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Introduction

1. Consider a cyclotomic field k(e) , 'w'here { is a primitive mth
root of unity. We suppose that the natural number zz is > I and in
addition we exclude those even values of m , which are not divisible by 4.

This restriction is not essential because both the primitive mth and (ru,1z)th

roots of unity generate the same field if m has some excluded value' It is

known that the class number h(m) can be represented in the form

h(m) : hr(m)hr(m) ,

where hr(*) a:nd hr(m) are the so-called first and second factors of the
class number.

In the present pa,per we mainly consider lhe fact'or hr(m) especiallv

its behaviour, when ra tends to infinity.

2. Tf p denotes an odd prime, Kunrurrcn [II] conjectured that

(1) hr(p) - G(p) : 29-dtz n$-dt2 p(p+3\!4 -

The sign used here is the sign of asymptotic equality, when p -> co .

He also calculated hr(p) for p ! 97 and found hr(p) : l for p < 19 ,

hJ97):41L322 823 001. It should be noted that G(97) calculated by
means of (1) is 455'l}s to 3 significant figures. No proof of (l) has yet
been published.

ANxpNr- and Cno'wt-l [1], [2] sholred that

{2)
los (l,r(p) lG(p))lirn --- - -- 

(J

r-+ ,c log P

They also announced as a consequence

such that hr(p) is stricth. inereasing for

I\ 7 'Pa then

Taruzawa [17] proved that

of this. that there exists a Fo



introduced by Srnanr, [5]. We can, however, find that this formally very
simple estimation is not so sharp as (2) and (3).

The above asymptotio estimations (2) and (3) give for hr(p) a good
approximation, whenever p exceeds a sufficiently large limit, the greatness
of which being, however, unknown. Therefore we need for hr(1t) also the
estimations which are useful for every value of p . The upper bound

(5)

and its improvement
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where the upper bound is sharper than the upper bound given hy (2).

Here c and c(e) denote respectively an absolute positive constant and
,a positive constant depending on parameter e (> 0) alone.

Among the asymptotic estimations of hr(m) we further have the result

(4) log hr(p) ,-, (p log p) 14

(6)

(7)

(8)

t,(p) < 
l'rnr -

introduced by Canr,rrz [3] are of this kind. Although (5) and (6) give a
better upper bound than (4), we can, however, verify that, for great values
of p , they do not give as good results as the asymptotic estimations (2)

a,nd (3).

3. In the first chapter of this work we consider the asymptotic estima-
tion of hr(m) . By using Taruzewe's method in the general case we have

where a(m\ denotes the number of different prime factors of m , c and
c(e) are defined in the same way as in (3), and

G(*) - q Q'Qn)-q(*)t2 ldrtE lm ,

where g denotes EuIER's function and il is the discriminant of k(() .

The number q': L or 2if m is evenorodd.respectivelyand g, defined
by (I.3), differs from I only if a(m) : L . The result (7) implies the
estimation

log(är( p")lG(p") )
lim

pu-->w
-0,log p"

which we obtained in [13] by an extension of the method of ANr<pNv and
,Cnowr,e.

If in (8) we replace rn lry an odd prime P t wa get the expression
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G(p) , which appeared in KumuEn's conjecture (1). The most that has been

shown in the direction of Kurmrnn's conjecture is the result (3)of Teruzewa.
since we have shown that in the general case it is possible to get the
estimation, which has respectively the same accuracy in essence, it, seems

in consequence of the present knowledge meaningful to extend KUtumER's

conjecture as follows:

ltr(m) ,-, G(m) (m -* oo)

4. At the end of the first chapter we show, by'means of (7), that there

exists arr mo such that, for m ) rtuo ,

[zlm and p isaprime,
hr(m) < hr(pm) 

" \rr* and, p is an odd prime or 4.

In addition, if we write m,:p"h, where p is a prime (ptk) and u
is a natural number, we proYe linat hr(m) is strictly increasing for m > mlo ,

when m increases in such a way lhab u and k remain constants. If
lc: l, this yields our result (cf. E3]), which includes the corresponding

result of ANr<nNn and Crrowr,e.

5. fn the second chapter we consider I)rnrcHLET's L-functions

L(s , N,) x,(n)n-r

closely associated with the conception of the class number. Here X(n)
denotes a character (mod ä) , where k is a natural number.

By using a similar method as in the proof of (2) Auxnlrv and Cnowr,e

[I], [2] showed that on the assumption of the extended RrnneNlr hy-
pothesis there exists for every positive e and for every s satisfying the
condition

a non-principal character X(rt) (mod p) such that

lL(t,x)l <1+t?

u,hen the prime p > Po@) .

We pro\re that the method of Axxpx:r and Cnotr,r-,a

case be extended. Here we must assume that,

CO

YL
n:L

1_

2

can also in this

<å) ,(e)
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where r : o\k) or a(k) + I if fu is odd or even respectively. We shorr

that for every § and h satisfying the conditions (9) there exists a non-

principal 1(z) (mod k) such that

ll(s, ill < t + e (e > 0) .

If k is an odd prime, this leads to the result of ANr<nNv and Cnowr,e.

6. In the third chapter we consider the case m : P", where p is a
prime and u is a natural number. It has been shown (cf. e.g. [19], pp.

796-802) lhat hr: ht(2") can be written in the form

Itr - K h'r )(10)

where äi is the first factor of the class number of the cyclotomic field
h(exp(2nil2"-I)) and K (see (8.a)) is an integer.

Wnsrr,uNo 120] showed that also in the case p 2 3 , u 2 2, hr(p")

can be represented in the form (10). In this case 1(, defined by (8.6), is

also an integer and hi is respectively the first factor of the class number

of the cyclotomic field k(exp(2nilp"-t)).
Irxmnr [9] expressed hr(p) ko ] S) as a determinant (see (8.2)), from

rvhich we can among other things conclude Lhat hr(p) is an integer.

Clnr,rtz and Or,soN [4] started from the so-called Mlttt ET's determinant
D, and obtained the result

hr(p):aO9*dtzDo@>3) .

In the third chapter, we show first that the connection with INr<nnr's

and }Ilrr,r,rr's determinants can be verified directly without reference to
the factor hr(p) . Our main purpose, however, is to treat the factor ff ,

and we derive for it some new expressions as determinants, which among

other things enable us to represent' hr(pt") as a product of determinants.
By applying the above results we finally estimate a,n upper bound for the
factor K, which further yields an upper bound for the factor hr(p").
It should be noted that these results rvere given in [13].



Chapter I

AN ASYMPTOTIC E§TIMATION OX'THE FIRST FACTOR OF THE CLASS

NUMBER OF THE CYCLOTOMIC FIELD

§ 1. Theorems

?. In this chapter we consider the behaviour of the first factor är(zra)

of the class number of the cyclotomic field k(e2"il*) , when za tends to
infinity. It should be noted lhat m ä 3 throughout this paper. This fact

follows from the restrictions for m introduced in section l. In this papel

p alw'ays denotes a prime and u a natural number. Our primary object

is to prove
Theorem 7. Let c anil c(u) ilenote, resltectiuely, q,n absolute pos,it,io-e

constant and, a positiae constant d,epend,i,ng on parameter e(> 0) al,one' Then

c(e)m-' <hr(nt)lG < exp(c(loglogm I a(m))) ,

where

(1.1i

(1.2)

(1"3)

Here cl denotes the d'iscriminant ,f the fietd k(e2'it^) und,

,f 2\m,
,f Ztm,lz

{r, i,f m . zu ,

I t elsewhere.

As a consequence of this we have

TheOfem Z. Let ?TL - p"k , wltere p + k If q as a pri,me such that
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when p"k is great enough. In addi,tion there erists an m, such that, for
rn ) Tko>

ZIm.

lor(n*) if

ln,1u*) i,f

When nL

Q' :-: 2 and
(1. 1),

We have

ryhere c' is €r

that theorem

- p is an odd prime, ib follows from (l.z) and (l.B) that
q - plla,. Since ldt - pp-' (.f. e.g. [6], p. 506), \,tr,e get, by

G - zp(p+ lLn)@-L)tz .

positive constant. Because a(p) - I , s'e can thus conclude
I implies the result (3) introduced by Teruzawa tITl.

