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Introiluction

It is well-known that each 2-dimensional Riemannian manifold is locally
conformally equivalent to the plane. Hence, in the 2-dimensional case, the
local properties of quasiconformal maps may be studied in the plane. In
higher dirnensions the situation is different. There is no reason for dis-
regarding Riemannian manifolds other than the Euclidean spa,ce. In the
first part of this pa,per we develop and study concepts which are needed
for the theory of quasiconformal maps in Riemannian manifolds. As an
application, we generalize in the second part certairr results of Teichmiiller,
Wittich and Belinskij (cf. Lehto-Virtanen [1], p. 233).

Notations

The tangent bundle of a differentiable manifold M is denoted by ?M .

The derivative of a differentiable map /: M ---> N is a fibre map Df :

TM --> ?-l/ . We denote by int M Lhe complement of the boundary of M .

Let M be a CP-manifold. An open set, U c M is called a Cq-co-

ordinate neighbourhood of M , q < p, if there is a Cq-diffeomorphism
of [/ onto an open set in R".

The support of a function Vi M->R, i.e. the closure of {reM I

V@) * 0) , is denoted by supp g .

R : the set of real numbers.
R+: the set of positive real numbers.
Ri, the set {r : (r",...,nn)€R" I r,> 0}.
B(r , r) : {y eR" I ly-rl < r) .

§"-'(, , r) : {y eW I ly-rl : r) .

O^; the measure of B"(0 , I) .

o)n : the measure of §"-l(0, l) .

If there is no danger of confusion, we may omit the index n in B or
/S". Similarly, r rli.ay beomittedif r:0 and r if r:1.

A Borel measure in a manifold M is a measure which is defined in the
family of Borel sets of -&/.



Ann. Acad. Sci. Fennicre A. I. 393

Part I

In the first part of the paper we develop the concepts which are necessa,ry

for the theoryz of quasiconformal maps in manifolds. To some extent this
consists of generalizing the definitions given for the euclidean local case

and stating simple results which are not readily accessible in the literature.
X'or some notions, however, marked differences appear by departure from
the classical case. This occurs e.g. iu sections 6 and 8 where ACLP'maps

and dilatations are considered. In the whole, we have not tried to confine
the discussion to the minimum and have in some places presented more

material than that which would be absolutely indispensable for our purposes.

l. Riemannian manitolals

In this section we introduce some terminology and assumptions about
manifolds.

1.1. Theorem. Let M be a mani,fold, sati,sfyi,ng thefollowi,ng conrlitions:

a) M is infini,tely d,ifferenti,abl,e,

b) M i,s Ttaracompact,
c) M is connected,.

Then M has the fol,l,owing propert'ies:

d) M ad,mi,ts partiti,ons of uni,ty of cl,ass C* ,

e) M has a countabl,e base for open sets,

f) XI ad'mi,ts a Riemannian metri,o,

g) M is metrizable.

X'or the terminology we refer to the sources given below.

Proof. The property d) is proved in Lang [I], p. 30. A proof for e) may

be given following the argument, in Bourbaki [2], pp' 111-112, and using

c) in addition to b). A Riemannian metric is constructed in a well-known

manner by means of partitions of unity (Lang l1l, p. 98)' Finally, metrizabi-

lity follows e.g. by Urysohn's theorem (Kelle;r []1, p. 125).

1.2. Convention. In the sequel all manifolds &re assumed to satisfy the

cond.itions a)-g) of Theorem Ll. By a Riemanni,an mani,fold, we me&n one

which has a (fixed) Riemannian metric. A submanifold of a Riemannian

manifold M is called a Riemanni,an submanifoTd if its Riemannian metric

is induced by the Riemannian metric of M .

Manifolds with boundary are also admitted. However, if products of
manifolds are considered, it is tacitly assumed that at most, one of tho

factors has a non-empty boundarY.
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2. Measurability

Before developing a theory of measure for Riemannian manifolds we
study first questions of measurability. Since one of our basic requirements
is that continuous ma,ps preserrre measurability, it is natural to consider
Borel sets. The family of Borel sets in a topological space is defined in the
ordinary way as the smallest o-algebra containing all open sets.

2.1. Definition. Let M and -l[ be manifolds. A map f , M -+ -l[ is
measurabl,e if thepreimage f-t(U) of eachopenset U cN isaBorelset.
In particular, eyery continuous map is measurable. A measurable real-
valued map f : M ---> R is also called a Baire function.

2.2. Lemma. Let M and N be mani,fold,s and, f : M '-> I{ a measurable

mayt. Then the preimage f-r(E) of each Borel set E c N 'is a Borel set.

If g: N-->L isameasurablenlap,then g.f : M--->L isalsomeasurabl,e.
Proof : The family of subsets E of l{ , such thaf f-L(E) is a Borel set,

is a o-algebra. Since it contains every open set U c N, it also contains
all Borel sets of J[ .

The second assertion is an immediate consequence of the first one.

2.3. Lemma. Let M , I/ and, ItI' be mani,fold,s, f : M --> N and,

f' , M --->I{' maps. Theru the prod,uct map g: M --> -0[xN' is measurable

if and, only i,f f and, J' are measurable.

ProoJ: The canonical projections p : tr[ x N' -+ .ltr and p' : ]f x -ly'' -> N'
are continuous, hence measurable. Thus the measurability of g implies that
f :p"g and f':p'og are measurable by Lemma 2.2. On the other
hand, if f and f ' &re measurable, then g-|(U xU') : f-'(U) n f'-t(U')
is a Borel set for all open sets Lr c f,- und U' c ^\7'. Since the products
(JxU' form a base for open sets in .I'x N' , g is measurable.

2.4. Lemma. Let fuI be a mcutifolcl ancl E a Jinite dimensionul, real aector

sltace. If f : M-->E and, g: JI-->E cLremeosurablemaps,then f *g:
M ---> E is measurable, and, Af : l1[ --> E is me«su,rable Jor each Bal,re Jwnction
)' in M.

Proof : The addition ExE --> E is continuous. Hence the measurability

"f f + g follows from Lemmas 2.3 and 2.2. The proof is similar for ).f .

For the next lemma we recall that the set of linear maps R" --> R*
may be canonically represented by matrices of t;'pe (m , n) with real
entries. Hence to each :map M -+-L(R" , R-) corresponds a matrix function
(Lri), )";ji M--->R,'i:1,...,rru, j -I,'..,11

2.5. Lemma. Let M be a mani,fold,. Let f , M -+Z(R" ,R*) bearnatr)

ancl (1t), i,:1,...,ffi, j:1,...,11 , the correspond,ing matri,x

functi,on. Then the following condi,ti,ons are equi,aalent:

a) f is measurable,

b) the functions )";i are measurabl,e,
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c) the map g i M x R" -+ R- defined, by

s(x , a) - f(r) (u) ,

mea,su,rabl,e.

The evaluation map e : ,(R" , R-) X

,i,s

Proof :

re M, ae R',

R'--> R- , defined by

e(u , a) - u(a) , uer(R",R-) , u €'R',

is continuous. Hence a) implies c) by Lemmas 2.3 and 2.2.

Let ei € P, j :1 ,. . . ,h, denote the j-th canonical basis vector
(0,...,1,...,0). If c) holds, then the maps $: M--->R , defined
by fi@) : g(w, ei), aremeasurable. Ontheotherhand li : lrix . . . x .1-, .

Thus c) implies b).
X'inally, b) implies a), since f *uy be regarded as the cartesian product,

of the maps lri .

2.6.Definition.Let M be amanifold.Aset EcM isanullset,
it g@ O U) has Lebesgue measure zero for each coordinate neighbourhood
U c M and each coordinate map g : U -+ R" (of class C") .

A condition is said to hold for almost every r e M , or almost every-
where n M , if it holds everywhere except in a null set.

2.7. Remark. Since sets of Lebesgue measure zero in R" are preserved

by Cl-diffeomorphisms, the coordinate maps V may be of class Ct .

In addition, only coordinate neighbourhoods U belonging t'o a fixed cover
(Ur) of M need be taken into consideration. We also remark that since
(Ut) may be chosen to be countable (Theorem I.l. e)), the definition will
agree with the measure defined later in section 3.

2.8. Convention. As derivatives of functions differentiable almost,

everywhere we shall meet functions which are not, defined in a Borel null
set. If such a function is measurable in its set, of definition its extension
by a constant value will also be measurable. We agree to carry out, always
such an extension by the value 0. Ilence we may regard all functions as

defined everywhere.
2.9. Lemma. Let M and' N be Riemanni,an manifold,s, f : M --> N

a cont'i,nuous n?,ap, and' u: TM -'>.TN a measura,ble fi,bre ?nap ouer / (i.e.

?/ maps each fibre T"X[ , r e M, Hnearly into the fibre TtolN ). Then

llull and, del u are Baire functions in M .

Proof : In case M : U and -l[ : V are open sets in R" and R- we

may represent, u by a measurable map g : U -> L(R", R-) (Lemmas 2.3

and 2.5). The norm and the determinant are continuous funct'ions in
,(R" , R-) which depend continuously on parameter points r e U and
g : l@) € 7 . Hence the assertion follows by Lemma 2.2. Since the question
is local, this also prorres the general case.
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2. Measurability

Before developing a theory of measure for Riemannian manifolds we
study first questions of measurability. Since one of our basic requirements
is that continuous maps preserve measurability, it is natural to consider
Borel sets. The family of Borel sets in a topological spaae is defined in the
ordinary way as the smallest o-algebra containing all open sets.

