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1. Introduetion

The quasiconformality of Jordan arcs and curves in the sense of Lehto
and Virtanen [5] is closely related to the possibility of extending quasicon-
formal mappings of plane domains. The extension problem was first treated
by Tienari [8], and some of the results were generalized by Vaisala [9].
However, the conditions for quasiconformality of arcs and curves contained
in [8] are rather implicit; cf. also Pfluger [7]. Accordingly, it has been natural
to ask for more direct characterizations. A solution of this kind was estab-
lished for Jordan curves by Ahlfors [2]. He showed that quasiconformal
curves can be characterized by a surprisingly simple metrical condition;
in this paper we say that a Jordan arc or curve has bounded distortion if it
satisfies such a condition. The main results in [2], [8], [9], and this work
are essentially based on the important paper [3] by Beurling and Ahlfors
about the boundary correspondence under quasiconformal mappings.

Tt has been an open question whether the quasiconformality of a Jordan
arc can also be characterized by the distortion of the arc. The answer is
affirmative for closed arcs, which is proved in Section 4. In Section 5 it is
first shown that, in the case of open ares, bounded distortion implies
quasiconformality but not conversely. A characterization of quasiconform-
ality for open arcs is obtained in terms of a measure of local distortion.
With the help of the local distortion we also give bounds for the maximal
dilatation which appears in the definition of quasiconformality of Jordan
arcs and curves. In order to obtain a best possible lower bound we have
used recent results concerning topological angles introduced by Agard
and Gehring [1] in connection with quasiconformal mappings.

2. Quasiconformal arcs and curves

2.1. We consider sense-preserving homeomorphisms f: G — G', where
G and @ are domains in the extended plane. The maximal dilatation
of such a mapping f is denoted by K(f). The definition in terms of
quadrilaterals may be found in [5], p. 17. If K(f) < co, the mapping f
is said to be quasiconformal, and if K(f) <K < oo, f is called A-
quasiconformal.
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2.2. Let y be a Jordan arc!) or curve in the extended plane. We say
that y is K-quasiconformal if there is a K-quasiconformal mapping f of
a domain G Dy such that f(y) is a line segment or a circle respectively.
If 9y is K-quasiconformal for some K , it is called quasiconformal. We
denote

K(y) = inf K(f),
fEF(7)
where F(y) is the set of all sense-preserving plane homeomorphisms f of
domains G Dy such that f(y) is a line segment or a circle respectively.
Then y is quasiconformal if and only if K(y) is finite, and if y is K-
quasiconformal, the inequality K(y) < K holds.

It follows from an extension theorem ([5], Satz I1.8.1) that if y is closed,
the domain @ in the definition of quasiconformality of y can be chosen
to be the whole plane. An immediate consequence of this is the result that
a closed Jordan arc is quasiconformal if and only if it is a subarc of a quasi-
conformal curve (see [5], p. 102).

2.3. Open quasiconformal arcs and quasiconformal curves are related
to the extension of quasiconformal mappings according to the following
lemma.

Lemma 1. Let G and G’ be domains with y and y' as open free bound-
ary arcs?) or free boundary curves respectively. If y and y' are K- and
K'-quasiconformal respectively and if f:G->G is a Ky quasiconformal
mapping with y and )’ corresponding to each other, then f can be extended
to a K2K,K'?-quasiconformal mapping of a domain containing G Uy .

This lemma is a slightly modified form of Satz 11.8.2 in [5], and for the
proof we refer to [5].

2.4. Local quasiconformality. We also define a concept of local quasi-
conformality in the following manner (cf. [9]). A Jordan arc or curve y is
called (K-)quasiconformal at the point z €+, if z belongs to a (K-)
quasiconformal subarc y. C y openin y. If z is a point of y, we denote

K(y,z) =inf K(y.),
7z
where the infimum is taken over all subarcs y. C y containing z and open
in . Then y is quasiconformal at z €y if and only if K(y,z) is finite.
If y is K-quasiconformal at z €y, then K(y,z) < K.

1) A Jordan arc is here defined to be homeomorphic to a line segment. The closure
of an open Jordan arc is then not necessarily a Jordan arc.
?) We define a free boundary arc of a domain as in [5], p. 12.
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Clearly quasiconformality of y implies quasiconformality at every
point z €y . It has also been proved that a Jordan curve is quasiconformal
if it is quasiconformal at all of its points ([8], Satz 12, and [5], p. 108). We
give this and the corresponding result for closed Jordan arcs in the corollary
of Theorem 4.

3. Bounded distortion of Jordan arcs and curves

3.1. We introduce now the condition of Ahlfors appearing in [2]. Let
I, %, 23, 2 denote the absolute value of the cross ratio of the sequence
%, %, %3, 2. For finite distinet points z;, z,, 23, z; We have then

| !
— Zal Z, — %

Y - . ~1 ~3 ~4
215 R25 %35 Ry & T L o
~1 T 4l *2 T <3l
We say that a Jordan arc or curve ;3 has bounded distortion if there exists
a number ¢, 1 <c¢ < oo, such that
(1) ‘:1r54>32933;’f".31a22:54;33!§0

for all sequences z;, z,, z3, 25 of successive pointsof y. Wecall ¢(y), the
supremum of the left side of (1), the distortion of y . Thisis clearly invariant
ander linear transformations. The distortion c(y) equals 1 if and only if
y is contained in a line or a circle.

In [4] a Jordan curve lying in the three dimensional space and satis-
fying (1) is called a c-civcle. For other forms, equivalent to (1) in case of
Jordan curves, we refer to [2] and [5], p. 104, 107.

Remark. The condition for Jordan ares given in [5], p. 107 (beschrénkte
Schwenkung), is equivalent to (1) only if the arc is closed.

3.2. If v is a Jordan are, and w; and w, are two points of y, we
denote throughout this paper by y(uy, w,) the open subarc of y which
has the end-points u; and w, The euclidean diameter of a set A s
denoted by d(4).