8. In order to prove the above theorems we first, in paragraph 2, con-
sider the so-called characters and present some preliminary results, which
are needed particularly in paragraphs 3 and 4. In paragraph B we in-
vestigate lhe factor hr(ru,) in order to find for it the expression, which
would give a proper starting point for estimation. In paragraph 4 we focus
our attention on the asymptotic estimation of hr(m), and finally, in para-
gr*ph 5, we prove theorem 2.

§ 2. Characters

9. Let k be a natural number. A function y @f an integral variable)
is a character (mod k) if iN has the following three properties:

(i) x(n): o if and only if (n , k) > t ,

(ii) y(n) : x(l) if n : I (mod k) ,

(iii) flnl) : X(n) fl|,) for every pair of integers n , I .

ft follows from these basic properties (cf. e.g. [7], pp. 2L6-224 and
[I4], pp. 99-f03) that the number of characters (mod fr) is q(fr) and
one of them is the so-called principal character yo, for which X,o(n) : l,
whenever (n , k): I . Further we have

k

n-l
(2.1) fv1t) if x,- xo,

lo if x,+xo,
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{ -> -)\

x.here /f (k)

10. \\ie
rrnd rvrite

say that the character 1, (mod kr) is equivalent to 7, (mod kr)

if' arit{ only if

f'or e\rer)- 't?, )

h § Xz

x,ln) - xz@)

rvhich satisfies the conditions

(n,kr):(n,h):L.

Obviouslv this (e) is an equivalence relation on the set of the characters.

If y, x p Lhen \4 e say that the character 7, is definable modulo &, ,

and u'e call lc, a defining moduh:s for yr. Tf kz is a defining modulus for

7, then the corresponding character 7, is completely determined by 7, .

\Ve now present some results, which follow from the above definitions
(cf. [6]. pp. 67-70 and [7], pp. 216-22$.

Lemma l. Let h' be a iliuisor of k . In order that a character 1 @ad k)

be definable modulo l{ , it is necessary and' sufficient that 7@) : I fcr

.(n ,k) : I , n: 1 (mod k') .

Lemma 2. If k' is any rnulti4ile of k then a character 7 (mod k) i,s

clefinable mod,ulo k' . If k, and, lt, are d,efi'ning mod,uli, fo, X , then so is
(k, , kr) '

Lemma S. If X is a character then all, ilffining mod,uli for 1 are multiples
of theleast'modulus.Thi,sisd,enotedbA fQ) and'iscalled,theconiluctorof X.

A character 7 (mod fr) is said to be a primitive character (mod k)

(denoted usually by X*) if k : f(y) , the conductor of X, . Otherwise 7
is called an imprimitive character (mod ft) .

Lemma a. If X is a character (mod k) anil f(fl its coniluctor then there

e.r:ists u unique character 7* (mod f(fl) equiualent to y . Moreouer, 1* is
primitfue.

Lgmma 5. Let y be a character (mod fu) and, suTtpose that

k:krkz...kt

is « rlecomgto,siti,on of lt i,nto pa'irwise coprime positiae integers. Then there

erists o uni,qu,e d,ecomptos'it'ion of X into characters Xi (mod k;)

x,t

13

denotes the set of the characters (moJ k)

X, - XtXz
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su,ch that

fQ) : f0)fQ,) " 'lQ,) ,

where f(p) 'is the cond,uctor of p.
In the following we consider especially the characters y, (mod m) ,

where zn, is fixed. There exists, by lemma 4, for each character y (mod m)

a unique character 7* (mod/) equivalent lo y, where f :f0) is the
conductor of X. We denote by S the set, of all these characters

7* (modf(1)) . Obviously § is also the set of all the primitive characters,
each of which is equivalent to a character (mod m) (cf.lemma 4). Through-
out this paper we use the notation I instead of X* where there exists no

danger of misconception.
We say that the character 7 is even or odd if X? 1) : + I or - I

respectively. X'urther we denote by a,(k) and b(k) , respectively, the
number of the even and the odd characters 7 (mod k) , which belong to
the set B . In addition we have

n(k) : a(k) { b(k) ,

where n(k) is the number of all the characters in B , which are primitive
characters (mod ft). It follows from lemma 3 that klru .

ll. With the help of the above
Lemma 6. Let k be a d'iu'isorcf

of an odd pri,me or by 8 tlten

(2.3) a(k) - b(k)

If k ,is

(2.4)

but

(2.5)

and b(k) 0 . Consider next the case @(k) -

(mod 2).

Suppose p" > 2 . If we denote by X,p

follows from (2.2) that

Z'xo(- 1) + »"r*(- 1) - o,

lemmas we now prolre the follo'll.irg
tn . If k 'is d'iuisi,ble by the square

t Now k is of the form p" .

exists no primitive character

a character (mod p") then it

- * n(k)

d'iuisi,ble nei,ther by tlte s(luere of un odd prime rlor b'y 8, then

(2. 6)

rvhere, in Z' and 2", the summation occurs over all the primitive and all
the imprimitive characters (mod p") respectively. The characters in the

t4
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sum »' are characters (modp"-') (u>2). Since, on the other hand,
every character (mod ?"-') is also a character (mod p") (see lemma 2), we
can decide that every character (mod p"-r) occurs in the sum .X" .

Suppose first that u 2 2 and p" ) 8 . It then follows from (2.2)
thab Z" : 0 . According to the definitions of the even and the odd charac-
ters we now conclude, by the equation (2.6), that

a(p"):b(p"):än(p").
Let g":4. Consequently Z' : - l, since, by (2.2), Z" : I .

Hence we get

b(4):ä("(+)+r) .

Let 7t be an odd prime and u: I . In this case the sum f" contains,
by lemma l, only the principal character. Hence 2" : l, and we can
write

b(p):*("(p)+t).
We have thus shown that our theorem is true, when ar (k) : I .

Supposenowthat @(k)> l. Let 7 (modk) be acharacterin B. It
follows from lemma 5 that, X can be written in the form

(2.7) X:XpXr, k:p"kr (plkr),
where X,p and It are characters (mod p") and (mod ftr) respectively.
Further we get

(2.8) k: f(il : l\)f%,) .

Since /(7r) '< p" and f(Xr) < lq , it follov.s from (2.7) and (2.8) that

lQ):P",lQt)-4.
We can thus conclude that § contains also the characters yo ard Xt -

Suppose, on the other hand, that y", (modp") and yr(mod kr) are charac-
ters in S. Then it, is clear that y : Xp Xr is a character (mod ä) and we
can, by lemma 5, decide that

,f0) : p"kr,

which yields tbat f(y): fr . Consequently u'e find that 7. belolgs to S .

Suppose now that k is divisible by the square of an odd prime or by
the number 8. It is then possible to assume that in (2.7) u, ) 2 and p" > 8 .

Hence we get

b(k) : a(p") b(hr) | b(p") a(kr)

: * n(p") (a(kr) I b(kr)) : * "(k) 
.

We thus observe that the first part of our lemma is true.

15
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If k is divisible neither by the square of an odd prime nor by 8. let us

supposefirst,that 2l /c but 4lk . Ir.this case we canin (2.7) choose ? : 2

and tr : I , and we get

n(k):n(2)n(kr):0.
The cases 2lh or 4llc, so far not considered, we prove bf incluction

on ar(k) . Suppose lhat lt (r(e) > 1) is such a divisor of m , and assume

that the lemma is true for all the divisors f in question, rvhich satisfy
the condition

a(k') < a(k) .

In (2.7) we may assume lhat, p is an odd prime and a,: 1 . Since

at(lcr):at(k)-1,
it now follows from (2.5) that

b(k) : b(kr1a(p) { a(kr) b(p)

: *("(k,) - (- t;" or-') *("(p) - t) + i("@r) * (- t;"'t*r-') L("(p\ + r)
: * ("(tt) - (- t;-to; .

We now decide that also in this case our lemma is true, and thus the proof
is concluded.

12. For the odd characters we finally proye the following
Lemma 7. Let k be a natural number and, d,enote by Q(k) the .set o.f the

odd, choracters y (mod k) . I.f n is an integer then

*v@ if ?L -
(2.e) - { tVUt) i,f 7L ::

I (mod å)

1 (mod k)

0 elsetahere

Iurther

(2.I0) Z x(") -- Z x(") ,

z€ P zeQ(*")

where m,, is the greatest di,ui,sor of m prime to n , ctnd, P denotes the set

of the odd, characters in S .