2.1. Definition. Let M arrd -l/ be manifolds. A map f : M -+ -l[ is

measurable if the preimage f-L(U) of each open set, U cN is a Borel set.

In particular, eyery continuous map is measurable. A measurable real-
valued map -f : M ---> R is also called a Baire function.

2.2. Lemma. Let M and N bemaniJold,sand, f : M -->N ameusurabl,e

magt. Then the preimage f-'(E) of each Borel set E c N 'is a Borel set.

If g: N->L isam,easurablernap,then g"f : M--->L isalsonxeasurq,bl,e.

Proof : The family of subsets E of N , such t'hat f-t(E) is a Borel set,
is a o-algebra. Since it contains every open set U c N, it also contains
aII Borel sets of -l[ .

The second assertion is an immediate consequence of the first one.

2.3. Lemma. Let M , /f and, 
^I' 

be mani,fold,s, f : M ---> N and,

f' , M --->N' rnaps. Then, the prod'uct map g: M --> -0[xN' is measurabl,e

if and onl,y i,f f and, f' are measarable.
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are continuous, hence measurable. Thus the measurability of g implies that
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hand, if t and f ' are measurable, then g-t(U xU') : f-t(U) n f'-L(U')
is a Borel set for all open sets U c J arnd U' c N'. Since the products
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of 

"/ + g follows from Lemmas 2.3 and 2.2. The proof is similar for ).f .

For the next lemma we recall that the set of linear maps R" --> R^
may be canonically represented by matrices of type (m , n) rvith real
entries. Hence to each map M -+ -L(R" , R-) corresponds a matrix function
(Lri, )"iji l)[-->R, i:1,...,m, j -1,...,rb

2.5. Lemma. Let M be amanifold,. Let f , M +-t(R",R*) beanxa.p

and, (1r), i:1,..',ffi, j:L,...,tu, the coryespondi,ng matrir
function. Then the foll,owi,ng cond'itions are equiualent:

a) f is measurabl,e,

b) the functi,ons )"ii are measurabl,e,
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c) the map g : M x R" --> R- defi,ned, by

s(r,u)-f(r)(r),
'i,s measurable.

Proof : The evaluation map e : ,(R" , R*) X

re M, ae R',

Ro -+ R- , defined by

e(u , u) - u(u) , uer(R",R*) , I) €R",

is continuous. Hence a) implies c) by Lemmas 2.3 and 2.2.

Leb ei€ R", j : 1,...,tu, denote the i-th canonical basis vector
(0,...,1,...,0). If c) holds, then the maps /i: M'-->R*, defined.

by fi@): g(r,e;), aremeasurable. Ontheotherhand fi:Lrix...x )'^t.
Thus c) implies b).

X'inally, b) implies a), since f * y be regarded as the cartesian product
of the maps lrj .

2.6.Detinition. Let M be amanifold.Aset EcM isanullset,
if g@ O U) has Lebesgue me&sure zero fot each coordinate neighbourhood
U cM and each coordinate map g: U --->R" (of class C*).

A condition is said to hold for almost every r e M , or almost, eYery-

where in M , if it holds everywhere except in a null set,.

2.7. Remark. Since sets of Lehesgue measure zero in R" are preserved

by C1-diffeomorphisms, the coordinate maps q may be of class CL .

In addition, only coordinate neighbourhoods U belonging to a fixed cover

{Ut) of. M need be taken into consideration. We also remark that since
(Ut) may be chosen to be countable (Theorem 1.1. e)), the definition rvill
agree with the measure defined later in section 3.

2.8. Convention. As derivatives of functions differentiable almost
everywhere we shall meet functions which are not defined in a Borel null
set. If such a function is measurable in its set of definition its extension
by a constant value will also be measurable. We agree to carry out always
such an extension by the value 0. Hence we ma,y regard all functions as

defined everywhere.
2.9. Lemma. Let M and, N be Riemartni,an manifold,s, f : M--->N

a conti,nuous nlctp), and, u: TM -->TN a measurable fibre nxap ouer / (i.e.

tl maps each fibre T"l[ , n e M, linearly into the fibre TI@I{ ). Then

llull and, det, u are Bai,re fuructions in M .

Proof : In case M : U and -lI : Y are open sets in R" and R^ we

may represent u by a measurable map g : U -> L(R", R-) (Lemmas 2.3

and 2.5). The norm and the determinant are continuous functions in
,(R" , R-) which depend continuously on para,meter points r e U and
y : f(r) € Z . Hence the assertion follows by Lemma 2.2. Since the question
is local, this also proves the general case.
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2.10. Theorem. Let M and, N be mani,fold,s and, f, M --> N a con-

tinuous malt which is d,ifferenti,able almost euerywhere. Then the d,eri,uatiue magt

Df , TilI -->TN i,s measurable. Il fI and, N are Ri,emannian mani,fold,s,

then llDlll anil det Df are Ba'ire functi,ons.
Proof : Since the question is local, we may assume that M : U is an

open subset of R" and / is a map of U into R- . It is well-known that
the partial derivatives of f arc measurable (cf. Saks [], p. 170). Hence
Df , UxR"->R*XR- is measurable by Lemmas 2.5 and 2.3. The last
assertion follows from Lemma 2.9.

3. Integration

fn this section we define a class of measures for Riemannian manifolds.
Thereafter functions in manifolds may be integrated in accordance with
standard methods (e.9. Munroe [1], Saks [1]). In particular, we follow
Saks in defining integrals with infinite value.

3.1. Detinition. Let M be a manifold (cf. 1.2). A d,ecomposi,ti,on of M
isapair ({Ur),(Et)), where (U), i €/, isacover of M bycoordinate
neighbourhoods of class C1 and (Er) , i, € 1 , is a family of Borel subsets

of M. In addition, the following conditions are imposed:
a) the index set 1 is countable,
b) foreach ,ieI, EicUi,
c) UEr:M and Etflgi-9, fot i,t'j.
A decomposition ((D, V)), i e J, is a refinement of adecomposition

(tUt),(Et)), del , if for each i e J therc is an d €1 such that VicUi
and -['.; C Ei.

3.2. Lemma. Euery manifold, M has a d,ecompositi,on arud, any two de-

compositions haue a, corLnLoTL refinement.
Prool; Since M has a countable base for open sets, there is & cover

(U) , n e N , of M by coordinate neighbourhoods, indexed by the set of
natural numbers. ff we define

Eo: (J, _"))_r,ro^,

ttlen E^ isaBorelset,and ({U"), (8")), ne N, adecomposition of M.
X'or the second assertion we remark that if (lA) , @r)) , i, e I , and.

(w),(r;)), ie J, are decompositions of M, then ({UrnVtl ,

@tn I)), (i', j) e IxJ, is also a decomposition.
3.3. Detinition. Let f , M -+.1[ bea Cl-diffeomorphismof Riemannian

manifolds M and N . The continuous function J1: J(f) defined by
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Jr(r):ldetDf(r)1, re M,

is called lhe jacobian of J . It has the following properties:
a) it f is the identity map, then 4: | ,

b) if /: M--->N and g; N--->L are Cl-diffeomorphisms of Rie-
manuian manifolds Jl4, -I[ and Z, then

Js"r: (Jr" f) $,
c) it f : M --> M' and g i N --> -ly'' are Cl-diffeomorphisms of Rie-

mannian manifolds M , M' , Jf and I', then

Jy*r(n,U):Jr(r)'Js(y), re M, ueN,
for the map fxg: MxN-->M'xN' .

3.4. Lemma. Let p and, r be Borel nleasures i,n a manifold l/I . Let g
be a non-negati,ue Bai,re fu,ncti,on i,n M , such that

Ip(E): I qd,
I

Jor each Borel set E c M . Then u, Baire Junction q in M is p-integrable
i,J and, onl,y i,f QV is rintegrable and,

{ 
nou

r: 
J Qvdr'

,*(f @)): [ ,,,t,*,
J

Proof : If p is a simple function, i.e., a finite linear combination of
characteristic functions of Borel sets, then the proof is immediate. To prove
the general c&se 'we may assume that q is non-negative. Then it is the
Iimit of an increasing sequence of simple functions, and the assertion results
from the monotone con.vergence theorem.

3.5. Theorem. With each Riemann'ian mani,fold, M Lle can assoc,iate

a unique Borel measure rx4 so that the follozai,ng conditions are satdsfi,ecl:

a) i,f N ,i,s an open Ri,emanni,an submanifold, of a Riemannian maniJold,
M , then z*(E) : t*(D) for al,l, Borel, sets E C I{ ,

b) ,f f : M --> N i,s a Cl-d,iffeomorgthism of Riemannian manifolcls 1I
and, N , then

fu all Borel sets E c M ,

c) ,f ftf - R" or Ri, 7L:1,2,.
Proof : Let U and V be open sets in

morphism. Then it is well known that for

. . , TM els the Lebesgue meclsrtre,

R,, and J : fJ --> T/ a C1-diffeo-
all Borel sets E c U
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(3. 1)

(3.2)

(3.3)

,(fwt1

r *(E)

r:JJTrh'

where r is the Lebesgue measure.