For later applications we consider a closed Jordan arc y with oo as
one end-point. Fixing z, = o in (1), we obtain the simple condition

(2) 2 — 2z bl — 7l Scly — 23|

for successive finite points z;,2,2; of y. With the above notation y
also satisfies the condition

(3) d(y(zy 5 29)) < clzg — 2

for finite points z;,2, €y .
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3.3. The remarkable result that a Jordan curve is quasiconformal if
and only if it has bounded distortion was first proved by Ahlfors in [2].
For a slightly different proof, see [5], Satz I1.8.6. In this paper we have the
result as a corollary of Theorem 1.

If a Jordan arc or curve y has bounded distortion, it follows directly
from the definition that every subarc of y has bounded distortion. Since
a closed quasiconformal arc is a subarc of a quasiconformal curve, and
quasiconformal curves have bounded distortion, we have the result that
closed quasiconformal arcs have bounded distortion. We shall show in the
next section that the converse also holds.

3.4. Local distortion. In analogy with the concept of local quasicon-
formality we now introduce a measure of local distortion in the following
manner. Let y be a Jordan arc or curve and let z be a point of y . We call
k(zl ’ 22) + k(22 ’ 23)

k(zy 5 25) ’

c(y,z) =inf sup

7z 25€val(sy %3)
where k is the spherical metric, and the infimum is taken over all subares
7: C y containing z and open in y , the distortion of y at the point z. If
z # o0, the spherical metric can here be replaced by the euclidean. We
call further

Co(y) = sup c(y , 2)
z€y

the maximal local distortion of y and say that o has bounded local distortion
if cy(y) is finite.

We prefer to choose ¢(y, z) as a measure for local distortion rather than

cx (7, 2) = infe(ys) ,
7z
where y, varies as above. There are two reasons for this. For one thing,
¢(y,2) is simpler in calculation than c.(y,z). Secondly, a sharp lower
bound for K(y) is easily obtained in Section 5 in terms of c,(y) .

In the following sense c(y , z) is equivalent to c,(y, z): The inequality
c(y,2) < cg(y,2z) holds, and there is an upper bound for c.(y,z) depend-
ing only on ¢(y,z). To show that c(y,z) <c.(y,z) is true, suppose
first that z # oo, take ¢ > 0, and let 7.3 o be a subarc of y open
in y and containing the point z. Given 2, €y.,2, # 2, we choose a
0> 0 such that (r — g)/(r 4+ 0) > 1 — ¢, where r = |z, — 2| . Assume
a < c(y,z). There exist points z; € y;, 2 = 1, 2, 3, such that |z —z| < o,
that z,, z,, 23, 2, are successive, and that

[z — 25| + |z — 23]
>a

|21 — 23]

(4) My s 2y ,23) =
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Then !z, — 2!, 12, — 2] >r — o0 and |z, — 7z, <r -+ po. Hence
i“3 4l %1 4 9 ) 4i 9

- . . . .
|2y — 2] 123 — 24 12 — 24| |2 — 7

| o m : ol —
21,20 %25 23] T 1715 %25 25 28] = -

“4i

71— %31 %2

>(1—e)Az,2,%)>1—¢a.

Accordingly, the assertion is proved in case z # oo . Itis easy to show that
¢(y , z) is invariant under linear transformations. Since this holds trivially
for c,(y,z), we conclude that the asserted inequality is true alsoif z = o .
An upper bound for c,(y,z) in terms of ¢(y ,z) is obtained by elementary
estimates.

The connection between local distortion and quasiconformality is
discussed in Section 5.

If y is a closed Jordan arc or a Jordan curve, then y has bounded
local distortion if and only if the distortion of y at every point z €y 1is
finite. In this case, also the property of having bounded distortion in the
large can be characterized locally:

Lemma 2. A closed Jordan arc or a Jordan curve y has bounded distortion
if and only if c(y,z) is finite at every point z €y .

The proof of this lemma is included in the proof of Satz II1.8.7 in [5]
in the case where y is a Jordan curve. The proof for closed Jordan arcs
is similar (cf. the remark on p. 9).

Lemma 2 does not hold for open arcs. The open Jordan arc

|

1
(5) V=|(w,y)ly=sin;,0<x<1]

has bounded local distortion, because c¢(y,z) =1 at every point z €y .
However, y does not have bounded distortion.

3.5. Connection with topological angles. The inner measure of a topological
angle, defined in [1], is closely related to the local distortion. A pair (y;, ,)
of two closed Jordan arcs y, and 7, forms a topological angle at a point
zp # oo if both 7y, and y, have z, as an end-point and if z, is the only
point 3, and 7, have in common. The inner measure A(y;,y,) of this
topological angle (y;, y,) is defined as follows:

A(yy, 7o) = lim inf 2 are sin (4(z1, 2, 22)) 7%
where 1 is defined by (4).
Let now (y;, y») be a topological angle at z,. Then y =y, Uy, isa
Jordan are, and the distortion c(y,z,) of y at the point 2, is defined.
It follows directly from the definitions that the following inequality holds:
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1
ey, Zy) )

(6) A(yy, y;) = 2 arc sin

If y, and y, are line segments, there is equality in (6). It is also easy to
see by examples that there exist topological angles (y;, v,) with A(y;, 7,)
greater than the right side of (6).

4. Characterization of closed quasiconformal ares

4.1. The main purpose of this section is to prove Theorem 1, which
shows that the quasiconformality of a closed Jordan arc can be charac-
terized by the distortion of the arc. Before starting the proof we introduce
some notation.

If not otherwise stated, let 7 be in this section a closed Jordan arc.
Let @ map C,, the complement of y, conformally onto the upper Lalf
plane H . The mapping o induces a natural one-to-one correspondence
between [I', the set of boundary elements of C,, and the houndary
oH of H. We denote this natural extension of o, which is a mapping
of ¢, U I" onto the closure A of H, by the same symbol o .