Proof . Suppose first that k : I or: 2. Since there exists only one

character both (mod I) and (mod 2), namely the principal eharacter, u'hich
is even, it follows that the sum in (2.9) is empty. Consequentlv the value
of the sum is zero, and in this case our lemma is true.

If k > 2 we get,, b1- (2.2).

I x,e 1) -07e R$)

ond k> 2

tffLdk>2Z x(")
7. e Q(k)
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We norv find that the number of the even characters is equal to the
number of the odd characters. Since, on the other hand, the number of all
the characters (mod k) is E@), we can conclude that

,Är,r@): {_ l;,,T,,r,:"n: _i [,] il
Suppose now that

?t, + --i 1 (mod k)

. If we subtract

which proves (2.9).

Consider now the equation (2.10). We find that y(n) (Z e $ is differ-
ent from zero if and only if f (fl1m". We denote by §" the set of all these
characters in § . According to lemma 2 there exists for every character in
§, a charact'er (nod m") equivalent to it. Since ntnltn , there exists, on
the other hand, for every character (mod rz,) a unique character (mod ziz)

equivalent to it, and it follows from this and lemma 3 that there exists for
everv character y.^ (mod m") a unique character 7 in §, such that

XNX"'
We can thus conclude that there exists one-to-one map of §" onto the set
of the characters (mod rm,,). From the definition of nt, we get

(n, mn):(n,f(il): I (7€§,,) .

and hence

(2"11) y(n) : 7"(n) .

The sum Zreex,(n) may norr-, b1'(2.11). be rrritten in the form

(2.r2) z, x(") :rr}nr!(") :,u}*,rr(n) .

(It should be noted Lhaf Q.l2) holds also in the case ffin : l. In this
case the sets PO §" and Q(m") are emptlr, and all the sums in (2.12)
have the value zero.)

2

l7

fn this case \,\re can r,vrite

I x(n) - I x(n)+ I x(n) -0,
7 e R(k) x e r(\ xe Q(k\

I x,e n)__ I x(n) - Z x(n): o ,

I e A(Ä) 7 e r@) r,e Q(k)

14rh6rps f (U denotes the set of the e\rer] characters in R(k)
both sides of the above equations from each other, \{re get

I x(n) -o'
7 e Q(t;)
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§ 3. Expression for hr(m)lG(ml

13. Our intention here is to treat the factor hr(m) in such a way that
in later work we are able to estimate it with the help of series. We need the
following lemmas:

Lemma 8. The factor hr(m) can be erpressed, in the form

hr(m) : 2o (2nt'11-+(*)" TT i X@)n,
y€P n:l

where a : - I or 0 i,f m ,i,s euen or odd, respecti,uely (cf. [8], p. 376).
Lemma 9. If d d,enotes the d,i,sui,mi,nant of the field, lc(ez"it^) then

w,t:n f(x)
z€§

(cf. l7l, p. a03).

V[e consider the Drnrcur,nr Z-series

L(s, il: i,x@)n-' ,

where I : o'f if. For these series we have
Lemma 10. Let y be an arbitrary odd, character. If ,f : fQ) i,s the

cond,uctor of y then

f
lL(r, il | : vf-ttzl Z x(n)nt .

where -y ilenotes the,inuerse of the chararr", f, pr.[7], pp. 400-401).
Lemma 71. If y* ,i,s an odd, character primiti,ae (mod f) then,

lirl*1nlr1: *fi n-t 1Lg , x\1,.

Proof . ff we denote nrl : kf then

m h-r f h-t .f .f(8.1) Z x*(")": I I x*(n)n+ I : i*(")jf : k Z V*(n)n .

Here u.e nl'r" rr.u" r.."r* t, -r;;;;l*" *", 
n:r

f
I Z i*(n)n i : Tatz n-t 1 L(l, x,*) I .

This together with t3r:l ,r"fd. our lemma.
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14. Lemma 6 presented in the preceding paragraph enables us to prove

Lemma 12. If p is clefi,neil, by (L.3) then

TJrl : eldltnl .

x€P

Proof. We u'rite

nf :fr tto(*): nt 7'u(*\ff'76b(kt'

where, in flr, k runs through the divisors of rna divisible by the square

of an odd prime or which are : 0 (mod 8) or : 2 (mod 4), and, in If2, k

runs through all the rest of divisors of ne . It follorrs now from lemma 6

that

T]
\\,here

(3.2)

81, lemma I \,\re have

Tlf : nzfl tr"Q,)tz : ld,! I e, .

xEP k1*

Suppose first o(za) : I . In this case nL: ?" , where p is an odd

prime (u Z t) , or rn : 2" (u, > 2) , and we conclude from (3.2) that

Q4:p or 94:4 respectively.
We may now assume that a(m) > L . Let p be a prime such that

p l ln . If we distinguish from 92 the power of p , we get for odd p the
exponent

(B.B) åtr - g"(-)-t; + ("(?-') + I) :ått - 1)-(-)-t - o.

If, on the other hand, p : 2, we get for it the exponent in (3.3) multiplied
bv 2. We thus have

Q2:1(co(m)>l).
This completes the proof.

15. It norv follows from the above lemmas that

(3.4) hr(m,)lG: I Tl L(L , x)l ,
xeP

where G is defined by (t.t). From lemmas lt and 12 u'e namelv get

r9

94 : Tl, lx-?r1,(*1
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m

iTT f x(n)n I - (mln)*@)n TT ffl I L(L , ill)
Xe P n:L Xe P

Hence, by lemma 8,

x€P

which leads to (3.4).

§ 4. Estimation for ftr(m)

16. In order to find an asymptotic estimation for the factor år(»i) u.e
consider the expression

lTTr(r, x)1.
xeP

Throughout this and the next paragraph.we use c and c(e) to denote
respectively an absolute positive constant and a positive constant depending
only on parameter , (> 0) not, necessarily the same in their various oceur-
rences. fn addition, in this paragraph, the constant implied in O i-q alwar.s
an absolute one. We need the following lemmas:

Lemma 73. Let X(* Xi be a character (mod m), wh,i,ch has tlte cott-
il,uctor f . Then

(4.r) L(r, x*): L(r , ilT 0 - x*@):il-, ,
pl^

where X* ,is the correspond,i,ng pr,i,mitiae character (mod /) and p norc
through the prime factors of m, (cf . [4], p. I27).

Lemma 74. If r23 then

Z p-': o(loglog r)

(cf. [a], p. 20).

Lemma15. Let (m,l):I and,0{l<m,. If n(r,m,l) isttte
number of pri,mes : I (mod rn) not exceed,i,ng r then

n(r , rn , l) : o(q(m)-L rllog(ulm)) (* > m)

(cf. [a], p. 44).

fn the further procedure we require the conception of the so-calle«l
exceptional character y' . Lel s: o * it. lf
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then

L(s, fl10
for every 7 (mod m) willn one possible exception' If such an exceptional
character exists, it is a real one and we denote it by 7' (cf. [14], p. 130).

We can now formulate the following lemmas:

Lemma 16. Let zr, ( exp(log! r) and X* Lo, I Then

I r(r) A(n): O(rexp(- c logi z) ),
n<u

uhere

A ltep if n:,pi (i>1) ,
(") :io 

otherwi,se

(cf. [ra], pp. 133-136).
Lemma 77. Let

u("):Z Z x(")A(n),
xEQ' n5ix

uthere Q' iienotes the set Q(m) erclud'ed, y' . If
z 2 exp(logs na)

then U(r): O(rllogr) .

Prool. Since

logm{logLl'r,
it follorvs, by lemma 16, that

Lt(r) : A@@) r exp(- clogi x)): O(r exp(log m - c logi r)) : O(rllogr) .

Lemma 78. The exceptional churacter 7' satisfies the inequality

il(r, X')l> c(e)m--

(cf. [s]. p.275, and [6], p. 163).

The proof of this lemma is also included in Pnacnln's consideratior.s

(cf. [14], p. 1a5-1a6).

17. The number of prime factors of 'm denoted b.r o(m) plays an

important role in our estimations. For it we present the follov-ing three
lemmas:

Lemma 79, a(m): O(log mlloglogm)
(cf. [7], p. 108).

2T



vn - a (mod pii) ,

where j assumes the values 1, 2, . ,1. Since

ni 
=[" ^r.f^pj 

+ 2 
'

lrr' if p1 - 2 ,

we get that the number of solutions of (4.2) equal to
n,

ll.,Lij:L
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Lemma 20. If n 'i,s a ncltural, number and, a is an integer such that
(a , m) : I then tke number of solutions of

(4.2) nn-a(modm)

is at most na\m)+r .