Let, M be a Riemannian manifold,
morphism f : [J-'+M, where U isan
measure rf in IVI by

q(E)-
for all Bore1 sets E c fl,:[ . If there
ditions a)-c), then

ry satisfyirg the con-

Fi c Eou)

ieI. Then \r'e obtain

F j , 'i e I ,

such that there is
open set, in R' .

a Cl-diffeo-
We define a

,(f-,@l),

, äfe meesUfes

r
- lJj"f-Ldr,

J

must hold for all Borel sets t c M . On the other hand, the right hand side

of (3.2) may be used for defining zx1 , since it does not depend on the choice

of / and U by (3.1) and Lemma 3.4. This definition is clearly compatible
with a), and also with b) by Lemma 3.4 again.

Let M be any Riemannian manifold and (tU,),(ilt)), i,el, a

decomposition of M . Tf. r,,6 exists, it must satisfy

r*(E) - ä 
tu,(E f\ E,)

for all Borel sets E c M , by a). In order to use (3.3) as a definition for ry ,

we shall show that its right hand side does not depend on the choice of the
d.ecomposition ((Ur), (-E,)). By Lemma 3.2 it is sufficient to consider a

refinement (lv),9,1),'i e.t , or (tu;) ,(8,)), ieI .

Let a: J ---> -I be a map such that

Vi C Uo(il and

foreach jeJ. Let Ji:&-t(i,), for

E;- 
H

and

Z rr,(E n f';) : 2 Z ,",(E fi X;) : I ru.@ 11 E,)
T 'TT -T

by a). Hence (3.3) may be used for defining zr. The demonstration of the
properties a) and b) results immediately from the following remarks:

t) ff (tff,),18r)), ieI, isadecompositionof amanifold M and.l[
is anopensubmanifoldof M, then (tU,nN),(t;n1n), ri €-f , is

a decomposition of -tr[.

11
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2) Tt l: ll[ --> -trf is a C1-diffeomorphism of manifolds M and N ,

ana_((Ur),(E)), i,eI, adecomposition of M, then ((/(U,)),(/ta,))),
ie I, is a decomposition of .l[.

This completes the proof.
3.6. Detinition. Let M be a Riemannian manifold. The measure rM

defined in Theorem 3.5 is called lhe Lebesgue nleclsure of M .

3.7. Theorem,, Let M and, -nf be Ri,emanni,an mandfuld,s. Then the
Lebesgue nxeasure of the Ri,emanni,an prod,uct mandfuld, M xN ,i,s the Ttroiluct
of the Lebesgue rneasures of M and, N . ,,, ,,,{' ! t ,$

Proof: By the definition of product measrre, we must prove tha,t

(3.4) rruxN(E X -F) : r,w(E) z*(I)
for all Borel sets E c M and -E c -0[.

If fuI and -l[ are C1-diffeomorphic to open subsets of R- and R,,
then MxN is C1-diffeomorphic to an opensubsetof R-*". Inthis case
(3.4) follows from the definition (3.2) by X'ubini's theorem and c) in Defini-
tion 3.2. rn the general case it suffices to remark that if ({ar) , (Er)) , i e I ,

qrd (V),(Xi)), ieJ, are decompositions of M and fr, then
({u,x V) , (Etxr)) , (i, , j) e IxJ , is a decomposition of MxN .

3.8. Theorem. Let f, M --> N be a Ct-d,ffiomorphi,sm of Riemanni,an
manifold,s M anil N . Then a Baire function q i,n N is r*-i,ntegrabte if
and, only i,f (p . fl fi i,s r*-i,ntegrabl,e and,

Proof : This follows immediately

(s. f) Jrdr*.

rr Izerrma 3.4-and b)-of Theorem 3.5.

4. Curves and arc length

4.1. Definition. A curaein a manifold M is a continuous map y from
a closed interval I:La,bf , a {b, to M. A curve / is called dif-
ferentiable if y is continuously differentiable.

4.2. Remark. It y : I -> M is a differentiable curve, we identify the
derivative Dy(t), tel, withatangentvector of M at y(t).This
determines a, curve Dy in the tangent bundle TM .

4.3. Definition. Let M be a Riemannian manifold and y a piecewiso
differentiable curve in M. The length of y is defined by

rIt(y): lllDy(t)lld,t,
!

where llll refers to the B,iemannian metric .

!
fro
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4.4. Definition. Let M be a Riemannian manifold and n , A two
points of M . Their d,i,stqnce d(r , y) is defined by

d(r , Y) : ,f;rr(r) ,

where l- is the family of piecewise differentiable curves 7 : la , bl --> M
joining r and U, i.e. y(a):r, y(b):y. Since rIy' isconnected, f
is not empty.

4.5. Lemma. The d,i,stance d(*,A) is a metri,c in M compatibl,e wi,th
i,ts topology.

The proof is elementary. \4re remark that this proves the metrizability
of M independently of lfrysohn's theorem.

4.6. Lemma. Let y: la ,bl---> M be a, cltrae in a Riemannian mani,fold,
fuI . If y is d,i,Jferentiable at fte la,bf , then the interual, function

It,t'l--->d(r(t),y(t')), a 4t /-t' {b,
is differentiabl,e at to ancl its deriuatiue is llDy(to)ll. In partiaul,ar, if y is
d,iJferentiable,

l(y) - sup Z a(y(t,) , T(t,+,)) ,(4.1)

Proof : If M is locaily cuclidean, the proof is well-known. fn the general
case we may replace the Riemannian metric g of M by a euclidean metric
coinciding with g at y(t) . lf y is differentiable, we denote by s(f) the
righthandsideof (a.1)fortherestrictionof y to la,fl, when a{t{b.
Then s is continuousl5z differentiable and its derivative is llDT(f)ll . Hence
s(å) : 71r; .

4.7. Definition. Let y i la , b) - lll be a currre in a Riemannian mani-
fold M. The length of. 7 is defined by

t(y) - sup Z a(y(t,) , y(t,+r)) ,

If t(y) is finite, Z is rectifi,able.
Let y be rectifiable and let s(f) denote the length of the restriction of

y to La,tf , a{t{b. Thefunction s iscalledthearcl,engthof y.
There is a unique curve 7' : [0, l(7)] ---> M withthe property y : Tto s .

The curve 7, is called the parametrization of y by arc length.
4.8. Lemma. Let y be a recti,fi,abl,e curue in a Ri,emannian manifold, M .

Then y is d,i,fferenti,able almost eaerywhere.

Proof : If / is a lipschitzian function in M, then f " y is of bounded
variation, and hence differentiable almost everywhere. Since local co-
ordinates in M are lipschitzian, at least locally, the assertion follows.

4.9. Theorem. Let y be a rectifi,able curue in a Riemannian manifold, M
and, l,et s d,enote its q,rc l,ength. Then the equal,i,tg
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Vtolds almost eaeryu)here.

by arc length, we haae

§'(r) - llDy(t)ll

In particular, fo, the pa,ranletri,zation Tt ,f y

llrzr(r)ll : I a.e.

Proof: This follov-s from Lemmas 4.6 and 4.8 (Riesz-Sz.-Nagy [1],
pp. 23,25).

4.10. Definition. Let y be a rectifiable curve and g a Baire function
in a Riemannian manifold M . Let yt be the paramebization of 7 by
arc length. The integral of g along y is defined by

provided the latter integral exists. Otherwise the integral of p along 7 is
undefined.

4.11. Theorem. Let XI and, -0f be Ri,emanni,an manifold,s ancl f :

M ---> I{ a continuousl,y d,ffirentiabl,e rnap. Let y be a recti,fiable curuedn M
?hen y' : f " y is rectifi,able and, lor each non-negati,ue Bai,re function S

i,n N
rr
I pdu < / (e ,flllDflld,s.

//

Proof: Since / is locally lipschitzian, there is a constant C such that

(4.2) l(y')<Cl(y)

and the same relation holds for subcurves of 7 and their images under /.
Let s (s') be the arc length and yr(7i1 the parametrization by arc length
of y (y') . Then there is a unique monotone function q : [0 , l(7)] --->

l0,l(y')] withtheproperty s' : V os. BY (+.2) E isabsolutelycontinuons.
Hence we obtain

r "it
I Qds: I QoTrdt,

JJy0

r '?'' 'y'

J Qds : J 
ooyld,s' : 

J 
(s" yi,"rt,),t'cls.

y'00

But yi" cp - f o y, and g'== llDyill1'- llDf " Dyrll < liDfil u.e.

the theorem.
This proves

t4
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5. Module

In this section we define t'he module of a family of curves in a Riemannian
manifold and study its properties.

5.1. Definition. Let M be a Riemannian manifold and /" a famil;, of
curves in M . We denote by ,E(l-) the class of all non-negative Baire
functions p in M which satisfy

r
I ods t I

t"
for all rectifiable curyes y e f.

For each positive real number p we define lhe p-mod,ule of J- as
follows

Mo€) : inf I Q, d, ,r@il

where z denotes the Lebesgue measure of M . If Ig) is empty, we
define MoV):= c6, .