Letnow £, &5, I3, £y be four distinet points of I" such that the sequence

o(&), ..., o(f) has positive orientation with respect to H . We call
the pair consisting of the domain €, and the sequence I, ,... ., an arc-
quadrilateral and denote it by € ({;, ..., ;). This is a natural modifi-
cation of the concept of quadrilateral corresponding to Jordan domains
(see e.g. [5], p. 15). The modulus M(C(;, ..., 8)) of C(5,....5)
is defined to be the modulus of the quadrilateral H(m(Z,),....o(Z)).

It is clear that this definition of the modulus of an arc-quadrilateral does
not depend on the choice of the conformal mapping @ . The - and -
sides of C(&y, ..., &), denoted 5, 5,. 55, and &, 5y, £, Iy respectively,
are defined to be the subsets of I” corresponding to the «- and b-sides
of H(w(Ly), ..., o(%) ([53], p. 15) under the mapping o .

An arc joining points { and ' of I" in (. is an open Jordan arc

xaC C, such that o(x) —w(x) = {o().o();. If 4 is the family of
arcs joining points of opposite a-sides of C (5, ...., ;) in C,, the modu-
las M(4) of A ([5], p. 139) is equal to I(C (%, ..., &) .

Let p and ¢ be the end-points of » in the following. We fix the
mapping o so that the points p,0 and ¢, o correspond to each other
on the boundary. Let P be the natural projection of I" onto y. If z €+,
we denote by z~ and z* the points of I' for which P(z™) = P(z*) = =,
w(z7) is non-positive, and w(z*) is non-negative. Then p~ = p*~ and
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g~ = ¢q*+, and there is no confusion if these are simply denoted by p and
q respectively. We also fix a natural order on the points of y sothat p <g¢.

4.2. We are now ready to state the lemmas which are needed in the
proof of Theorem 1.

Lemma 3. Let y have bounded distortion and suppose that the end-point
q is oo. Then there exists a constant k; < oo depending only on ¢ = c(y)
such that the condition

1
—]_C— < M(Oy(Zi‘_,Z;-, Z;-:OO)) < kl
1
holds for finite points z,, zy, 23 € y satisfying z <z, < z3 and
M(C, (0,25 ,25,27)) = 1.

Proof. Let z;, z,, and z; satisfy the conditions in the lemma. We show
first that

dy

8c2e*™

(7) < do < 2edye®
holds, where d. is the euclidean distance between the arcs y(z, 2,) and
V(z5, ), and dy = |z — 2 .

To prove the left inequality of (7), suppose

dy )
st = oo

and set r; = ¢d, and 7, = 2¢cde*™. It follows from (3) that there exists
a point z, such that the disk {z 2z — z,/ <r;} contains the arc y(z,,z2;3) .
Let o, be a function defined as follows:

1 1

Ty |2 — %

01(2) = ll‘)g -

ifry <fe—2z| <y,

0 elsewhere .

Let p~ be an arc joining points { €zyz; and (' €z oc in C,. Denote
z=P() and 2’ = P({’). Then z € y(z5,25) . If 2" €y(p,7), it follows
from (3) that dy <c¢lz — 2’|, and so d(f~) > dy/c. Assume 2 € y(p, z),
and let D’ be the component of H — o(p~) which has 0 as a boundary
point. Denote D = ow=}(D’), and let G be the domain which is bounded

by the Jordan curve ﬁ_— U y(z,2) and which contains the point p. Then
y(p,w)C G and w €¢G, where w = min {z,z'}. The boundary of D
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consists of y(p,w) and the Jordan curve ¢G. Hence it follows that
D =G — y(p,w), because p € G. On the other hand, z,,z, €D, and
80 2,2 €G. Since o € ¢, we have d(G) = d(¢G) and thus d, < d(e@) .
The diameter d(¢G) is at most d(B~) 4+ d(y(z,2')), and so we have

(8) dy < d(B7) + d(y(z,2)) .

If d(f~) < dyof(2c) < dy/2, it follows from (8) that d(y(z,z")) > d,/2
But from |z —2'| <d(f7) <dy/(2¢c) we obtain then d(y(z,z2’)) >
¢ [z —2'{, which is in contradiction with (3), and so in any case

(9) a6 = 5, -

Hence, in view of our assumption,
d(f) > 4cdo® = 2r,.

From this and from [z — 2 <r; it follows that there exists a point
2" €~ such that 2" — 2/ >1r,. The g;-length of B~ is therefore at

least 1 and we obtain the estimate ([5], p. 139)
1
M(C(o0, 25,27, 21

g = MO, 7w ) s//gi do

T2

27 /dr
:—2 —<1’
( rz) r

log 71 n

which contradicts the assumption of the lemma.

To prove the right side of (7), we observe as above that there exists a
z, such that the arc y(z, z,) is contained in the disk {2z [z — 25| < cd,}.
If 2edye®™ < da, the arc p(z;, o) lies outside a concentric disk with radius
2cdye™ — 2¢dy , and the a-sides of C,(00,25,25,27) as point sets are
thus separated by a circular annulus whose radii have a ratio greater than
e*". The use of a similar o-function as above yields the contradiction
MO (0,25,27,27)) < 1.

We now derive the upper bound for 3/(C, (21,25 ,2;, «)) by defining

7

2,27
8¢’e U o dy
itz — 2| <edy + oo

i

8¢’e”
0 elsewhere ,

where 2, is as before. From the left inequality in (7) it follows that the
gr-length of every arc joining the a-sides of C (2,257,257, ) in C, is
at least 1. Hence we have the estimate
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8c%e’™\2 dy \2
MO, (2,255 2 //02d0—7( )(cdo—!—w

= q(8¢%> + 12 = lcl.