This follows immediately if we denote

m,: pilpiz. . .pi, ,

where the numbers pi are distinct primes and the integers u1 Z I .

Suppose namely that ni denotes the number of solutions of the con-
gruence

is at most na(m)+r .

The following lemma has an important meaning for the estimation of
hr(m) . Therefore we give for it a detailed proof, which in some degree

differs from the proof of Taruzeru. [17].
Lemma 27. If

(4.3) p"-L t(mod za)

then

(4.4) Ä; (np")-':o(r»(m)lm).

Proof . We divide the series in the left-hand side of (4.4) into two parts
§, and §, , where, in §, and in §r, p runs through all the values, which
satisfy (4.3), and which are smaller and greater fhan m respectively. In
order to estimate §. we write

(4.5) §r: i ,r' Z?-^ .

":' ,,= fiä.u -)

Let us denote

M(*) : 2(n - t)zo(-11, f t, -01r(z) - 2n2-(^\+t,
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whence it follows that
N(n) - M(") > 2n'-(*) ,

since z > 2 . Il follows from lemma 20 that we can write (for a fixed z)

(4.6) p":aim t t (f : M(n), M(n) + 1,. .., M(n)+ P"-I),
w,here a; denotes a natural number and p" is the number of incongruent

solutions p of Lhe congruen:cs (4.3) . Further we define

(4.7) aj : Ai \II(") + 0" 
= 

i < Å'(z)) ,

where zl is the product of all the primes not, exceeding m. we thus have

n(,) l'(,)
(4.8) Z p-" < I @;m - 1)-' < 2m-L \. .a;r .

p <m j:fr"| i:lrt")
pn= 1l(mod m)

Denote
N(")

V,": I ai-t , V(r) : 1V,, .

j:M("\ 2 _<n4x

By using Annr,'s method of partial summation we now get

(4.e) Z V"ln: V(x)llx) I ln-L(n I t)'r V{n) ,
25"1x 2<_n1x'l

rvhere [r] denotesthelargestinteger f,r. Since M(n* 1) : N(z) * 1,
we get

r(")v("):Ir,-'.
j:3

Here the integers \ are positive and the same numbel occur§ at most

two times. we replace distinct numbers o7 in order of ascending magnitude

b1- the numbers !,2,3,. . . . Hence

^'(")V(") < 2 Z J-t: O(log N(z)) : O(a(m) logn) ,

It now follov's from (4.9) that

X V*fn : O(r»(m,)x-t log r) f O(r»(nr.) _Z ?-(" + 1)-'logn) .

Z{n1;x 2!n3x-l

If z tends to infinity, this Yields

,Zo",n: o(at(m)).

This together with (4.5) and (4.8) Ieads to the result

Sr: O(a(m)lm).



18. According to (4.1) we can d"ecide that

(4.r0) Tl L$ ,x,) - TJ L$ ,x,)n TJ tt x@)lp)-' .

xeP xeQ(*) xeP pl*

24 ,\. l. 38 7

\4re estimate the series §2 as follows:

p>n7, n.22 p>m

This, combined u,ith the above estimation of 
^§1, 

proves olrr lemma.

The product in the right-hand side of (4.10) can be treated in trvo parts.
We estimate the product

Tl L$, x)
xeQ@)

by using Tatuzawl's method II7].
We first write (p71, p. 109; cf. [I2]. p.  a9)

Xe Q' n22
(4.11) n

X,eQ'

From the exponent of the equation (4.II) we distinguish a finite sum being

extended over all integers z such that,

2!n<W:[exp(logszz)].

We denote Y : 3m and divide this sum into five parts as follorv-.:

Ir: Zp-' (L x(il), .Iz: Z p-'(L x@)) ?

plV V<P<W'

s I p-L x,'(p) ,fn: Z I (nv")*t (f, x@")) ,Ls- I
p3W pn<w'n)2

I':-Z llnr")-'t'@"),
Pn 51w "12

where in Zr. tr runs through all the characters of Q@). In addition u'e

denote

iI,i=tv(*) Zp-1p<V

mj-l<l/ .i a4

It :,å 
,\,x(") 

A (n) (tt log ri)-l '

Now our object is to estimate { by using the above lemmas. It follows,
by lemma 7, t}l.at

Ann. Acad. Sci. l-ennica:
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1)-r) + 0(1)

From lemma 15 we get, by using Annl's partial summation,

iI, l< *vt*lå
p=*l(modm)

== ,{ ,e log (€l,n))-'ru) + o(1) - o(logl osm)

Bv lernm.a L4, we get

It is easv to verify that

fu : o(t) .

From lemma 17 we finally get, by AnEl's partial summation,

I.: I t[(n) (n-rlrosn - (z f t)-|llog(z f t))

+(t.r(rtrr+ U-.trti»*tt(I,I/+ 1) log(I4'f t))- U( W+r)t((tV+r) log(}I/f r))

: ,( f "'rog-z 
6 rr)* o(r) : o(I) .

V

Cornbining the above estimations we may, bv (4.11). rvrite

e*p(- c(loglog m { c»(m))) < lm Ll , x)) < exp(c(loglog rn f o(m))) .

t"e Q'

It is knou,n that

and from lemma 2l

iI*

I, : O(logl og m) ,

it follows that

pn S W" n) 2

pn =..- I (mod nr.)

L(L, X) - O(logm)

This alld lemma 18 vields

In addition \\re have, by' lemma 19,

(1. 12)

Collecting these results we obtain

L(r, X) I < exp(c(loglog nL

ze Q@\

25
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l)

e denote

we write
oo

(4.L4) If - exp( Z Z I x,(p")n-t p-") .

Xe P Pi* n:l

It follows from lemma 7 that

,A,r@*)l _ 
{y::l,JJ,,=,* 

1 (mod mo) and mp}

where mp denotes the greatest divisor of ?n prime to p . Let
the least positive exponent such that

pi: * I (mod *r)

19. fn order to estimate the product (.f. (4.10))

7e P pi*

Now if
(4.15) p' == I I (mod zar)

then { lu and, on the other hand, if e )y then (4.I5) holds. Since we can
write

&

Z @-r), : (p' - t)-, < B(p' + t)-1 < B tno-l ,
j:1

we have

-I Z Z x@")n-'p-" : o(le(mo)lmr): o(a(m)) .

7€P Pln o:l Pl^

Hence

e--(^) <lnl{e"-(^)
This, together rvith (a.13) and lemma 19 (cf. (4.12)), yields

(4.16) c(e)m-' < lTT Ll , il l< exp(c(loglogm*.(m))).
x€P

X'rom (3.4) and (4.16), it now follows that theorem I is true. As u'e see, the
upper bound in (a.I6) depends essentially on at(m), because there exists
an infinity of the numbers rae such that

o(m) ) clog mlloglog 1n .

fn order to get a sharper upper bound we find, on the other hand,
that we must mainly focus our attention on the series appearing in lemma
2I and in (a.1a).
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§ 5. Proot of theorem 2

20. From theorem I and lemma 19, it follows that

c(e)m-' < hr(m)lG < c(e)m" .

This can be also represented in the fonn

(5.1) log(hr(m)lG)llogm: e(m),

where e(m)--+O, when zra tends to infinity.

Let us denote

m: pirpiz. . .pit ,

rvhere pt , gz, . . . , Ft are distinct primes. We define

(5.2) E(m) : i ,, - (pj - L)-') ros pi .

j:1

Since 4lm , whenever nl is even, we get

(pj-r)-'<*ui.
This yields the inequality

(5.3) E(m) > llogm .

From the prime divisors of m we choose pi arbiltatily and denote

p : pi arrd u: uj . We can thus write the discriminant' d, in the form
(cf. [6], p. 508)

(5.4) logldl : e(m)E(m):eep((u-(p- 1)-1)logp+ E(k)),

where k:mlp", g: q(fr) and ep:V(p"). Let q),p be aprimesuch
that q ! k . We denote by dr" the discriminant of the c5rclotomic field
k(exp(2ni,lmr)) (*t : q"k). We now get, by (5'2) and (5.a),

(5.5) logld,rld,l:E(vr(u-(q- 1)-1) log 4-9p@-(p- I)-1) loglo)

* E@c - q) E(k) ) E(es - e)E(m) .

