan arc or curYe / is 1 , then 7
is contained in a line or a circle. Accordingly, in this case r((7) : I . The
question arises whether co(y) : I also implies K(y) : | . One result in
this direction will be presented in Theorem 4, namely, if 7 has a continuous

(a) T;fr Tj:
(b) c(y) I c

+j.
@ ,'i:

I
lt

i- I

Ui-U
It:1

U 3,,
f :1

T

i: I

1 ,2,
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tangent (in which case co(y) : l) , then ff(7) : f . \\re point out that
examples can be given which show that co(y) : I does not imply the
existence of the tangent.

Theorem 4. A Jord,an arc or curae y is quasiconformal if and, onl,y i,f
co|) i,s fi,nite. There erists q,n a.pper bou,nd for K(y) deltenili,ng onl.r1 on
co(y) . Especially, i,f y has u continu,otcs tangent, then K(y) : L

Proof. Tf y is quasiconformal, the inequality (16) shorys that co|)
is finite.

Let us assume, conversely, that co(y) is finite. We consider first the
case where 7 is an open Jordan arc. By Lemma 7 there exists a simply
connected domain G which has 7 as a free boundary arc. It is no restric-
tion to assume that co € G . Let ,f map G onto the upper half plane ä
conformally so that Z corresponds to a segment of the real axis R . Every
point, z € 7 is contained in an open subarc T"C T for rvhich

We cover Z by a countable set of such subarcs 7, and denote these by
li , i e Z , where Z is the set of the integers. \Ve can assurne that
T;l1T;+r+fr, i,eZ, and y,fiyi:6, if i-.i>2. Thentheindices
correspond to the successive order of the arcs (see Fig. ?). Let xi c yi be
disjoint open subarcs such that, a,fly,_, + A, i €2. The inequalit;- (17)
implies that the distortions c(ui) of a; , i e Z , har-e an upper bound
depending only on co(7) . Hence there exists b;r Lemma 8 a /(-quasicon-
formalextension g of J definedinadomain D=G UU,ri, Jf deirending
only on cr(y) . iez

Let z', and z'i be two distinct points of or, such that ei € y,-, and
that z'r-, , zi-t , z'i are successive for eyery ,i € Z . Denote ui : g@'t

,.
i)

and wi:g@';). We may assume wl<w! , iez,. Let u, be afunction
of R , which is negative in the intervals (tr', , w"r) and 0 elsewhere, and
v'hich has a continuous derivative u,ith u'(w:):u'(w'i):0, iez.
Denote by L the Jordan arc which has a parameter representation
g:R">L u'ith f@):rf iu(r). In addition, we can choose ?, so

that the domain A,b a bounded b;, the Jordan curve L(w', , u!) l)
Ito', , w'!l is contained in g(D) for every i eZ . Bv an argument similar
to the one used in the proof of Theorern 3, it is shou-n that there exist dis-
joint open subarcs l!) "! and /i ) z'; , i eZ, of /: S-,@) such that

(17)

(18)

sup i(zr,22,?B) <2ct|)
zre y u(zy zg\

&

d

sin 2 arc si, ,r-' (ia 
)

_l_ I
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Figure 2.

for successive points zL, zz, zB of these arcs" Denote

t)j ,

v'here y'i':y@'i-r,z!,1 , ieZ. Let y'i-y )"'i-, and y!>"1, be open
strbarcs of li-, and li respectively with diameters less that g;: rif} .

We shall show that the distortions of the arcs §r:y'i-rUy, Uyi,
d e 7,, have an upper bound depending only on co@) . Let, ?1 , 22, z, be

successivepoints of {il. Tf zr, 
"re 

y'i', u'e hat'e i(zr, zr, zs) 32co(y) in
viewof thechoiceof thearcs /i .If zr,zrel'!-, ot 211 zset'r, theinequality
(18) gives an upper bound for ),(zr, 22, zs). To complete the proof of the
assertion, it suffices, for reasons of symmetry, to consider the following
three cases:

(a)

(b)

(.)

48
zte

4Q

l; and zz , zB

y';-L t zz Q y'ri-,

Y';-, U l: , zz 4

e y',.