Let now f*+ be an arc joining the b-sides of C (2,2, ,%;, ) in C,.
As above we obtain the corresponding inequality (9) for f+. Using the
right side of (7) we have then for the euclidean length [(8+) of f+ the
inequality

da
+ > 2 9
(10) B9) = o
To obtain the lower bound, we define
402 27
—,if 2=z <cda + T35
03(z) = l da 1 4c¢”
0 elsewhere ,

where 2z, is as before. Since the arc y(z,,2) is contained in the disk
{2] |z — 2p| <cd.}, it follows from (10) and the definition of g; that every
arc joining the b-sides of C (z7,25,25, ) in Oy has a pglength at
least 1. Hence

1 . (4c’ 2’)(d da ‘)2 ;
M(C, (27,2525, 0) — da ¢a = 4c%* < Fi-

A\ \

The lemma is proved.

Lemma 4. Let y have bounded distortion and suppose that the end-point
q is . Then there exists a constant k, < oo depending only on ¢ = c(y)
such that for every point w €y, w # p, oo, the condition

1
T < MC(wm,p,uwm,x)) <k

holds.

Proof. Denote dy, = jw — p|, and let ~ be an arc joining points J € w™p
and (’€wtoo in Cy. As in the proof of Lemma 3, we obtain first the
inequality

dO S (Z((X) —T' (l(}’(Z ) 2’)) )

where z = P({) and 2z’ = P({’), and then by a similar argument for the
euclidean length [(x) of « the inequality I(x) > d,/(2¢c). Thearc y(p, w)
is contained in a disk {z| |z — 7| <cdy}. If

[20 " ‘<d—|—d0
—,if 2z — 7zl <¢ =,
Q(Z)=ldo 0 0 2¢

0 elsewhere,
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then the p-length of every arc joining the a-sides of C.(w=,p,wt, )
in Cy is at least 1, and

/20\ 1 do : 2 i 2
MO (w,p,wt, ©0)) < 7(50) cdy + %) = (22 + 12 = k,.
The lower bound 1/k, follows by symmetry.

Lemma 5. Let ¢ be a strictly increasing function of the real line onto
itself such that ¢(0) = 0, and denote

el + 1) — o)

v = ) e — )

Jor t > 0. Let ¢ satisfy the following conditions:
1°. There exists a o, << oo such that

1
— =y, t) <o
01
for t>0, and x —t>0 or x+t<0.
2°. There exists a 9, < oo such that

1
— < y(0,t) <o
Q2

for t>0.
Then there exists a ¢ < oo depending only on o, and g, such that

(11) <ypl,t) <o

| -

Jor all x and for t > 0, that is to say, ¢ is o-quasisymmetric.
Proof. Assume that x,¢{> 0 and x — ¢ < 0. We consider first the
case x > t/2. Then we have by 2°

p@) — g@ — 1) < @) — p(— ) < (1 + 0,) @ (2),

and by 1°
1
P + 1) — ¢(@) > ¢(22) — ¢(r) > — ¢(x).

9

This implies the lower bound 1/(¢,(0,+ 1)) for u(x, ). In order to obtain
an upper bound we note first that ¢(x) — ¢(x — ) > ¢(x) and then use
1° as follows:

g+ 1) — ple) < (¢(32) — ¢(22)) + (¢(22) — ¢(2))
= (o + 1) (p(22) — ¢(2)) < 0400 + 1) () .
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Hence y(x,t) < (o, + 1). If © <t/2, we estimate as follows:

t t t
ple) — gplo — 1) < (p(;) p(—1) < 9f< >+ 029(t) < (1 + 05(0y + ))¢<§>,

t
o0 == o0 —of2) = Lo(2).

I
¢(x)—¢(w~t)>—¢< 2>Z;¢(>

¢
g+ 1) — gl@) < ¢2) < (o + 1) ¢t) < (o + 1)%(;) :
From these inequalities we obtain

1
01(1 + @a(0;

The equation (11) is thus satisfied with

0 = max {g(g, + 1), 0101 + 1), 03(1 + 0o(0; + 1)), 0a(0; + 1)%}
= 0,(0; + 1)

In the case <0, x +¢> 0, the equation (11) with the same o
follows by symmetry. All the other cases are included in 1° and 2°, and
so the lemma is proved.

The following distortion lemma is a result of Agard and Gehring ([1],
Theorem 2).

Lemma 6. Suppose that f is a K-quasiconformal mapping of the extended
plane and that f(oc) = co. Then for each triple of distinct finite poinis

+ 1)) < 1/”(‘1” ’ t) < QZ(Q]. + 1)2'

215 %oy %3,
! 1
sin 5 o >u Ky singﬁ ;

where u(r),0 <r <1, is the modulus of the unit disk slit along the real
azxis from 0 to r, and
o = arc sin (A(z;,2,,25))7Y,

f = are sin (A(f(z1), f(z2), f(23) 7
with A defined by the formula (4) in Section 3. This inequality is sharp,

Theorem 1. A4 closed Jordan arc y is quasiconformal if and only if it
has bounded distortion.

Proof. Suppose first that the distortion ¢ = ¢(y) of y is finite. We
may assume that y has oo as one end-point, because linear transforma-

2
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tions affect neither the quasiconformality nor the distortion of y . Let
w:C,UI'>H be fixed as on p. 12 with ¢ = o . We define a strictly
increasing function ¢ of the real line onto itself by setting

@) [ED if #<9, _

x) =

¢ lw(z+),if—w(z—)=x>0 and z€y.

Hence ¢(0) = 0, and we will show that ¢ satisfies also the other con-
ditions of Lemma 5. Assume ¢ >0 and « — ¢t >0, and let 2, z,, and
z; be points of y such that —ow({)=x—t, —wkE;)=x, and
—ow(y)=a+t. Then M(C/(,z;5,2;,27)) =1, and by Lemme 3
there exists a constant k; depending only on ¢ such that

1
—la S-‘M(Oy(zi‘_wz;"z;—) w)) < kl .

But this implies ([5], p. 84, 85) that there exists a o, << o depending only
on k; such that

<o.