It now follows from the equation (t.l) and the inequalitl'(5.5) that

tog(GrlG) > log(srlp) + log(sile') -äv@r- qr)tos2n

* q@, - v)E(*)14 * urrg@lp) ,

rvhere Gr: G(mr), Ql : g(mr) and. g'r: p'(mr). Weget' by (5.3),

(5.6.) (Ll4-c)E(m))ltogzn (0<c<Ll4),
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wher. 'nx is great enough. It is easy to verify that

log(er/s) 1 log(pils') > 0.

Hence

(5.7) log(GrlG) 7 c E p'-' E(m) -t ulog(qld .

By (S.t) and (5.7), we obtain

log(hr(mr)lhr(m)) > c E p"-' D(m) -l ulog(qlp) * e(mr)log m, - e(m)log m .

Leh m now be so great that I e(rnt) 1 and I e(m) I are less than c/.1 . l'ur-
thermore, rve have, b;r (5.3),

log(hr(mr)lhr(m)) > * " 
(E p"-' - 1) log m 2 0 .

This implies the result

hr(q"k)lhr(p"k) > L ,

when q > p , (pq, k):1 , and m: p"k is great enough.

21. We denote lry d, the discriminant of the cyclotomic field k(e2"itt 1 .

where p (> 2) is a prime factor of ru . Then

logld,rld,l : @'o("+ I - (1o - r)-r) - qp(u - (p - t)-r)) glogp

* v@o - e)E(k) ,

where q'o: q(p",') . This leads to the inequality

(5.8) logld,rld,t > q@', - v)E(m) .

It now follows from (1.1) and (5.8) that

log(GrlG) > log(erls) + log(pils') - 1z 
v@', -- q)tog 2n

+ v@', - vr)E(m)/4 | log P ,

where Gz : G(pm) , qz : Q(pm) and pL : g'(pm) . When m is great
enough then (5.6) holds and

(5.e) tog(GrlG) > cv@'p - E)E(m) * Iog p .

We can decide, by (5.1) and (5.9), that

log(h.(pm)lhr(m))> cqp"-t E(m) * logp + e(pm)logprn - e(m)logrn.

We choose m so great that I e(pm)) and |e(m,) |are less than cl4. If in
addition we apply (5.3), we thus get

log(hr(pm)lhr(m)) > i "(qp"-' - r) log m 2 0 .

Ann. Acad. Sci. Fennicre
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Hence

hr(pm)lhr(m) > I .

22. We suppose that q is an odd prime such that 4l m . Let us

d,enote by d, the discriminant of the cyclotomic field k(e2';i't"'1 - trVe may

now write, by (5.a),

tosld,rlitl: @ - L) q(m) ((q - z) (q - t)*'loss + o(m)) - e@)il(m)

> (q - 2) q(m)E(m) .

l'urthermore, we get

tog(GrlG) > los(a"/s) + Iog(eile') - ltq - 2) q(m)togt;r

-f @ - 2) E@)E(m)11 | tog q,

where G": G(qm), Qs: g(Qm) and Qz: Q'(7m). It is easr- to verify
that

log(si/p') : o, log(qe ld > - logmrta '

Tf m is great, enough then

log(GrlG) > c(q - 2) c(m) E(*) + log(qlmtta) .

X'urther trye have

log(hr(qm)lhr(m)) > c(q - 2) q@) E(m) ! log(qlmrta) * u(qm) log(qm)

- e(m)log m .

If m is great, then lr@m) I and I e(m)|<cf 1 , and

log(hr(qnx)lkr(m)) > ä c ((q - 2) q(ru) - I - (2c)-r1 log rii .

Since 9(zz) -! @ , wlner, m tends to infinity, then

(q - z) v(m) > I +- (2c)-1

for great values of m . Hence

hr(qm)lhr(m) > 1

In the same way we can show that if m is odd then

(5.r0) hr$m) t hr(m) ,

wlaen m is great enough. Namely, if lr'e denote by d,n the discriminant
of the cyclotomic field klez';la-) , we have

logl d,nlil, | > q(nx)E(m) f a log 2 .
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This yields, by (5.6),

log(GrlG) > ca(m)E(m) a log(4lmtt\ ,

where Ga: G(4m) and m is great enough. For great values of m we
thus get, by (5.t) and (5.3),

log(hr@m)lhr(m))> ic(q(*) - 1- (zc)-r1log,m.

This implies (5.10).
Our theorem is thus established.



Chapter II

DIRICHLET'S L.FUNCTIONS

§ 6. Theorem 3 and preliminary lemmas

23. In this chapter lte consider the functions

L(s,il:f,x@)n-",

where y(n) is a character (mod fr). Our intention is to prove the following
Theorem 3. Let f(> 3) be a natural number, e an arb'i,trary posit'i,ue

number, ö a positi,ue number < $ and

@(k) ,f 2+k,
at(k) + I ,f zlk.

If the e.rtenileil, Riemann.hypothesis is true, there erists for euery giuen pair s

and k . u,there

(6.1)

a non-'ltrincipal character y(n) (mod k) such that

il(s,il]<1fe.
If L' : p" , where p is au odd prime, rve get for s the condit'ion

s)(I+ö)12,
and 'w,e can thus decide that the above theorem implies the result of AN-
xpNv and Cnoli'r,e (cf. e.g. [2], p. a87).

24. In order to prove theorem 3 we apply some lemmas expressed in
the preceding chapter. In addition we need the follorving lemmas:

Lemma 22. If the ertettded. Rieruann hypothesi,s is tru.e and (lc , l) : I then

i
n(r, k, l):,p(k)-' I ae pogt + O(*i logr) ,

,
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where the constant implied, in the O sgmbol is ind,epend,ent on lc (cf. e.g.
[14], p. 236).

It should be noted that the restriction x >_ k made for instance in
Pnacran's book is plainly unnecessary, for

n(r, lc,t) : O(t), q(k)-L i oU,rrr € : o(xltos x),
.!

when r < fr.
Lemma 23. If s ilenotes a compler number then

L(s , il: exp( Z x@")n-'p-"") (o ) l) ,

where o ,i,s the real, part of , , ;';r*, through the primes and, n through all
the natural numbers (cf. e.g. [2], p. a59).

§ 7. Proof of theorem 3

25. Let us define

bnp - j-
1 tf p" - I (modfr) ,

0 elsewhere

(r > 3 according to the hypothesis). Combining this definition lr.ith lemma
7 we get

23,

rc
(7.1) TJz(, ,X): exp($E(k) (Zbrp-" + ZZb"rn-tp-ns)) (o -, t) ,

t eQQ") p -i n=2

where bo: bro .

Denote

B(r): Zb,.
PS"

From lemma 22 we now obtain

(7.2) B(r) : n(r , k, l) - n(r. , k, - 1) : O(# log r) .

Z x@") : * v(k)b^o .

xe Q@)

If we first assume that s is a complex number, we thus have, by lemma
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Suppose o > I. By using Annl's partial summation we obtain

(7.3) Z bo p-" : I B(n) (n-" - (n * t)-1 + B(*)lrl-"
;:-(PSx Y<n§x-l

- B(y) ([y] * t)-" .

Since
n+1

(7.4) (n :r r)-" : , I E-,-,d,6 ! onn-t 
^

!
it follou,s from (7.2), (7.3), and (7.a) that

(7.5) Z brp*":O(o I n-'-älogn1. s-'+! logrf y-'*llogy).
J<pS, !<n=*-I

Since o>t-, theseries
m

Zrn-"-i logn

converges, and from (7.5) we get

7 bo p-" : C(u') (a > yo@')) ,
y<Ps*

where e' is &n arbitrary positive number. We can thus conclude that the
Drnrcrrr,nr series

4 
uo o-"

converges. Therefore it presents an analytic function of I, whenever
o > ! (cf. [r2], p. 157). Further the series

(2.6) }f,u,rn-t p-n§
p n:2

is clearly an analytic function of s for o > å , in fact without any
hypothesis. Hence by the theory of analytic continuation it follows that
(7.1) proved for o > I , is also true for ,-r ) | on the assumption of the
extended RrnrrlNN hypothesis.