5.2. Lemma. The mod,ule M, i,s monotone arud countably subartditiue, i.e.

(5.r) MoQ) l Mo(t',) ,

i,f f cI', and,

(5.2) M,(r) < », MP(rt) 
'

il l:Ul-r, i-L,2,... '

Proof . If I C l' , then clearly I(l) = IQ') . This proves the in-
equality (5.1.).

To prove (5.2) we choose functions p;€,F(J-,) , i:L,2,... Then,
for each nlLt om: sup{Qr,...,Q,}€f(I1 U...U-1"") and

fnf
l"ia,<l lold,.t ':'4

Choose e ) 0 . If Z Mpqt) is finite, we may assume that

Z I e!d, <2itlo(r)1t.TJ 7
Then I : lim o; belongs to P(l) and

Ie,d,<Lu,1r,1 1e
lT

by the monotone conyergence theorem. This completes the proof.

t5
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5.3. Theorem. Let f : ff -> -tr[' be a Cr-d,ffiomorphi,sm o! mani,fold,s

N and, N' with R'iemannian metrics g and, g' sati,sfyi,ng

(5.3) mzglf*g'{M'g, 0<rn<M<a.

Let T be a family of cumses i,n N und,l,et T' d,enote its image und'er ! in
N'. Then

16

m'n .n["
(5.4) 1nt llln!) 3 Mr(f') . * Mo(l),

where n ,is the dimension ol N . In, addi'ti,on, il I is conform,al,,

(5.5) M"-p Mp(f) < Mo(t') I rn"-P Mn€) , Ior p > n

a,nd,

(5.6) m"-P Mp(f) 3 Mr(f'\ I M"-p Mrq) , lo, p < n .

Proof: Let ge E(f'). Let yef be a rectifiable curve. Then, by
Theorem 4.11,

t < lk"illlDflld,s.
/

Hence (s " flllDfll € 7(J-) .

Let z and a' denote the Lebesgue measures of ntr and N' ,

respectively. Then
rr
I pn dr : I tp " f)nJrd,t ,It

by Theorem 3.5 b) and Lemma 3.4. The assumption (5.3) implies Jy) m"
and llDlll <M. Hence

# I k.flottDJttrtu < f o' a,' .

This proves the first irJqoutity of (5.a). tfr"'r""orra inequality follows by
interchanging Itr ancl N' .

If / is conformal, we have Jf : llDfll". Then

llDfl:'o I r, "lul]Dfllo tu : I p, d,,' .lt
Ilence the left hand inequalities in (5.5) and (5.6) result from the estimate
rn < llDfll < M . The remaining inequalities are again proved by inter-
changing -ly' and .Iy'' .
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5.4. Notation. Let § : 5"-t be the unit sphere in the euclidean space

R". We denote by §* - §i- ' the hemisphere {z € § I rr } 0} and by
f+ the family of curves joining the points o: (0,...,0,1) and

ö:(0,...,0,-l) in §a.
We denote by §'* and (z-1)-dimensional spherical cap contained in a

hemisphere, or, as a limiting case, &n (z-f)-dimensional disc. We denote

by I+ the family of curves in S'* which join a pair of opposite boundary
points.

5.5. Lemma. There is a conformal d,ffiomorphism f : §* -+ §'* with
the property f(l+) - f +.

Proof : We ma;r assume without loss of generality that the boundary
spheres of §* and §'* coincide, since this may be achieved by a con-

formal transformation. Then / is obtained by projecting from the point
which divides the segment joining the centers of §* and S'* in the ratio
of the respective radii.

5.6. Theorem. The n-modales o! the fami,li,es f + anil l'* d,efi,neil, in'
5.4 sati,sfy the inequal,ities

and

o)n-L

2l(n- I )rl"-'

uhere d 'is the diametercf S;
Proof : I'or each point y e S';-' \r'e

Clearly, Ty is param etrtzed by arc
Let A € -F'(I*) . Since Ty e l* ,

I tz,-1\ n''L

Lt(', )ra 
2

2 M,(J-*)

-rl '

define the curve

(t+sing'!,

length.
we have

n-2
\- n-l

9)

I -1
(n-1)"-'.1

Ty: [0,2]+§* by

01p1xr.

r
J

ry

for each point A e Sf' . By Hölder's inequality we obtain

I n (sin v)'-'dv
ry

(5.9) ({(sin

7U

___: 2 ,

\n-l

avl
/

2

t-ia'

,

the last integral can be estimated:

L7
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n-2 +

(;)"-'lr
3T

2
f n-2l-zJ(sind n-l

0

for u e. Si-2ut -'-+ )

n-2
- n-L dV - @- L) n

Ifenee,

and

fI

Ty

lr
I

J
S,-T-

@ n-!

2l(n-1) nln-L '

This proves the inequality (5.7).
To prove (5.8) we note that the conformal diffeomorphism / given in

Lemma 5.5. satisfies the conditions of Theorem 5.3 with M : dl2 , m : d14 .

5.7. Remark. The exact value of the last integral in (5.9) is given bv

t/i r(*=) ["(; * r,_r)l-'
This is asymptotically equal to 2 (n-L) for large values of n .

5.8. Corollary. Let IL and, Iz be d,isjoint non-empty subsets of an
(n-l)-spltere S of radi,us R . Let f be the Jamil,y oJ curaes which join n,
and, P, i,n B . Then

(5.10)

u;ltere

I _ _ /-__1_(n-l\
i:l@-L)\/n)"-'"\ , /

Proof:Let a €1, and bePz. Let §'c§ bethecapof height (fi
with a and b as opposite boundary points. Then l- contains the family
f' of currres joining a and ö in §' . Hence it is sufficient to prove (5.10)
for I' . But this follows immediately from (5.8) and the inequalit.T d < 2 R .

5.9. Theorem. Let a ond, b be two Ttoints of the sphere ,S-1 . Let C,
and C, be d,i,sjoi,nt connected, subsets of R" , such thot C, contain.,; a and,
the ori,gi,n and C, is unbound,ed, and, contains b . Let I be the family of
clurt)es joini,rug C, and, C, ,i,n R". Then

(5.1r) M" (l) I x ,

where x: i."n d,egteruil,s only on n.

k

E,

t8
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sphere {r I l* - + bl - r) and let f, be the family
CL and Cz in §.. Then l,Cf andif ge.F( f),

rk
J \ r

sr

Let ,S, denote the
of curves which join
then A I ,S, € -E'( l,) ,

u,here o denotes the Lebesgue measure of §, . Integrating with respect to
r we obtain

t/i
2r rk k

.l 0"d,,=J;dr:rlog3.
R4+

lf la - ö I < I , the same inequality results by considering the spheres

{" 1l* - * (a*b)l : r}, + <, < +\/n.
This proof is taken from Väisälä [1].
5.10. Theorem. Let f be a fami,ly of curaes i,n R" wi,th the following

propertg: Por each y: I --->R" in T there are poi,nts a,b e I such that

ly(a)l :m and, ly(b)l : M, 0 <m <M. Then

I M \r-"
(5.12) M*(r) < ,"\tos:)

Equalitg hold,s when I contains the curlses Tn , fr € S"-1 , d,efined, by

u-(r\:=r;c- mlr<M.

Proof : We define

Then A€.F'(f) and

I IUI \1-'
1,,'og * )

which proves (5.12).

Let us now assume that -l- contains the curves y*. Let' q € .ä,(J')

Then

the function A

q(r) -: I('"'

['

r
I o" d,t - a)n

Jrr
Rn

by

fiI \_I

otherwise .
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Ir?r)
r =ln

^tIX

rn-' dr

dr,

\n-l

dr)

for each re§'-l . Thus

by Hölder's inequality. I{ence

I =f n- rf:

I
Rn

/ lvr \L-n

u,hich completes the proof.

6. åCtre-functions

6.1. Detinition. Let M be a Riemannian manifold. A d,iJferential u
fui M is a Baire function u: TM -+ B which is linear in each fibre T.fuI ,

re M. Adifferential u in M isan Lp-differcntial,with plt, if the
Baire function llzllp (cf. Lemma 2.9) is integrable orrer any compact set
AcM.

6.2. Remark. The concept of an LP-differential is independent of the
Riemannian metric chosen for the definition. Hence cr-diffeomorphisms
of Riemannian manifolds transform ZP-differentials into -LP-differentials.

6.3. Definition. Let M and -l[ be Riemannian manifolds. A continuous
function I , M -+ R is ACLP, for some p ) l, if there is an .Lp-differen-
tial u in M with the following property:

(6.1.) f "y, is absolutely continuous and D(t,y1): u. Dy, a.e.

for the parametrization by arc length 7, of all rectifiable curves y : I --> M
except for a family f with Mo(11: g .

In this case, z is called the differential of / and denoted b-v Df .