1 o) — @)
F)

01 o(z) — oz

Since the case x -+ ¢ < 0 is trivial, it follows from the definition of ¢ that

the condition 1° of Lemma 5 holds with constant p,. To prove 2°, let z

be a point of y such that — w(z~) =¢ > 0. Then it follows similarly

from Lemma 4 that there exists a g, << oo depending only on ¢ such that
1 w(zt)

— <
0 — — o(z7)

< 0.

This implies 2° by the definition of ¢ . Hence ¢ is p-quasisymmetric
with o depending only on ¢. Then ¢! is also g-quasisymmetric, and
there exists a K-quasiconformal mapping ¢ : H — H with K depending
only on ¢ such that ¢ induces the boundary correspondence ¢=1 ([3]).
Let A be the conformal mapping z —2* of H onto Cj., where Ry is
the positive real axis. The construction of the composed A-quasiconformal
mapping hogow:C, — Cx L s carried out in such a way that it can be
extended to a homeomorphism f of the whole plane onto itself. But f is
then K-quasiconformal, because R, is an analytic arc ([5], Satz 1.8.3).
Since f(y) = Ry, the arc yp is K-quasiconformal.

For the converse, suppose y is quasiconformal, and let f be a K-
quasiconformal mapping of the extended plane onto itself such that f(y)
is a line segment. Let z;,2,,2;,2, beasequence of successive points of y .
and let g and % be linear transformations such that ¢(z,) = A(f(z,)) = <o .
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Then w = hofog™ is a K-quasiconformal mapping of the extended
plane keeping the point oo fixed. Since

AMR(f(20)s W(f(22)), A(f(23))) = 1

we obtain, by applying Lemma 6 to the mapping w and using known
properties of u, the inequality

sin—l—arc sin (Mg(z), 9(za), 9(25)))t = —1<K ( ! \)‘)_ —1<Ej—z>
9 < 9(z1), 9(22), 9(25 ey M\\//‘_Z- " =u 9 |

But
21,2452, 2] + (21, %2, 24, 250 = Mg(21), 9(22), 9(35))
(see p. 9), and so the distortion of y satisfies the inequality

1
(12) cly) <

sin 2 arc sin ,u‘l(—_)—)
The theorem is proved.

Remark. We point out that in the first part of the proof of Theorem 1
the mapping f is K-quasiconformal, K depending only on the distor-
tion c(y) .

4.3. Let K(y) denote the infimum of the maximal dilatations K(f),
f running over the set of the quasiconformal mappings of the extended
plane which map y onto a line segment. According to the latter part of
Lemma 6, the inequality (12) is sharp in the following sense: Given K ,
1 < K < oo, there exists a closed Jordan arc y such that there is equality
in (12) with K = K(y). The left side of the following equivalent inequality

2 /1 o1 ) - r

(13) oz \sm 5 arcsin o)) = (»
is thus a best possible lower bound for K(y) in terms of c(y). A best
possible lower bound for K(y) is obtained in terms of the maximal local
distortion cy(y) in the next section.

4.4. The known result corresponding to Theorem 1 for Jordan curves
([2]) follows here as a corollary.

Corollary. A Jordan curve y is quasiconformal if and only if it has
bounded distortion.

Proof. Suppose that ¢ = c(y) is finite. Let 7;, y,, ... be a sequence
of closed subarcs of y such that 9, C y,c ... and that the end-points
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converge to a point of 9. Then ¢(y,) <c,n=1,2,..., and there exist
K-quasiconformal mappings f. of the extended plane, K depending only
on ¢, such that f.(y,) is a subarc of the unit circle. In addition, we can
normalize the mappings f. so that they form a normal family. Then there
exists a subsequence converging to a K-quasiconformal mapping f of the
whole plane. But f(y) is then the unit circle, and so y is K-quasiconformal.
The converse statement can be proved exactly as in Theorem 1.

Clearly the inequality (13) holds and is sharp also in the case where y
is a Jordan curve if K(y) has the corresponding meaning.

5. Characterization by loeal distortion

5.1. The question arises whether the quasiconformality of an open
Jordan arc can also be characterized by the distortion of the arc. The answer
is negative, as is seen by the example on p. 11. For the arc (5) is quasicon-
formal as an analytic arc, but it does not have bounded distortion. In the
opposite direction we have, however, the following result.

Theorem 2. An open or a half-open Jordan arc with bounded distortion
is K-quasiconformal, K depending only on ¢(y) .

Proof. Let y be an open Jordan arc with ¢(y) << . We show first
that 7 is a closed Jordan arc or a Jordan curve. Let ¢ : I — y bea param-
eter representation for y, where I is the interval (0,1). Take sequences

$1,89,... and &, t,,... of pointsof I suchthat lims, =0 and lim ¢,
= 1. Let p and ¢ be limit points of the sets {¢(s;), ¢(sy),...} and

{p(t), ¢t), ...} respectively. Then p and ¢ belong to the set » — .
Suppose there exists a point z € — 9 such that z == p,q. Then there
is a sequence u,, Uy, ... of points of I such that one of the following
conditions holds:

(a) lim w, =1 and z,q €{pw), g(u),...}.
(b) lim u, =0 and z,p €{p(uy), (), ...}.

n—

Suppose that (a) holds, and let g be a linear transformation such that
g(p(uy)) = oo for a point u, €I. Given &> 0, there exist points
Ui, U, U €1 such that wy < e < w < un and that |g(e(w)) — 9(9)] ,
g(p(m)) — g(=)|, 19(g(um)) — g(q)] < e. Hence [g(p(ur)) — glp(un)) < 2e
and |g(p(ur)) — glep(w))] > lg(q) — g(z)] — 2. But this is in contra-
diction with the inequality Ig(q(u)) — g(p(w))] < c(z) lg(p(us)) — g(g(un))]
if & is sufficiently small. The assumption (b) leads similarly to a contra-
diction, and we have proved that vy —y ={p,q}. If p#gq, 7 isa
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closed Jordan arc, and in the case p = ¢, y is a Jordan curve. Itis easily
verified that c¢(y) = ¢(y), and so the assertion follows from Theorem 1
and its corollary and the remark on p. 19. The proof is similar for
half-open arcs.