26. Our intention is to estimate the series in the right-hand side of
(7.f) as a function of k. Let us restrict s to be real, and in addition we
assume that s satisfies the inequalityin (6.1). Ifwe in (7.3) take A : k - Z

and if r tends to infinity, we get, (cf. (7.S.))
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(7.7)

where the
use of the

(7.8)

We ne
before in t

where

S. : I Z "-tp-"', §r : I I n-, p-"" .

,r=ir?* kt p-'='J,i;-;^,

In order to estimate §n we write
,@(7.e) &: I n-,Zp-"" .

,"1j-,,iåi,
Denote

(7.10) M("):2(n - l)'-'+ I, lf(z) : 2n''t ,

whence it follows that

)i(n) - XI(n) > 2n' ,

since n 2. 2. From lemma 20 it now follo'ws that rre can express the
numbers p^ in the form (4.6), v'here M(n) and J(n) are defined br
(7.10). If we make use of the definition (4.7), u.e obtain

N(") ff(")

2 p-"" < I @ilt - 1)-" < (k - I)-" Z o,-" .
p<h j:M("\ j:M(")

We denote

^-(")l,^: I ui-", Il(*): Z V,.j:fro) taTs*

By using Asnr,'s partial summation u'e now get

f v"fn: I v(n)n-I(n + r)-, -f v(r)ltr).
21n1x 2!n<x-l

har.e Inrrde

metliorl a,s

d. u.rite

oo

I 
bo P*r- '('-å ,n 

' 
" 

Iog rz')

7
I

a,/

constar, åUHed in O depends onlv orl ö. Here \ve

inequalities

2s 1=ä,ZslQs 1) 
=(1 

--Lö)lö

xt estimate the series (7 .6) by appl; ing the same
he proof of lemma 21. We denote the series bv ,SB an

i§ri<,S4+§r,
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Since JII (n + 1) - IV (n) + I , wo have

n-(") r (")

-l:3 J:l

N(")

Y(n) : ,(l r ot): o((, -F r),,,-,) ,

where the constant implied ,', , ,, an absolute one. Furthermore, n'e get

U V^fn: O((r f r) ( I n*'-ö l r-')) : O(r { L) ,
23n3* 2!n{x-l

where the constant implied in O depends on ö alone. From lemma 19

and from the equation (7.9) it follows that

(7.I1) Bn: O(r(k -- 1)-,) : O((k - l)-l bgh),

ryhere the symbol O implies a constant, which depends on d alone.
Finally we estimate the series §u as follows:

Bu: O(Lrp-2s) : O(Z (xr(n) - n(n - r))n-'") ,

wherc n(n) denotes, as usual, the number of primes not exceeding n .

Since z(n) : O(nllog z) , we have

(7 .r2) §s : O(s,!n n-2" flog n) | O(kL-2'llog ft) : O(k-ö llog k) ,

where the constanl in O depends only on d . Here u'e have made use of
the inequalities (7.8). Combining the results (7.I), (7.7), (7.11), and (7.12)
we get

Hence

TJ z(, , r) : exp(q(k) y' (k) ) ,

t eQft)

where ,l(k)--> 0, when /c tends to infinit;'. This proves our theorem.



ChaPter III

THE TIRST FACTOR OF THE CLASS NUMBER OF THE CYCLOTOMIC
FIELD k(exP(hilP"))

§ 8. Theorems and Preliminaries

27. In this chapter u'e restrict ourselves to the case m : p" .

Let, r denote a primitive root (mod nz.), 11 the smallest positive re-

mainder o1 7j (mod m), g : i E(-), and

(8.1) qi : (ni - rt*)lm .

When p is an odd prime, INr<rnr [9] has sho'w-n t'hat hr(p) can be expressed

as a deterrninant as follows:

Q:< Qs-t 'Qt Qo

Qq L Qs '(lz Qt

Qzn-t Qzs-t ' Zs-t Qs-z

fg Tg_L .'l'l fo

, I I .I I

If p is furbher arr odd prime and (k , p) : I , we define fu' by the
congruence kk' :1 (mod 1o) . Denote by Dp the so-called Marlr,nr's
determinant

(8.3) derQ,(jk')) (i, k: r, 2,..., L (P - 1)) ,

where l,(j) is the smallest, positive remainder of j (mod p) . Tn section 6

we mentioned that the determinant (8.3) is equal fo hr(p) multiplied by
a po\l'er of p . Therefore there exists a connection with the determinants
(8.2) and (8.3). In this chapter we shou'that this connection can be found

lvithout appl;.ing the theory of class number.
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28. Denote p:pu-r, It):Lq@), and a:(p-l)w. Iu section
6 we mentioned the factor K . Tnthe case g : 2, u23 it can be repre-
sented in the form (cf. e.g. [9], pp. 796-802)

(8.4) K : 2-*at TT r1A;1 .

Here 8 : exp(2ni,lv0r)), j takes tfti',.uto", I, 3,.. .,2w - 1. ancl

(s.5) F(r):f",*,,
j:0

where ci : * I or - I if the absolutely smallest remainder e1' 5i (mod 2")

is positive or negative respectively.
Inthe case p}- 3, u22 lhe factor K can bewrittenintheform

(cf. [20], p. 20a)

(8.6) K :2-o pau+rfr U1Oi1 .

Ilere j &ssumes all odd values t"*. tftri, V(p') , except the multiples of
p, O: exp(2nilq fur")) and

H(r) : In *r ,

where k : ind" n (mod p") and n runs through the numbers l. 2. ,

p" - l, except, the multiples of p .

Our intention is to prove the following theorems:
Theorem a.If p:2 and, u23, thefactor K canberepresented,in

the form,

wluere

The

ej:*Qi+cr+r) .

aoo aot ' ao 
, *-L

9oo 9u 'Va,*^-r

9n 9oz '90,*

r,t, - 2 , I{ i,s equa,l to the deterntinqnt

al, o ' €L , n_.L ' €p-2, rt-1 
i

I

7t,o '91,n-t '?p-z,tt.-l 
I

7t,,t .91,* .9p-2,ru ,*

co ct c2 . . ctt_L

eo el e2 . an_L

eL e2 eB . €ru

€ro-Z €*-L €ro , . €Zu-:)
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where the 'integers e;* anil, gj* are d,efineil, b11 the equations

(8.8) ",r: 
lr(.ri*1*- rat')/fi 

., 
if 2l i '

[ (r1r*;y,'* - r,,,)lp if 2 +i ,

(8.9) g,r : l, 4i*1k - lloa* i'f 2 i i '

l Q@+j)*+t" - Qu1* if z +i .

If D(m) denotes the determinant in theorern 5 then it follows from
the above results that hr(p") can be written as a product of the deter-
minants in the form

hr(p") : ! DD(pz)D(p')' '' D(p") ,

rvlrere D:D(pz):I, when g:2.
n'rom the theorems 4 and 5 v'e can conclude that the factors K and

hr(p") are integers. These results have been shown earlier b'r. means of
different methods.

As a consequence of theorems 4 and 5 we can prove
Theorem 6. The'i,nteger K satisfdes an inequal,ity

2(u-3)w!2

lf we apply theorem 6 for the case p: 2 , rve obtain, b;. rneans of
(10), for hr(2) an upper bound

(8.I1) hr?") { 2@4)u+t .

Also in the case gt > 2 it is possible to get, by means of (lCl) arrd (8.10)
an upper bound for hr(gt"), which, however, u'e do not give explicitlv.

It is easy to verify that if p" is great, the asymptotic approximation
(7) gives for hr(gt") an upper bound better than the above estimations.

§ 9. The connection with Inkeri's and. Maillet's determinants

29. In this paragraph v'e denote by p an odd prime. Further clenote

Dr(r): det(z f l(jk')) (j ,k:1,2,...,*(p - 1)) .

From the definition (8.3) of Merr,r,pr's determinant it follows that

(e.r) DP(o) : DP.
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We observethatthelast column of D, hastheelements p-2, I -4,
. . . , l. If we add the doubled first column to the last column both in Do

and in Dn@), we get,, by (9.1),

(e.2) Dr(r) : (3r * P)DolP .

If r : - * e, it follows from (9.2) that

(e.3) D;: - + Do ,

r,r''here

Do: Or(-til: deil({jk'}) (i,k:1,2,...'*(p - r))

and

(e.1) {k}:1(t')-*P.
Denote by v-i an integer, which satisfies the congruence

rrj - 1 (mod 2r).