It is uniquely defined up to a set of me&sure zero.
Acontinuousmep f , M -+-l[ is ACL?, if g,f is ACLP foreach

Cr-function g in N.
6.4. Remark. Let M , I'r and L be Riemannian manifolds. If /:

M-->N isan ACLP-map and g: N--->L a Cl-map,then g.f is ACLP.
Similarly, it may be shown that if f , M ->-ly' is ACLP and g: L-->XI
a Cl-diffeomorphism, then /, g is ACLP (cf. Remark G.2, Theorem 5.S).
This also holds if g: MxL-->M is a projection.
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The classical definition of AClP-functions is applicable only for open

subsets of R" , since it makes essential use of coordinates. In order to prove
that our definition implies the classical definition, it suffices to apply (6.1)

to segments parallel to the coordinate axes. X'or the inverse implication the
partial derivatives of the function in question are combined to form an
.LP-differential and the proof is completed by using Lemma 4.1 in Väisälä

t 11.

6.5. Lemma. Let M be a Riemannian mani,fold, and' f : M->R" a

map whose components f;: M -->R, i: I , . . . ,tu, are ACLP-lunct'ions.
Il Uc R" ,is anopensetcontaining f(M), q,nd g: U->R a CL-function,
then g " f is an ACLP-functioru i,n M .

Proof: Let Di7, i-:1,
Then

, tu , denote the partial derivatives of g

is an "tP-differential in M .

Let y be a rectifiable curve in M suc}r, that the condition (6.1) is
satisfied for each function fi. Then it may be immediately verified that
(6.r.) holds for y, g "f arrd u.

6.6. Remark. Lemma 6.5 shows that an A0lP-fanclion /: M->R
is also an ACLP-map.

6.7. Theorem. Let M and, N be Riemannian manifold,s and f : M ---> N
a,n1,ap. If eachpoi,nt r€M hasaneighbourhood, U suchthat f lU,
U ---> V as ACLP for some neighbourhood, Y ol f@) containi,ng lg) ,

then J is ACLP .

Proof: Leh g: -l[-> R be a C1-function. We are to show t'hat g "f
is ACLP .

Let (Ut), i:L,2,..., beacoverof M by opensets tI; such
that f I U t: U; -> V; is ACLP for some open set V; c I{ . Then
g "f lUr is ACLP. Let z; denote its differential. Since ui:'ttj &.e.

in Utnuj, there is an -tP-differential u in M such that tli:1tr s.".
in Ui.

Let l;, 'i,:I,2,..., denotethefamil;zof rectifiablecurves 7 in
Ui such that (6.I) does not hold for T, g"f and z. Then Mr(fr):g
fori:L,2,..., and Mpg):0 for l:UTi. Thiscompletesthe
proof, since every rectifiable curve in M for which (ti.I) is not satisfied,
has a subcurve in -/'.

6.8. Lemma. Let M and' N be R'i,emannianmanifold,s and, f : M ->I{
an ACLP-map. Then each point y e N has a coord,inate neighbourhood, V
suchtltat,if U:f-'(V), them,ap llu: U-+V is ACLP.

Proof : Let W c N be a coordinate neighbourhood of g with co-

ordinatefunctions gt;: W->R, 'i,:1,...,n. Let q bea C1-function

i:1
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in .lV , with suppqcW, havingvaluelinaneighbourhood V of y.
Thenthefunctions gUi, ,i - I,...,r1 , maybeextendedto Cl-functions
z;i N ->R such that zi"f is ACLP.

Lef J-r(V) bedenotedby U. Theneachfunction y;of la:z;"f lU
is ACLP . Every Cl-function g : Z -> R may be represented in the form
s:lL(Ar,,..,A.), where h isa Cl-function.Hence g"f lU is ACLP
by Lemma 6.5.

6.9. Theorem. Let M , N and, L be Riemannian manifold,s. Let J:
MxllJ-->L bean ACLP-map. Thenthemap fr, M+L, yeN, d,eJi,ned

by fr(r):l@,A), reM, is ACLP foralmosteaery yeN.
ProoJ: We assume first that / is a function. Let I denote the family

of rectifiable curves in MxN for which (6.1) does not hold. Let, l, C l,
g e 

^-, 
be the subfamily of curves contained in Mx{a). It is sufficient

to shov' that Mr(fr): g in ilIx{y) for almost every y e N .

\Ve denote

yeli

Then .nlr(fr) < M(g). Since MoQ) : 0 , the measure of the set {y € Å' 
,

M@)> d\ must zero for each d> 0. Hence ilI(A):0 almost every-
where and the proof is complete in case / is a function.

If tr is diffeomorphic to an open set, in R" , the proof follows from the
first part, by Lemma 6.5.

In the general case we cover L by coordinate neighbourhoods Wi ,

je J, suchthat f lf-(W): I-'(W)-->Wi is ACLp (Lemma 6.8). Let
(tl,x Y,), i, e I, be a countable refinement of (f-r(Wj)), I €,./ . Then,
foreach iel, frlU, is ACLP foralmost e-very ge V; by u,hat,we
have proved above. This completes the proof by Theorem 6.7.

6.10. Theorem. Let M be cL Riemannian manifolcl and f : M ---> R
ct continuous function which is ACLP in an open set U C M . Then there
isa,sequence fi,'i:1,2,..., of C*-functi,onsin M suchthat fr-f
uniformly ,i,n compact sets and,, in addi,ti,on, Dfi ---> Df in LP i,n each compact
set ACU.

Proof : If. M : Ro, the proof is carried out in a well-knov.n wa;, by
mearrs of conyolutions (cf. Lehto-Virtanen [1], p. 152). In the general case
partitions of unity are used.

6.11. Remark. A similar theorem holds for ACLP-mats, but.w-e neither
state nor prove it, since we can avoid it (cf. Theorem 6.13).

6.12.Lemma. Let B:{n€R"lo<lrl <b}, lorsome 0<a<b.
Let §,:{eeR"llal :r} lor r>0 und, Sr:§. Then,if J: B-->S
is a Cz-map, the integral

ludo,
tw x{r}



t det D(f I s,)rlo
!,

is ind,eltend,ent of r, a <r <b.
ProoJ: Let er, . . . , €. be the standard orthonormal basis in R" ' Let

J : (R")"--+R be an alternating multilinearfunction wilh Å(er, . . ., €o) : | .

We define a Cl-vector field o(z) : lat(r)e1 in B by

oi1r1 : (- r),-, /(f(n), f, (*)rr,, . . ., l, @) ai, . . ., f' (*) e") .

I(el,nvr SuorvrrlvEN, Quasiconformal maps in rnanifolds 23

and

(6.2) A(u@) ,at,. . . ,u,-r): /(f@ ,f'(r)ur, . . . ,f'(r)a*-r)

results by linearity for any vectors at , . . ., tl,-, € R" .

Let r€§,. Choosing for z, t...tun-t in (6.2) an orthonormal set',

orthogonal to r , it, can be seen that def Dff I §.)(r) is equal to the normal
component of a(n) to §" . Hence the assertion follorrs if we show that
divo: ZDto':0 in B.

\\re may write

ui(r1 : l(f '{") e, , . . . , f '(r) e,-r , l@) , f '(r) e,-, , . ' . , f '(r) e^) .

Hence, by direct calculation,

D;ui : /(l'er,. . .,|'eo) + \l(f'er,. . .,f"(ei, €i),. . .,f ,. . .,f'r^)

and

ZDt t : n /(f'%, . . .,f'en) : 0

since /'(r) maps R" into a space of dimension n -l .

6.13. Theorem. Let .f , §" -> B be an ACL"-map. Il f i,s homotoptin

to a d,iffeontorphism, then

Then

-l(a@) , €L , . . . , 6, , . . . , e,) : A(at@) a; , a1 , . . . , 6, , . . . , e.)

: /(f@) ,f'(*)e,, . . . ,f'()ir. , . . . ,f'(r)e,)

I det DJ do --- !. o)n,t .

!"

Here Df may be definecl by components, since §" c R"*1
Proof : Let A: {r e R"+1 I t S lrl <2}. By hypothesis there is a

continuousmap h: A--->§" suchthat h l§":/ andthemap gi S" +§',
defined by S@) : h(2r) , r € §", is a diffeomorphism.
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If lb is a Cz-map, then the assertion
Theorem 3.8. Otherwise, w,e first extend h

follows from Lemma 6.12 and
to R"+1 - {o} b"y

Then h is ACL in B: {tr e R"+r lå < lrl < l} since it is equal to
I " p , where p : B --+ §" is the radial projection (cf. Remark 6.a). In
addition, h is CL in C: {tr e R"+1 12 < l"l < B}. Using Theorenr 6.10
wedefineasequenceof C'-maps h! : D-> Rorr - {0}, D : A U B lJ C,
such that hi --- h uniformly in D and Dhi ---" Dh in L^-metrie in each
compact subset of B or C . The maps hi i D -> §" defined b5, hi
: hillhil have the same properties since lh'rl --* I uniformly in D and
O1ni1---0 in Z"-metricineachcompactsubset of B or C. Hencethere
is a subsequence h,, such that D(kil B,) --> D(h I S,) in L-metÅc for
almostall r with "b<r<l or 2<r<3. Thiscompletestheproof
n the general case.

7. Quasieontormal maps

This section is devoted to the definition and study of some basic pro-
perties of quasiconformal maps of manifolds. Manifolds are assumed to be
of dimension > 2.