5.2. In order to obtain a characterization of quasiconformality also valid
for open Jordan arcs, we shall use the concept of local distortion. We start
by establishing the connection with local quasiconformality.

Theorem 3. A Jordan arc or curve y is quasiconformal at z €y if
and only if c(y,z) s finitte. More precisely, the inequality

9
(14) —::; y(sin % arc sin c yl, ;z)) < K(y,z)
is sharp, and there exists an upper bound for K(y ,z) which depends only on
ey, 2).

Proof. Let c¢(y,z) be finite. Then there exists a subarc .3z of y
open in y and such that c¢(y.) has an upper bound depending only on
¢(y,z). Hence, by Theorem 2, 7. is K-quasiconformal, KA depending
only on ¢(y,=z).

Assume that yp is K-quasiconformal at z €y . Then there is a K-
quasiconformal mapping f of a domain '3 z such that f(GNy) is a
segment of the real line. It is no restriction to assume that z = f(z) = 0.
Let Uc @ be a circular disk with centre 0, and let ¢ map f(U) con-
formally onto U so that ¢(0) = 0. Then ¢-f maps U onto itself K-
quasiconformally, and reflecting in 00" we obtain a K-quasiconformal
mapping k of the extended plane with A(w) = o« . The set A(U N y)
contains an analytic arc 3,3 0 open in (U Ny). Since yp, has a con-
tinuous tangent, there exists for a given &> 0 a subarc y,3 0 of y,
open in A(U N y), such that for successive points 2 ,2,,2; of y, the
condition

1
1 —¢ - <1
©S ) ) )

holds. Applying Lemma 6 to the mapping % and using the properties of
u, we obtain
1

M2y 2, 2) < + (e)

. ) Kn
sin 2 are sin p1 Y

for successive points z;,z,,23 of v,, where (¢) -0, as ¢— 0. From
this it follows that c¢(y,z) is finite and that the inequality (14) holds.
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To prove that (14) is best possible, we make use of the connection with
the inner measure of topological angles. Given ¢ > 0, 0 <« <z, and
1 < K < oo, there exists by [1], Theorem 3, a K-quasiconformal mapping
f of a domain G and two line segments y, and 7y, which form an angle
in @, such that A(y;,y,) =« and

1 : 1 ‘
(15) sin 2 A(f(r) 5 f(2) < p (K,u (sin z A(ys, ‘}’2))) + €.

We apply this to the case x =z, i.e. when y, Uy, is a line segment.
Let 9 be the Jordan arc f(y;) Uf(y,) and z the common point of f(y,)
and f(y,) . Then by (6) and (15) we obtain

! | 1 . . K«z)
sin 5 are sin o < sin AU So)) <0 + e

and so

2 1 1
p- ‘u(sin 5 are sin o, z)) + (e) = K,
where (¢)— 0, as ¢— 0. This proves the statement.

Remark. If z €y is not an end-point of 9, we obtain an upper bound
for K(y,z) in terms of c¢(y,z) also by enclosing a subarc of y, which
contains the point z, to a Jordan curve as follows: We may assume that
z=0. Let U=1{z]| |z|] <r} Dbe a disk such that there exist points
Z,27€yNaoU with 0€y(z,2")c U. We can choose U so that the
subarc yy = y(z',2") satisfies the inequality

Sup 2(21 »R2 s 23) S 2 C(V ’ O) .
%€ YU(Zh )

It is not difficult to show that the Jordan curve Jy=yy;U L'U L"U {0},
where L' = {z| argz =argz’, |2/ >r} and L"={z| argz = argz’,
|z| = r}, has bounded distortion with ¢(J/;) depending only on c(y, 0).
Then the result of Ahlfors [2] says that J, is K-quasiconformal,
K depending only on ¢(y,0). Hence K(y,0) has an upper bound
depending only on ¢(y, 0) .

Directly from the definitions and Theorem 3 we conclude that the
corresponding inequality

> din 5o in )
(16) —;‘usmgarc Smc_o(—VS < K(y)

holds and is best possible.
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5.3. We shall now show that a Jordan arc or curve y with bounded
local distortion is quasiconformal. Moreover, there exists an upper bound
for K(y) depending only on ¢y(y). The former result follows for closed
Jordan arcs and Jordan curves from Lemma 2, Theorem 1, and its corollary.
We first prove some preliminary results.

Lemma 7. Let v be an open Jordan arc. Then there exists a simply con-
nected domain which has v as a free boundary arc.

Proof. According to our definition of a free boundary arc of a domain,
we have to construct a simply connected domain D which has y as a

boundary arc such that 6D — y Ny = @ and that 0D — y is connected.

Fix a natural ordering < on the points of y. Let 2z, and w. be
points of y such that 2, <z <... <z <w <...<W <W,y,,
n=1,2,..., and that the arcs y(z,,w,) cover y. Denote y, = {z € y|
2 <z} and y,={z€ylz>w.}, n=1,2,...

Suppose that we have constructed Jordan domains D, and E,,
k=1,...,n, such that D.c D,,,, ErCE,_,, k=1,...,n—1,
and DiNE.=D,Ny=E.Ny=9@,w), k=1,...,n. Let now
l,.1 be a Jordan arc with end-points z,,, and w, , such that J,  , =1,
Uy (2,42 W, ») isaJordan curve and that 7,,, N (D, U E,) = & . Denote
On == aD"'—y(zniwn)5 ﬂnzaEn_y(znsw")s and ya,,:y;u—“-nuy::;
s, = ¥» U B Uy, . There is a Jordan domain U,,, which contains the
arc ¥, (Zn11, Way1) and for which U, ., N (y,',,T2 U:/—:f+2 Ul,,,)=0.Let 4, ,
be the complementary domain of J, , which does not intersect D, U £, .
By an argument similar to the one in the proof of Theorem VI.14.6 in [6],
it is shown that there exists an open Jordan arc «,,, € 4,,, N U, ;, with
end-points z,,, and w,,,. A similar construction applied to y, yields
an arc f,,; (Fig. 1). Then x,,; U y(z,,;, w,,,) and £, U p(z,,1, Wyi1)
bound Jordan domains D, . ; and E, ., with the properties D.c D, ., E.C
Bppr» D, yNE, =D,  Ny=E, Ny =971, w1 If we set
Dy= E,= 0, we have constructed sequences D, , D,, ... and E,, E,, .
of Jordan domains with the properties stated above. We assert that the
simply connected domain

has the required property in the lemma.