Further denote

ili:d"t (rj-n)) (i,k:0,1,. ..,*(P - 3)) '

The absolute values of the elements in the first, column of Di are

(9.5) I{ro}1, l{r'}1, l{r'}1,'.., I {r@-ztrzyl-

\Ye get by (9.a)

(e.6) i{ri}l: lri-äPl<*P.
\\'e further have

lri-l-pl+)r*-lpi
if j + b and 0 < j,k 

=+(p - 
3). Thus it follorvsthatallthenumbers

in (g.5) are distinct. By means of (9.6) we can nou- derluce that the numbers

in (9.5) are the numbers

(9.7) 112,312,512,..., (p-2)12

disregardingtheorder. Thenumbers l{r}l (i: l, 2, ...,+(p - L)) are

also the numbers (9.7) disregarding the order. Consequently we can decide

that the numbers

{ro}, {rt}, {r2},..., {r@-t)izy

coincide with the numbers {j} (i : I, 2, . ., h @ - r)) disregarding

the order and the sign. fn the same way \4'e can show that the numbers

{ro}, {r-'}, {r-'}, . . . t {r-@-z)tzY
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coincide with thenumbers {j'} (j : I, 2, ..., * (p - t)) disregarding
the order and the sign. fn addition we find that

t_j--k.t _[ Un'] if {ri}: * {l} and {r-h} : t{n'},
v i - [- {ln'} if {r;} : f {l} and {r-o} : T {n'} .

By interchanging rows (columns) suitabl5z and b;, changing the signs of
some rows (columns) we get

(e.8) D;: t Di .

Here we have made use of the above results.

30. It follows from (9.4) bhat Di may be written in the form

ro-tp r_L-*p .r_r*1 --*p
r, *p ro *p .r_-rr-, *p

aa

rs-t-tp rs-2--_ä"p .ro *p
where S:ä fuo - 1) and r--i:l(r-i). We double every column and
interchange the jth and the (S - j f 2)nd columns, when j runs through
thenumbers 2, ..., LS if 2lg orthroughthenumbers2, ., t@ + l)
if. 2 + g . Then, by means of the equation

we get

2ro-p 2rr-p .2rr_t-p
2rr,-p 2rr-p .2rr-p

', 2rr-t-p 2rr--p. 2r'rr-r-p

The determinant in the right-hand side of (9.9) appears in [9]. If rre treat
this determinant, we get (cf. [9], p. 9) the result

(e.10)

where D denotes Ixxnnr's determinant defined by (8.2). X'rom (9.3), (9.8),
and (9.10) we finally conclude that

40

aa
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§ 10. Proof of theorem 4

31. In order to write the product in (8.a) as a determinant we replace
r in (8.5) by rl and multiply both sides of the equation thus obtained by
8-1 . Since

(10. r )

\Ye get

(I0.2) 0: cr + cz$ + cs$z + .. .- (c, - I($))0*-r.
We further multiply both sides of (10.2) by rg-1 and repeating this pro-
cedure w - | times we have, b;r means of (10.1),

o- co fW) + %0 + l- c,,-L Su'-r:

(10.3)

(10.1)

o 
- 

c,,-L (cn - F (fi))0 cn^-2 fln-L

By (10.3), 1\,'e can deduce that

ct cz

c*_r -- co * F,(B) . . cn_2

The expression (10.4) is an equation in 1(8) of degree rz, . This equation
has solutions 1(r?;; uhen j assumes the values I, 3, . . . ,2w - 1. The producb
of the solutions is equal to the constant coefficient of the equation dis-
regarding the sign. We get this constant coefficient from (I0.4) by replacing
.F(r9) by zero. We thus get

where j runs through the values 1, 3, 5, , 2ut 1

32. It is knou'n that

5* -= t + 2"-r (mod 2")

(r, 
= 

3 accordirg to the hypothesis). Suppose

(10.5) TT P1ni1 =:= +
.i
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Since b is an odd integer, \t'e il1ä;r write

gw-ti_(1 +Z"-L)b_2"-1 +b (mod Z")

From this \,Ye conclude that

This relation vields

(10.6) cj: c**j'

The determinant in (10.5) may be written, by means of (10.6), in the form

D'(2") --.:

co ct . c*_L

cL c2 . cro

3a

A*-L Cu . CZ*-Z

Weaddthe jth rowtothe (j f l)st row,when j takesthevalues u -- I ,

w-2,..., I. Wethusget

D'(2") : 2*-t D(2") ,

where D(2") denotes the determinant defined in section 28. This together
with (8.a) proYes theorem 4.

§ 11. Proof of theorem 5

33. Consider the expression (8.6). By a slight alteration of H(r) u-e get

(rl.t) H1*1 :-(\'r.*" .

Consider the product

(1r.2) l', : \ H(Oi) ,

where j assumes all odd values less than q(m) except the multiples of p .

We find that the numbers @i satisfy an equation

(11.3) rs { t: o,

where g : +E@") . Further we have, by (I1.3),

(11.4) ge+i : - @i .

42
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By (11.1) and (11.4), we can now write H(@) in the form
g-l

H(@):,1an@o,

where

(11.5) &n : rn - rs+a .

We define a function H(@ , r) as follows:

(11.6) H(@, x) : ao* @rl r)@ + azQz+ ... * ar-r@r-',

rvhence

(rr.7) H(@ ,0): H(o).

34. Since (cf. 1181, p. al7)

TJ (, - @i): (rs )- r)l?* + r) ,
j

the numbers @j satisfy an equation

(11.8) y@'r)* : - I + Lp - n2* + ... { s@*z)' .

In order to formulate the expression f/(@, r) for our purposes we ueed
the equation

(11.9) O'+i: -Oi +@'o+i -O'*+i +...+ A@-z)@+i,

which follows from (11.8).
Using (rr.9) in (11.6) v'e get

(ll.t0) 0: coo - H(@,r) + (cor{ x)@ + ... * "0,.-rO*-'
* cr,o O* I ct,r@**' + . . . * %,n_r92w-t +

lcr-z,o@lP-2)* * cp-2,r@@-2)"-r +... * cr-2,*-rou-t,

v'here

(ll.Il) ci* : aiwl* t (- l)i-'a"*u .

It is easy to verify that

ri * r*i: ilt : Pu ,

from which it follows, by (11.5), that

(ll.l2) ae+i: - aj .
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lVe can now conclude that

(tr.IB) I "u 
+ (- l)i-t cn1" : ci-r 

'u'h >

Iro*: - cu_-z,u+tt.

Here we have made use of (11.11) and (II.l2).

35. It follows from (11.4) and (r1.9) that

(11.14) (coo- H(@,*))@-': - (coo -- H(@,n)) (- 6u-r a 6zu-r

-63w-r +...+o,-r).
Ilultiplying both sides of (11.10) by @-t we get, by means of (11.13) and
( I 1.14).

0 : cor I rc * coz@ I cos@z *. . . + (co* - H(@, r))O"-r

t ctt@'I cr,r@*n'4- cr,r@'*' +... -l (cr,*+ H(@,*))@'*'t +

I co-z,t@@-z)- * cp-2,r@@-2)*+r +... a (co-2,*+ H(@, r))@-'.

We further multiply both sides of this by @-' . By (I I.13), we thus get

0 : coz* cor@ + . . . * (c0,.+r + ru)@*-'

*- h,z@* i cr,r@**' + . . . * (c,,-+r - n)O'*-' +

tcp-z,r@b-z)- * cp-2,r@ln-2\n+t + . I (cp-r,*1r- x)@''-t.

Repeating this procedure ?, - I times lve finally have

0: co,,-r I co,@ + . .. I co,,+.-r@'-r

* cr,,-r @- I ct,,@**' +... * cr,oa*-zg2u-t I

* cp-2,o-,@@*2)" * cp-2,,@@-z\*+r + . . . * cp-2,,a*-r@-' .

If we consider the system of all the equations thus obtained, we see that
the coefficient determinant

caa II cu + 1' . . cg,u-L ct,{t cL,*-L . cp-z,u_l

Cg1 -T-"r Coz Cyu,-H Ct,L CL,* + H. Cp-2,* --l- H
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vanishes. Here we have shortly denoted lt : H(@ , r) . We denote this
determinantby D'(m, r) . Consider first the positions of ä in D'(m, r)
Then we can write the following schema:

1...lu--L u) w+l **2.,,2u;-l 2w Zta+1 .,,(p-2)**1 ... u_ L 'u

a

o

a

w+l 
I

w{2
,,)+3

2u{L
a

(p-z)i**t
(p-zrra{2

a

;

1

2
.l
e)

(I1.16)

,-H
i

-H

-H
-H +H

-H

n
j

+H

+H

+H

+H
+H

*H"

+H

+H

The numbers in the schema show the order of the columns and the rorvs.