7.1. Definition. Let M and -l[ be Riemannian manifolds of dimension
n . A homeomorphism /: M --> N is called a quasiconformal map if there
is a constant K such that

if
if

ftr"t@t)

lrlwltrt)

(7.1)
I
K .lli[n(/-) < ]Vf *(f') < K lvf *(f)

for each familSz l' of curves in fuI andits image f' : l€). In particular,
if (7.1) is satisfied, / is called r(-quasiconformal.

A continuous map f , M -> -ly' is called quasiconformal into Ä- if there
is an open Riemannian submanifold .l['c .l[ such that f(int M) -- N'
and f lint M: int M -+-l[' is quasiconformal.

7.2. Remark. If f : M--->-l[ is -l(-quasiconformal,then,/-1 : t\: -M,
is also K-quasiconformal. If, in additiot, g i N ---> L is 1('-quasiconformal
then g.I: M-->L is 1{ff'-quasiconformal.

7.3. Theorem. Let N and, N' be Riemannian mani,folds of d.imension n
and f: -l[ -+ N' a Cl-d,ifieomorph,ism. It the Ri,emanni,un metrics g and,
g' of N and, I{' satisfy
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m'g {f*g' 3 M'g

for some constants 0 <m<M < a, then f is (Mlm)"-quas'iconform,al.

A conformal, map is l-quasiconform,al.
Proof : This follows immediately from Theorem 5.3.

7.4. Theorem. Let M and' N be Riemd,nnian maniJold's of d,i,mension n .

Let f : M ---> I,{ be a K-quasiconformal map. Then f i,s d,i,fferenti,able

almost euerywhere and

(7.2) llDfll" < K Jt

at eaery poi,nt o! d,iJferentiabil,ity.
Proof : If M and .l[ are open sets in R" , the proof is given in Väisälä

[t], Theorem 6.5. X'or the general c&se we may assume lhat M and -trfl are

diffeomorphic to open subsets M' and ltl' of R', by means of Cr-

diffeomorphisms gi M--->M' and g':lY->N'' Then g'ol"g-t is

locall;r quasiconformal, hence differentiable a.e. This proves the first
assertion.

In order to prove (7.2.) we assume fhat f is differentiable at r e M '

Then g and g' may be chosen so that they preserve the Riemannian
metrics ab r and f(r) and, if M and .l[ are sufficiently small, they are

(1fe)-quasiconformal with e ) 0 arbitrarily small. This completes the
proof.

7.5. Theorem. Let M and, N be Riemann'i,an mani,fold,s and, f : M ---> I{
a quasiconformal' map. Then

(7.3 )

fw ecLch Borel set

A Ba,'ire function
'integrable, and

(7 .4)

r.(f @)) - [ ,, d, n
J

E c foI In parti,cu,lar, r,(E ) - 0 dmplies

q 'in, if is r *-integrable iJ and only ,f (q

,.(l@))
" f)J r 'is

--0.
TM-

dr* (s " f) Jrdr y

Proof : We first consider the case that M and ^Y are open sets in R" .

We apply a theorem of Lebesgue (Munroe [1], p' 285, Saks [1], p. 1I9) to
the set function pr defined by p(E) : ,*(ltnl) for Borel sets E c M .

It is easy to see that the derivative 7,r' equals Jy at each point where /
is differentiable. Hence (7.3) results if we know that t*(E) :0 implies

r*(f@)):0. But this is proved in Väisälä [1], Theorem 6'9'
7f M and -ly' are diffeomorphic to open subsets of R" , we prove (7.3)

by means of Theorem 3.8, and remark for the general case that M and N

:!!r
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may be covered by a countable family of coordinate neighbourhoods. Bv
Lemma 3.4 (7.4) follows from (7.3).

7.6. Theorem. Let M and, N be Riemannian manifolds of d,imension
n . Then eaery quas,i,conformal, rnap f : M --> N is ACL .

Proof : If M and .l[ are open sets in R", this follows from Theorem
6.5 in Väisälä [1] (cf. Remark 6.a). The general case is settled by means of
Theorem 6.7.

7.7. Definition. Let M and -l/ be Riemannian manifolds of dimensiou
n and J : M ---> N a quasiconformal map. We define two non-negative
Baire functions I and ö in M by

(7.5 )

(7.6) refl
If I is 1(-qnasiconformal, then (f + d)" < K by (7.2).

7.8.Lemma.ff I<(1 +ö)"<K,then (1 +d)"(tlnKö.
Proof: This results immediately from the equation

(I + d)"- I : d((t + d)"-' +.... + (l + d) + t).
7.9. Lemma. Let M and, N he Riemanni,an manifolds of di,mension 'it

and, f : M --> I{ a K-quasiconformal map. Then

(7.7) (l u, + ö)d,*) <,*(l<n)),*(E).-, (,,Wt * "u ! 
uo,,)

ancl

Hence (7.7 ) follows
of (7 .7).

7.10. Lemma. Let U and, V be d,omq,ins in R" ancl f : (J - V a
quasiconJormal map. Then there is a constant C such tltat for eq,ch r e L: .

r>0,

Jo, ea,ch Borel set

Proof : By two

ff ^,,+

EcM.
applications of Hölder's inequality \r'e obtain

ö)ch*\" S [ 
^ 

dr* (l -+ ö1*tt*-t) dtt,,)"-'IJ

=1-f l@)'[ o+ ö)* dru. r,r(E),,-'!
from Lemma 7.8 and (7.8) is an immediate conseqrlence
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. M {Cm,
with

m : min lf@) - I@)l ,

lt -"i:,
M : max )f(y) - f@)i ,

v-xl:r

wheneuer B@,r) c U, Bff@), M) c V,
Proof : Let I'bethe family of curvesin Z which join {z llz-f(r)1 <m}

arcd {z I lz - l@)l > tuI}. l,et l- : f-'€'). By Theorem 5.9 M"(f) 2 ,.^

and by Theorem 5.I0
r M\r-"

M^(f') :. ar, 
\log - J

I{ence, if / is Jf-quasiconformal,

r M\r-"
x* 1 K ." 

\lo1 -)

lK o,^\':;
This proves the lemma with C: exP \; /

8. Dilatation

In this section we define the dilatation of a quasiconformal map. The

definition generalizes the concept of the complex dilatation in the tu'o-
dimensional case (Lehto-Virtanen [1], p. 19I)' As a preliminary step we

study the dilatation of a linear map.

8.1. Detinition. Let -F be a euclidean space and E a vector space of
the same dimensionality. We denote by l(E , F) the set of invertible
linear maps xc : E ---> I .

we establish an equivalence relation in the set of quadratic forms in .EI

by defining Q and Q' related if Q : AQ' for some ,1" > 0 ' Then the set'

of equivalence classes of positive definite quadratic forms in .E is denoted

by q(r') . If pel@,I), thenthequadraticform A definedby Q@)
: llu(r)]l' , r e El. is positive definite. Its equivalence class in q(r') is

called lhe d,ilatati,on of u and denoted by p(u) .

Let C(1) be the group of linear conformal maps c : X --> X - Then

C(.F') acts on I(-8,.[') by

n't, i C(f') xl(E , E) --> l(E , ?) ,

m(cru) -co/tL.

27
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8.2. Theorem. Let I be a euclid,ean space and, E a aector space of the
same d,imensi,onal,ity. Then the magt

pi I(E,F)-Q(r)

d,etermines a bijecti,on oJ the quotient set of l(E ,I) by m, onto q(E) .

Proof: Lel u,a3I(E,.F') satisfy u:cou forsome c€C(.f'). Then
llu(r)ll: llcll 

.llu(r)ll for each re E, and p(u):p(u). Conversely, if
this holds, then clearly u, o u-L € C(.F') . Since p is surjective, this com-
pletes the proof.

8.3. Definition. Let .E, be a euclidean space. Let GL(-F') denote the
group of invertiblelinear maps a: F->I. Then, for each a €GL(tr) ,

we define (o,) : Ilali . Ilo-tll . It has the following properties:
a) (a))1, for each aeGL@), and (a): I if and only if

aeC(n),
b) (a) : (a-'), for each a e GL(X) ,

c) (a"b)<(a)(b), for each a,be CL(.E') .

8.4. Theorem. Let I be a euclidean space and, E a aector space oJ the
same d,iru,ensionality. Then the function d,' d,efined, ba

d'1u , u) - log (u " o-') , Lc ,,t) eI@ , F) ,

'is a psextdometric 'in I(E , F\ . It determ,,ines a,, metric d ,in QrZ) by

d(u(u) , t (r)) -= d'(u , u) , %,uel@,F)

Proo|: The first assertion results immediately from a)-c) of Definition
8.3. Since (a " b) : (a): (ä . a) if (b): (ä-r) : 1 , it is clear that
d is well defined (Theorem 8.2). Finally, d(U@) , t@)): O implies
,y o ,u-r € C(7) and hence p(u) : p(a) . Thus d is a metric and the proof is
complete.

8.5. Remark. The metric d, in q(r') defined in Theorem 8.4 is in-
dependent, of the choice of the euclidean space "F, as may be easily verified.
It can also be seen that Q(.8') has a natural manifold structure compatible
with d, such that p is differentiable.