U yi, ancl ,u e y',

y:, and zseyi.

is then obtained as follou's:

tr^l^
, -J- tli t i.Z
for Ä(21 ,

I

rylu3l

P 

' 

\d2 I ag)

I | 2,3

I 1/3r - -t iizr z tt Qi

\

\ .f,_,

1\ -a1' \-- 
:-=::=:.--l't-i;.-'- -
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In the ease (h) we

and. in the case (*)

1+213

have

t-
r ll

t1_ z;i + Qt

r + rl3I,
4lei; -- g;

"1 Qt

In addition, the arcs 2,i-, and y', canbe chosensothat c(g(fi,)) <2,
d e Z . Appl;ring then Lemma 8 to the arcs §;, i, eZ, andto the mapping
g restricted to the domain * U 

,yr(yGi 
, r') U g-L (A;)), we obtain a -fr-

quasicorrformal mapping h of a domain d=y, which maps ,/ ontoa
segment of the real line, and .where å depends only on co(y) . We have
thus proved thaf K@) has an upper bound depending only on co(y) , if
7 is an open Jordan arc.

In case y is a Jordan curve the proof is easier, because Lemma 7 is
not needed and the covering of V by the arcs yi can be chosen to be finite.
Let y be a closed Jordan arc. If we apply Theorem 3 to the end-points of
T , it follows that y is contained in an open Jordan arc yo such that
co(70) has an upper bound depending only on cr(y) . Tlne same holds clearly
for a half-open arc.

To prove the last statement in the theorem, suppose that 7 has a
continuous tangent,. Assume lhat y is an open Jordan arc. Let zo be a
point of y . By performing a linear transformation, we may assume that y
has a horizontal tangent at zo and that ?o:0. Then thereexistsan
open subarc 7* ) 0 of 7 which has the parameter representation
1t)t(- d,ö)-tZ* defined by V(r) :r*-iu(t), where o is continuously
differentiable, u'(0) :9, and a'(r)11 foryu€(-d,ä). We define
a mapping w of the strip domain {z i lRe zl < ö} onto itself hy w(* { ig)

- u I i(g * a(x)) . Then zl maps the interval (- ö , d) onto the arc
y* , alrd. the dilatation quotient D(z) of w at ? : x) * iA {5), p. t8)
satisfies the inequality

(1e)
t -l- ,u' (r)'iD(*) < r - e.1rl

Given e ) 0, we cover y by arcs y;, 'i, e Z, as above so that the oscilla-
tion t(yt) of the direction of the tangent of 7; is less than e for every
de%. Lef f and a;,deL, beasbefore.Theextension g of / isnow
constructed by the use of mappings like zo (cf. the proofs of Lemma I
([5], p. 102) and Lemma 8). Then (19) shows that g is 1 f (e)-quasicon-

nag;
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formal, where (e) + 0 , as r -> 0 . We can here choose the arcs 0i so that
the corresponding oscillations t(§t) and t(g(§)) are less than 2e . If
rve apply the same method to the arcs pr and g(§), we can also construct
the extension fr, so that it is I f (e)-quasiconformal, where (e) -> 0 , as
e-+0. Hence K(y): l.Incase 1,, isaJordancurve,weuseagaina
corresponding finite covering of y , and in case Z is a closed or a half-
open Jordan arc, we have only to remark that y is contained in an open
Jordan arc with a continuous tangent. The theorem is proved.

5.5. Combining Theorems 3
Corollary. Let y be 0, closerl,

,i,s q?.t asiconformal ,f arld oruly ,t it
Note that this follow's also by

its corollarv.
The corresponding statement for open Jordan arcs does not hold. This

is shown by the example in X'igure 3, where rn: lln, tL:1,2,...

ii| ,.'
_L1__,,

I

I

University of Helsinki
Helsinki, Finland

and 1, tve obtain the follor,virg reslllt.
Jordan erc or a Jordan curae. Then ?,

'is quasiconformal o,t eaer?l point z e y ,

Lemma 2, Theorem 3, Theorem I and
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