Clearly ycoD. If z €y, there exists a neighbourhood U of z
which is contained in Dp U y(z, wx) U B, for some k. By the construc-
tion of the sets D, it follows that UN (@D —y)= @ . Hence

oD—yNy=9.
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Tt remains to be shown that 8D — » is connected. We prove first that
L' =% —v and L"= 1y  —y are connected. Suppose that =y =
AUB, where 4 and B are non-empty, disjoint, and closed in g
Since 7; — y is closed, the sets 4 and B are closed. Hence there exist
disjoint neighbourhoods M D A4 and N D B. There is a sequence
@y, @y, ... of successive points of yy such that ay,_, € M and ay €N,
F=1,2,... . Everysubare yp(ay_,, @) hasa point b, € M UN, and
the set {by, b,,...} has a limit point b€ AU B. But b€y —y, and
so we have a contradiction. Hence L’ is connected. The proof for L" is
similar.

Assume that 8D —y =S UT, where § and 7 are non-empty,
disjoint, and closed. Let ¥ 2 S and W DT be disjoint and open. Since
yc oD, we have L'UL" =y —yc oD —y . Hence, in view of connected-
ness, L' is contained either in 8 or in 7 . The same holds for L. It
suffices to consider the cases L', L’c S and L'c S, L"c T . Assume
L', L’c 8. Then TNy = @. Take a point z €T and a circular disk
U c W with centre z such that y N U = O . Since z € 9D, there exists
a point d, € D, N U for some k. From the monotonicity of the sequence
D,,D,, ... it follows that d. € D, for n > k. But then there exists a
point ¢, € 0D, N U for every n >k, because z¢D,, n=1,2,....
This implies ¢, € &, for » > k. On the other haud, there is an m such
that the end-points z, of the arcs «, belong to ¥V for n =>m . Hence
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there exists a point e, €x, — (VU W) for every n > max{k,m}. Let
¢ be a limit point of the points e,. Then e is a point of 9D which does
not belong to SU7T . But ¢ ¢y, and so we have a contradiction. The
case L'c 8, L’ c T leads similarly to a contradiction if we consider end-
points of the arcs «,. Hence 0D — y is connected and the lemma is
proved.

Lemma 8. Let G and G be domains with free boundary arcs or curves
y and y' respectively. Let vy, and y;,i=1,2,..., be open subarcs of
vy and ' satisfying the following conditions:

@) 7Ny, =y Ny =0, if i #j.
M) cy) <ec< w,ey)<c<ow,i=1,2,...

If f:G— G is a K-quasiconformal mapping, where y, and y; correspond
to each other, then there exists an extension of f toa K-quasiconformal mapping

g of a domain GoGU .EJI Vi K depending only on K ,c, and ¢ .

Proof. By Theorem 2, y, and y; are K.- and K, -quasiconformal,
where K, and K. depend only on ¢ and ¢’. From Lemma 1 it follows
that f can be extended to K = K?KK? -quasiconformal mappings g¢:
of domains ¢; D GUvy;,i=1,2,... To complete the proof we restrict
the mappings ¢: as follows. There exist open sets U; D yi,1=1,2,...,

such that U;c G and T;NUypy=gU)NUy =0. We define
Al e

jFi

i—-1 i—1

8;=U;— U T, Ugr(UgUy) .
k=1 k=1

Then every set S; is open and contains 7;. Moreover, S;NS;=
g:(S)) Ngi(S)) =0, if ¢ +j. Let T: be the component of S; which
contains the arc y;. We obtain the required ]E'-quasiconformal extension
g of f defined in the domain

G=c¢uUTioauUy

by setting

lf(z), if z€4G,
gz) = :
lgi(z) , if z€T;.

5.4. If the distortion c(y) of a Jordan arc or curve y is 1, then y
is contained in a line or a circle. Accordingly, in this case K(y) = 1. The
question arises whether c¢y(y) =1 also implies K(y) = 1. One result in
this direction will be presented in Theorem 4, namely, if y has a continuous



26 Ann. Acad. Sci. Fennica A 1. 395

tangent (in which case c¢y(y) = 1), then K(y) =1. We point out that
examples can be given which show that c¢y(y) =1 does not imply the
existence of the tangent.

Theorem 4. A Jordan arc or curve y is quasiconformal if and only if
coly) s finite. There exists an upper bound for K(y) depending only on
co(y) . Especially, if v has a continuous tangent, then K(y) = 1.

Proof. 1f » is quasiconformal, the inequality (16) shows that ¢,(y)
is finite.