8.6. Detinition. Let M ard -l[ be Riemannian manifolds. Let Q(M)
: q(TM) be the tensor bundle of type e oyer M (cf. Lang l1l, p. a9).
Let J: M ---> -l[ be a quasiconformal map. Ttren Df@) el(T,M ,Tt<qN)
for a.e. r e M (cf. Theorem 7.5). The d,ilatution of / is the section z of
q@q defined by

x(r) - p(ott.l)

for a.e. freM
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fn the ]ocal case where M : U is an open set in R" , the bundle

Q(M): UxQ(R") is trivial and the dilatation may be represented by a
map Ni U-+Q(R") .

The Riemannian metric of M detetmines & canonical differentiable
section of Q(14 which is denoted by ".

8.7. Theorem. Let M and, N be Riemannian mandful'd,s. If f ; M'-> N
is a quasiconformal map, then i,ts d,ilatation x i,s measurable. In particular,
d,(x , e) 'is a Bq,i,re functi,oru i,n M .

Proof: Weconsideronlythelocalcase M:U, N:V in R";
the general case is similar. The map Df : U + I(R", R") is measurable
by Theorem 2.10. Since p is continuous, z : p, Df is also measurable.
The last assertion follows by the continuity of cl' .

8.8. Remark. To prove lhat d,(x, e) is a Baire function it is actually
sufficient, to consider only I(8,-F) and d'. This is all that is needed in
the sequel.

8.9. Lemma. The d,i,latati,on x of a guasiconJormal magt I , M -+ rY is
related, to ö by

(8.1)

(8.2)

a'e' )

and ct, : il _--> E
llo-'ll-1 . Then it

wlr,ere % denotes the d'imension ,f II and -ntr .

Proof : Let E be at euclidean space of d.imension 7u

aninvertib1e1inearmap.IVedenoteM-llollandrn
is ea,sy to see that

On the other hand M : (a) m and Mo : ldet al(f * ä)" by Definitions
8.3 and 7.7. Combining these equations with (8.2) we obtain (8.1).

Part II

fn this second part of the paper we generaliza certain results of Teich-
miiller, Wittich and Belinskij for quasiconformal maps in higher dimensional
spaces. We consider a quasiconformal map 

"f 
: U ---> 7, 'where U and V

are open submanifolds of Ro , n ) 2. We assume for simplicity that
0 € U and /(0) :0 € Y . Let d betheBairefunctiond.efinedinDefinition
7.7. Then we prove:

Theorem. If the i,ntegral

l#d,(* )
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'i,s conaergent tlten tlt e guoti,ent

Itas ct, fi,ni,te) tlo?L-zero l,imi,t ctt fr -
0 11 <-ro, definerl by

tf@t
l"l

0 . In add,iti,on, the maps f,: §"-r -* §'-' ,

f(rt)l,@):ffi
conaerge to the set I of ,isometries g : gn-l r ga-I i,n the following sense

':t ;:f ,::r,ts@) - r.(r)t : o '

This theorem follows from Theorems 9.9 and 10.9. In the case n:2
it was shown by Belinskij (cf. Lehto-Virtanen [I], p. 239) l}r,at the maps f
conyerge t'o an isometry. This implies that f is differentiable at r : 0

(ibid., p. 2a\. We do not know whether this is true for n > 2 .

By Lemma 8.9 the convergence of the integral (x) is equivalent to the
conyergence of the following integral

( **)

where , : l*1, e € Q(R") is the class of the canonical euclidean metric
in R" and z is the dilatation of / (Definition 8.6) considered as a mea-
surable map ?d : t/ + Q(R") . The integral (**) is meaningful also if e is
not the canonical class. Hence it gives a condition under which the theorem
may be applied after a change of metric in U . In particular, it shor,,rs that
the theorem is applicable if x is Hölder-continuous.

Convention. In the rest of this paper the dimension n ) 2 u'ill be
kept fixed. The Lebesgue measure of any n-dimensional manifold will be
denoted by z and the measure of manifolds of lower dimension by o and pr.

9. Railial convergence

9.1. Definition. Let § : {r € R" I lrl : ro} be the sphere of total
measure one, i.e. @"rfr : I . Let 1, denote the product manifold §x R+ .

A map q: L-->B -{0}, B: {r€R"llrl < t} is defined by

q(r,t)-r'y;ts-'l',, r€§, r€F+.
9.2. Theorem. The map V i L ---> B - {0} is conformal. A quas,i,con-

tormal map I of L into i,tself i,s proper, i.e., the prei,mage l-,(C) of each

f d(x,e)

J " 
d''
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campact set C c L 'is comltact, i,f and, only if there,i,s a quas,i,conformal, map
g of B i,ntoitsel,f suchthat gof :gog and, /(0) :0.

Proof : The conformality of g is easily verified by direct calculation.
Hence g' : g " f " g-r is a quasiconformal map of E - {O} into itself.
If / is proper, g' may be extended to a continuous ma,p g : B ---, B Uy
setting g(0) : 0 . Since the family of all curves therough the origin has
zero module, it, is clear that g is quasiconformal. Conversely, if there is a
continuous map gi B--B satisfying E"J:g"g and g(0):0, it
is immediate that / is proper. This completes the proof.

9.3. Notation. Let f be a proper rK-quasiconformal map of L into
itself. Since Z is the product § X R+ , we may represent f by a pair of
continuous map gi tr->§ and h: Z-+R. The set BX{I}CI is
denotedby S,:§(r) , for l)0. Wedefinecontinuousmaps flr: §-+§
and h,: §->R for ä > 0 by

g,(r) - g(n , t) , h'(r) - ll(n , t) , #e§

We denote the oscillation of h, by /(t) .

Let r € §(l) be a point at which / has a non-zero derivative. Then the
angle between DJ(T"S(I)) and frr"r}(np\) is denoted by 0 . These
notations are retained in the rest, of this paper.

9.4. Lemma.
f
I J(ildo ) t

3

for almost euery ,>0.
Proof : By Theorem 6.9 gr is ACL for almost every ä ) 0 . Hence,

it is sufficient, to show that gt is homotopic to a diffeomorphism, by
Theorem 6.13.

By Theorem 9.2 there is a quasiconformal map Å of ,E into itself such
that gof :fiog andå(0) :0.If ,å isdifferentiableattheorigin,with
non-zero derivative, then /r tends to a diffeomorphism of § onto itself as

t --+ a. Otherwise we replace J, by the map fr(rlu) - lr@) where o is
a point at which /, is differentiable. If a is chosen sufficiently close to the
origin, then fu is changed homotopically and t'he proof is concluded as

above.
9.5. Lemma. There 'i,s u constant A such that

l"
§(4

fo, almost eaerA t >0.
Proof: By Lemma 9.4
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r
J 

)'"-'(L + ö)"-1 lcos Ol d,o > I
s(4

for almost every , > 0 . Thus by Hölder's inequality

-t{\ 
I 

s(,) 
I I 

I

On the other hand. (1 + d)" < K , and hence

bY Lemma 7'8' Thus 
,r:

( lo+ öI"'-od,)"-' .I {nK'rt-' 
löd,os(,) s(,)

and finally
r-, f
I J11cos$ld,o > L - nX-L | ödo.

'dr '1r
9.6. Lemma. There is a constant B > 0 such that

[,rprr,r'd,o > B/(t)

'/)
lor almost eaery t)0.

Proof: By Theorem 6.9 h, is ACL for almost every I ) 0 . Let yo

and At be points where h. attains its maximal and minimal values,
respectively. Let J' denote the family of curves 7 in §, joining (yo,t\
and (A, , t) , such that h " T is absolutely continuous and D(h . y)
: Dh " Dy . Tf h is ACL", then M"(n is greater than a positive
constant za depending only on m bv Corollary 5.8. trVe assume that this
is the case.

Integrating Dh along y e T we obtain

/(t) : h(yo , t) - h(y* t) < 
J ^r, 

f d) lsin Bl ds .

Thus l(L + ä) lsin $llA(t) €.P(f) and

r

,/,
This prorres the a,ssertion with B nLlK .
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It ,t'Jc L.

en by (7.3)

a

t'f . Then

Let E - L(t,t'), 0 ( t <t' , denotetheset §x

be the distan.. O;ween ä(§,) and h(|r). Th

f

J

urfficierr"r" consider the case d > Alt) + Å(t')
.9, denote the curve y"(s) - (r, s), s € [f ,

r

,1.

r€S. Integrating over S we obtain
n

I

J
E

la.

]

fi

d

YS
re

erv

S'

€

ry

mm8

!
Let

rusly

i) fr

eYe

Let

f::

rvio

/x

ost

'oq

ob

,t

lTII

no,

ol

)t

1.7
,1,

I

?rt

)

to
Lel

ah

9,
',n

)

P

r)

is(
Le

'he

).1

,.2

bi

)r

ri

(e

(e

It

fo

Hence, b5r (2.7) and (9.2)

/r\
(e.B) d" <(d+ /(t) + t(t'))(r'-t *nK I ,arl Q'-t)"-'.' ", \ / I

Since (9.1) follows from (9.2) if d <t' - t, we may assume that
t'-t<d, whence

r
d - Å(t) - /(t') <t' - t { nK 

J 
ö dr

by (9.3). Combining this rvith (9.2) rve obtain (s.;.
9.8. Lemma. A progter quasi,conformal map f ,f L into i,tself is uni'

formly continuous.
Proof : LeL g be a quasiconformal map of B into itself satisfying

E"!:gog and g(0) :0. Let C bechosenasinLemmaT.l0for g.
We choose positive numbers n and b such that,

{apo11c B(b) , B(}b) c s(B) .