Let us assume, conversely, that c¢y(y) is finite. We consider first the
case where y is an open Jordan arc. By Lemma 7 there exists a simply
connected domain ' which has y as a free boundary arc. It is no restric-
tion to assume that oo € G . Let f map G onto the upper half plane H
conformally so that y corresponds to a segment of the real axis R. Every
point z €y is contained in an open subarc y.C v for which

(17) Sup Az, 2, 25) < 2 ¢o(y) -
2 €7,(51> %)

We cover y by a countable set of such subarcs y. and denote these by
vi, 1 €Z, where Z is the set of the integers. We can assume that
YNy, #0, 1€Z, and yiNy; = O, if i —j>2. Then the indices
correspond to the successive order of the arcs (see Fig. 2). Let ~; C y; be
disjoint open subarcs such that «; Ny, ; = O, ¢ €Z . The inequality (17)
implies that the distortions ¢(x;) of x;, 7 €Z, have an upper hound
depending only on c¢,(y) . Hence there exists by Lemma 8 a KA-quasicon-
formal extension g of f defined in a domain DD G U U »;, A depending
only on cy(y) . ez

Let z; and z] be two distinct points of «; such that z; €y, , and
that z/_,,2/_,,z are successive for every i €Z. Denote wu = g(z)
and w; = ¢g(z;). We may assume w, < w;, i €Z. Let u be a function
of R, which is negative in the intervals (w;, w;) and 0 elsewhere, and
which has a continuous derivative with «'(w;) = u'(w]) =0, 1 €Z.
Denote by L the Jordan arc which has a parameter representation
¢ :R—L with ¢(x) =a + iu(x). In addition, we can choose u so
that the domain A;3? o bounded by the Jordan curve L(w;,w;)U
[w; , w;] is contained in g(D) for every i €Z. By an argument similar
to the one used in the proof of Theorem 3, it is shown that there exist dis-

”

joint open subares ;32 and I/3:/,i€Z, of | =¢g'(L) such that

1

18 (25 205 23) < ]
(18) My, 2y, 23) < . . K=

sin 2 arc sin p~! (*_2—)
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Figure 2.

for successive points zj, z,, 23 of these arcs. Denote

rio=min {dz_,, (/" UL) — 1), d=, (777U L) — 1)),

where ) =9z, 2), i€Z. Let y, 32/, and y;3z be open
subarcs of I,_, and [, respectively with diameters less that o; = 7:/3 .

We shall show that the distortions of the arcs £ = y/_, Uy{ Uy,
¢t €Z, have an upper bound depending only on ¢y(y). Let z,, z,, z; be
successive points of B;. If z,, 2, €y;", we have i(z, 25, 23) < 2¢(y) in
view of the choice of the arcs y;. If z,, 2, €/_, or 2, 2, €1;, the inequality
(18) gives an upper bound for A(z, z,, z3) . To complete the proof of the
assertion, it suffices, for reasons of symmetry, to consider the following
three cases:

(@) 2 €1, and z,, 2, €y, .
(b) 2 €y/_1,2 ¢y Uy, and z €y;.
(¢) z &yl Ul 2 &y, and 2z, €y, .
In the case (a) we have the estimates |z; — 2, < 2y — 2, | + o

b
<o, and |z — 23] > |2y — 2l — 0. An upper bound for A(z, 2, 23)
is then obtained as follows:

AMzys 2y, 25) <
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In the case (b) we have

o 7y

Ril T Rl T 0i T By — %] 0 1+2/3
l A 2o . & < " ’ _ < 20 Y)3 S5 19
(41,4__, 3) >~ iz, — 2] _29z — O(/)1_2/3>

and in the case (c)

In addition, the ares y_; and y; can be chosen so that c¢(g(:)) < 2,
¢ € Z . Applying then Lemma 8 to the arcs f;, 7 € Z, and to the mapping
g restricted to the domain G U U (y(z,2) Ug (4:), we obtain a K-

i€z
quasiconformal mapping % of a domain G D y , which maps » onto a
segment of the real line, and where A depends only on ¢,(y) . We have
thus proved that K(y) has an upper bound depending only on ¢,(y), if
y is an open Jordan arc.

In case y is a Jordan curve the proof is easier, because Lemma 7 is
not needed and the covering of y by the arcs y; can be chosen to be finite.
Let y be a closed Jordan arc. If we apply Theorem 3 to the end-points of
y, it follows that y is contained in an open Jordan arc y, such that
¢o(yo) has an upper bound depending only on ¢,(y). The same holds clearly
for a half-open arc.

To prove the last statement in the theorem, suppose that y has a
continuous tangent. Assume that y is an open Jordan arc. Let z, be a
point of y . By performing a linear transformation, we may assume that y
has a horizontal tangent at z, and that z,= 0. Then there exists an
open subarc y,30 of y which has the parameter representation
p:(—0,0) =y, defined by y(x) = x + iv(x), where v is continuously
differentiable, v'(0) =0, and v'(x) <1 for 2 € (—d,d). We define
a mapping w of the strip domain {z| |[Re z| < 4} onto itself by w(x -+ iy)
=z + i(y + v(x)). Then w maps the interval (— ¢,9d) onto the arc
V%, and the dilatation quotient D(z) of w at z=a + iy ([5], p. 18)
satisfies the inequality

(19) D) <

Given &€ > 0, we cover y by arcs y:, ¢ € Z, as above so that the oscilla-
tion #(y:) of the direction of the tangent of y; is less than & for every
t€Z. Let f and «:, i €Z, be as before. The extension g of f is now
constructed by the use of mappings like w (cf. the proofs of Lemma 1
([5], p- 102) and Lemma 8). Then (19) shows that g is 1 + (¢)-quasicon-
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formal, where (¢) — 0, as ¢— 0. We can here choose the arcs B; so that
the corresponding oscillations ¢(8:) and ¢(g(p:))) are less than 2e¢. If
we apply the same method to the ares f; and ¢(B:) , we can also construct
the extension % so that it is 1 + (¢)-quasiconformal, where (¢) — 0, as
e—>0. Hence K(y)=1. In case y is a Jordan curve, we use again a
corresponding finite covering of y, and in case y is a closed or a half-
open Jordan arc, we have only to remark that y is contained in an open
Jordan arc with a continuous tangent. The theorem is proved.

5.5. Combining Theorems 3 and 4, we obtain the following result.

Corollary. Let y be a closed Jordan arc or a Jordan curve. Then vy
s quasiconformal if and only if it is quasiconformal at every point z € y .

Note that this follows also by Lemma 2, Theorem 3, Theorem 1 and
its corollary.

The corresponding statement for open Jordan arcs does not hold. This
is shown by the example in Figure 3, where 2, =1/n, n=1,2,.

University of Helsinki
Helsinki, Finland
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