Lel r € R" be a point' with lzl : r <a ' Then by Lemma 7'I0

g(B(* , r)) c B(g , Cr') ,



by Lemma 7.10 again.
Let f' be the family of curves in g(B) joining S(y , Cr,) and

S(y , ö'lC). We denote t-r(l') by f . Then

M,q) < ,:^ (,,s,+)'-"
\ " d/

and
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where y:g(r), r':lyl . Let z be a point with lz-rl:d<r
and let d' denote lg@) - al. Then

B(y,ö'lC)cs(A@,A1)

M^(r') : r^(ron+\'-"' "\'b ö'I
by Theorem 5.10. Hence

I r\r-" f gzr'1r-"
Ka"\loS u) > a,," llos O /

if S is -K-quasiconformal. Finally, this implies

I=r,(*i, o:x*
Passing over to L by q we find that / is, in fact, uniformly Hölder-
continuous in 9-t(41a1) . This completes the proof since / is also uni-
formly continuous in the remaining compact set.

9.9. Theorem. If the integral I a a, i,s finite, then the funct,iorus h, - t
L

'in S conaerge uniformly to a constant li,mi,t functi,on as t --> oo .

Proof: Since 2sin8l2 )sinf for 0/-${n, we have

cosd : I - 2 sin2 Bi2 < 1 - { sin"f

if n ) 2 . Taking Lemmas 9.5, 9.6 and 9.7 into account this yields
tfr

+B l/(t)"dt<(A*nK) | aAr -:(_1101 -J(r))JJ
for all t> 0.0*, ,"**a T.t0 ,trl 

tr.'o"rnded. 

Henc " I aclr can be
J

finite only it I /$)" dt is finite. But /(t) is u,iformll- continuous by
Lemma 9.8. Hence

34
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This shows that if the functions h, - f converge, then the limit is constant
and the conYergence uniform.

Tocompletetheproof wechoose,foreach e)0, a to) 0 suchthat

I

I öh <u
,r/",,)

and Å(t) (e for t2to. Then by Lemma 9.7

I- [trar<t-to{nKe{4e.
,</,,,1

On the other hand, Lemma 9.5 yields

I>t-to-Ae.

Sincetheintegral 1 differsfrom h(y,t)-h(a,to), for AeS, by
at most /(t)*/(t)<2e, we obtain

lh(y,t) - t - h(y,td f ,ol < (A I nK f 6) e

for all t ) to . Hence the functions h, - t conyerge and the proof is
complete.

10. Angular convergence

10.1. Lemma. Let Ic E+ be q, closed, i,nterual of length I . If the

oscillation of h -t in SxI i,s smciller than e <1, then

r
(I0.1) ,Q@x1)) < o@)l | (rzf I) e L tlx I atu,

J

for each Borel, set E c S .

Proof:Let Tn, reS, denotethecurve y"(t):(u,t), tel, in
§xI. Then we have

lt(r+ ä)d.s)/-e
I

for almost every r€§. Hence

lt(r+ö)tu>(t-e)o(E).
ExI

By (7.8) .rr* obtain



36 Ann. Acad. Sci. Fennicre A. I. 393

( I 0.2) r(f@ x/))
ExI

we have r(/(sx/)) <t;:
- E, wo obtain

U Ur)

ödr.

On the other hand,
(10.2) to the set -F' - §

Ifence, a,pplying

r(f@x/)) <, +- t - o(I) t + n o(P) e

and (10.1) follows.
10.2. Detinition. Let I be a (n-2)-dimensional linear subspace of

R". Let h and gt, 0{g, 12n, denote polar coordinates in the
orthogonal complement E of I. I'or each point, r € R" let, y(r) and
z(r) be the components of r in E and I . Then the functions Q , g
and z in R" definedby Q:Qr"A, g:Vt"A, arecalled cyli,ndrical
coord,inates with axis I . A point r € R" is also denotedby (g(r) , V(n),

"(")) 
.

10.3. Notation. Let a and ä be two distinct points of § (Definition
9.f). Let -[' denote the orthogonal complement of the plane spanned by o
and b , if a + -b. fncase q,- -b, I may bean5r(z-2)-dimensional
subspaceof R", orthogonalbo a and b. Let q, g and a becvlindrical
coordinates with axis -F, chosen so that g@) : 0, 0 < r : g(b) I n .

Lel r >0 and 0{ 8<2n. Theset, {r€§llz(u))<r, V@):p}
is denoted by C*:Cr(r) and its (n-2)-measure by m:m(r). The
union UC*(r), 0 ( g <d, is denotedby A(r) or, briefly, ,4.

10.4. Lemma. Let p be a Bai,re function 'i,n A. Then

Qdo

*nK Ioa,,J

: 
lor j qds

co Ty

lorlrcco ^/i
I ro': l'r

)ox I

/
where Ty, yeCo,
'in A.

Proof: Let I-

f (v ,

is a diffeomorphism. Hence

denates th,e curae Tr(t): (g@,t,2@), t €[0,e),

Then the map f : %xI->A defined by[o,o]

. f) Jlds ,
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where y;, yeCr,
Since it is easy to see that

ff
lk.l)J1ils : I pdt,

/r /,

this completes the proof.
10.5. Lemma. Let Ic F+ be a closeil, i,nteraal, of l,ength I anil let il,

d,enote the d,i,stance between g(Crxl) and, g(Coxl) i,n S . Then

(10.3) kr(f(arr)) > o(a)t -nK J 
uu,

AxI

where k: d(a,b)ld.
Proof: Let A,, teI, denote the set Ax{t}cAxI. If .f lS, i.

ACL, then
I

I 1(r + ö) d,o > il m(r)

!,

by Lemma 10.4. Since this is the case for almost every f €.I by Theorem
6.9, we obtain

l^o+ed,r>d,mt.
lJ*t

Hence, by (7.8),

,(!{exn) > (am1o1,tl)" (<-al , - **^[,u u,).

On the other hand o(A) <mil(a,b) and (10.3) follows.
10.6. Lemma, Let X be a cornpact metri,c space and' a : X -+ R q,

conti,nuous functi,on. Then the sets {r€X lla(r)l < e}, e > 0 , lorrn a
base for the neighbourhaod, system of tlte set A: a-L(O) .

Proof : If the assertion does not hold, then for some neighbourhood tr
of A thereisasequence (rr), i:1,2,..., ofpointsin X-[/ such
that a(r;) --+ 0 . Since X is compact, we ma,y assume that fi;--+ fr irt
X - U. This leads to a contradiction with a(x) : 0 .

10.7. Definition. Let .E be the set of all continuous maps /: § + §
which are homotopic to a diffeomorphism. We define a metric d, in I by

d6,il: 
::§ 

a(f@,s(*)),

The set, of all isometric ma,ps f : § --+ § is denoted by I .

f ,ger.
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10.8. Lemma. The function q, : 7 + R deJined by

a(f) :,:lf 
,ld(f 

(n) , J@) - d@ ,y)f ,

'i,s continuous anil non-negatiae. If I e E , then a(J) : O if and, only if f
'i,s an 'i,sometrg.

Proof: The continuity of a is clear. Let f €-E' satisfy "ff) < 0, i.e.,
a(fO,l@)<d@,a) for r,y€§. Then / mapseachpairofopposite
points in B into a pair of opposite points, since otherwise / is not surjective.
But /(- r): -/(z) implies that d(f@) ,l@) > d(* ,y) for r ,a e B
Hence f must be an isometry.

10.9. Theorem. If tlte 'integral 'is f inite, then

d,(9, , r) -> o
as t--> q.

Proof : The functions g,, i ) 0 , form an equicontinuous family by
Lemma 9.8. Hence the closure X c I of the set {g, I , > 0} is compact
by Ascoli's theorem (Kelley [I], p. 233). Then, by Lemmas 10.6 and 10.8,
it' suffices to show that a(9,) ->0 as f --> oo.

Choose 11 > 0. Since / is uniformly continuous, we can find r > 0
and Z > 0 such that the oscillation of g is smaller than r1l4 in each set of
the form Cr(r)xl (Notation 10.3), where .Ic R-+ is a closed interval of
length 7.

Let a and. ä be distinct points of §, lel l,:lt,t f ll for , > 0,
and let sr be the oscillation of the function h - t in § x -I, . By Lemmas
10.1 and 10.5 we then obtain (cf. Notation 10.3) for large enough I

f eF,

/
k? lo(A) t + (n*1) u,

\

!,0,

r\r
Ax\ AxI,

Iaar->o as t+
JAxI,

where

Since rr -+ 0 and

(10.4)

Hence

(10.5)

, s'(b)) ,tlz) .

@ , it follows that

if I is large enough. In addition, (10.4) and hence (10.5) hold uniformly in
a and b if o(A) is bounded away from zero, i.e. d(a,b) ) zz for some
m > O. Since the case where d,(a ,b) <m may be taken care of by using
the uniform continuity of /, the proof is complete.
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