We can now observe that by adding and subtracting the rows a,ppropriately
we get D'(* , r) in a form, which proves that

(11.15) D'(* , tr) : 0

is an equation in H(@ , r) of degree a , when r has some fixed value.
We find that the expression (11.6) of H(O , r) is a solution of (11.15). \\'e
now replace in (11.6) @ by @i, where j assumes all odd values (> l)
less than g(m) except the multiples of p . In the same way as before u,e

treat this expression and it is evident that u,e get also in this case the same

equation (11.15). It is now clear that there exists an infinity ofthe values

of r such that all the expressions ä(@i , u) are distinct for each r . Since
the number of the possible values of j is u, each solution of (11.15) is
included in the expressions H(@i , r) The product of the solutions is equal
to the constant coefficient of (11.15) disregarding the sign. We get this
coefficient from (11.15) replacing H(@ , r) by zero. Hence

where j runs through all odd values less than g(m) except the multiples
of p and D(* , r) denotes the determinant
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Coo Cor * fr . . Ca, ro-l Ct ,0 . Ct ,u,-t , Cp-z ,w_-l

Cor* fr Coz ,Carr. Ct,t .CL,ro .Cp-Z,u,

Cll .t-L C(lu ' C0,1:-i*-2 CL,r_L ' ' ' Cl "r;-to--2 ' Cp-2,r-4-u,-2

36. The expression (11.16) is an equation in r of degree < a . There-
fore it must be an identity, since it has an infinity of solutions. Consequently
the value r:0 satisfies the equation, and it follows from (1L2), (11.7)

and (ll.l6) that

(11.17) T:*D(m,0).
Consider the determinant D(m, 0) . We first observe that

ciru: ainar" * (- r;;-' au+h-_ - m, * 2ri*a*-l (- ty-t (2r"*1,- m)

- m, - 2r(p+j)-+k + (- r)i-' (2r,*, - m) .

Hence

(1 1. 18)

Since ea

(1 1.r 8),

/0
l

l

I b)r' 
?'1

I z(ri* i.r, - ]",+r) if 2 i i ?

cir' - [_- 2V(o+i)*_rk-rork) if 2+j.

cJr column is divisible b;r 2, D(*,0) can be writterl, bt. means of
in t,he form

fa .Trr-t 
-Tp*-r 

f1p-1,t)r, Tu .T(ro-r)*-t-- l"ptu-L

l'u-iy .?"u, 
-?'2tll 

T(p+I)*+I-'fr,-r11 .flzp_t1r, 
-'l"y,u'

/'t-l -'T2r_t,..rpu-2- r1zp-t1*-zf2pn*t- fz,-t. .r1tp-z1n-z- r1zp-t1n*2,

tr'rom the jth (j =='u t'u - I, . . ., 2) row we subtractthe precedingrol'
multiplied by ,. A general element of the determinant ma1' be treatecl
as follou-s:

rj+, - rr"+t - r(ri - r*) : - m(qi - qk),

where we have made use of (8.1). From this it follorvs that D(m', 0) can

be represented in the form

"To
I

ra , Tw-L T p*-L . '1" 1zp-L)*.-1 l'y,tc_l
l

i

8,*--t 8rr, \prr, .Ipp-t1.., Qp* i .

8o

* Z'*tt?'*t i h

'i Qr-z - Qzr,-z ' ' 'Qn*-B - gpp-r1*-t 'Qpp-z)--3 - Qpp-r1*-t i
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37. In (S.S) we defined the numbers e;r . fn order to show that these

numbers are integers, we first write

(11.19) fiwlk *- fo+t, - - riu+h (r@-r-i)'" - r) (mod rz)

and

(11.20) r@+j\*+r, - r,+k == ro*k (ro+t)* - 1) (mod rer,) .

It follows from (8.8) that j in (11.19) is even and in (11.20) odd. Con-

sequently both expressions p - l - i and j f I in the exponents of
(1I.19) and (11.20) respectively are divisible by 2. In addition itisknown
that

y2* : y,rk') : 1 (mod p) ,

from which it imrnediately follows, by (8.8), (11.I9), and (11.20), that the
numkrers eirt ata integers. On the other hand it is easy to verify, by (8.t)
and (8.9), that also the numbers fir a,re integers. Hence

rvhere D(m) is the deterrninant in theorem 5. This result together with
(8.6), (11.2), and (11.17) proves our theorem.

§ 12. Some new expressions for K and proof of theorem 6

38. Consider the determinant D(m , 0) defined in section 35. We
replace the numbers c;* b/ the expressions (11.11) and write the deter-
rninant of order ?, a,s a determinant of order g . We thus get

(rr.2r)

ao Q't

aL aZ

Cln-t

Cf,,,,

cl,n

0,n_ |

Q,,- 0t;-1L...frg-t

&r-rl A'rj-2' 'Oo

&t'-*L

I

c)

. Aulto-2 Cl,r,--, rt.-I

.0 I

.0 0

. Qzr-t &2,

.1 0

.f) I

(t

- 
'l??, "

.t 0 .0

it follo\nrs by (11.5) that

Ai == 2'".i n?'

Sirrc,e ri + ?'s*j
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Applyirg this in the above determinant we have

l, To -Im rL-$m...r.s_r-Im
i

'lr, -!r* rz- !m...rs -tn,
i'o"'

i

lI
:.0
io

l) ... 0

I ... 0

0 ... I

(L2.2)

Consider first the elernents in the first ro\rr. Denote

{n} - 1(n) - $m ,

where ).(n) denotes the smallest positive remainder of n (mod rn ) (see

section 29, the case n1,: p) . Hence

( I 2.3) l{ri} i - lri - lm I < *rn I .

Since ry is not a multiple of p , | {ri} | cannot be expressed in the form
p(k - $) , where k is a natural number. Since

lri - *ml + lrn - tml ,

rvhen y *k and O<j,k<9, wecandeducethatthenumbers i{r;}]
take exactly g distinct values, when j runs through the numbers 0, l,
2,..., g - l. By (12.3), it follows thatthe numbers I {t} I can take
only the values

(r2.4) ll2 ,312 ) " . .) (m - 2)12 ,

except the numbers of the form p(h - å) . The number of the numbers
(f2.4) is clearly *(* - l) whereas the number of the numbers e(tt - i)
occurring in (12.a) i* å(," - l) . Their difference is g , and it follows that
if we strike out the numbers p(k - $1 , the remaining numbers in (12.a)
coincide with the numbers

i{ro} i, l{rr} l, ..., l{rs-,} I

disregarding the order. \Ve can thus conclude that the first rou' of the
determinanf G2.l) may be written as follows:

| -** 2-L*...p - l -t* p * L -$m...*(* - t1 - *nt

if the order and the sign are not taken into consideration. I'urthermore,
'we get
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1rt*r,l :

u,-here 1{n,{y (y-t(m- 1)) . By means of
results D(*, 0) can be written in the form

{n} ,

{n} ,

this and the above

{ 1}

{rr}

{rr}

t»u
I2

a* ,l a* 12 ' ' ' Uu), p-L U* ,p+1 ' ' ' aw,T

rvhere , : !1m - t) arrd ain is either + 1, - I or 0. We subtract from

the jth row (i :2 ,3 , ..., D) the first row multipliedby r;-r . Thena
general element of the yth row may be treated as follows:

(12.5) {nry-} - rj-l{") : m li , n) ,

where

U , n) - t?i_, I) (n r1-r l(nrt-r))lm

{r,-r} {2r"-r}...
ar,, al,z . .,
UqrUtz...

Lsl 2,

{(p 1)r,-,} {(p + l)r,-,} . . .{yro-r)

'ul ,p_,L 'r,oo1 ' ' uL,y

'Uzrp-l UZrp+I . . . Azry

(12.6)

We want to note that the numbers U , "l need not be integers, but if we

double them, we get integers. By means of (12.5) and (12.6) D(m , O)

may be represented in the form

lu, 1l lu, 27

aL,,L al,z

ArrA,tq
-)L -r-

...Lu,p 1] La,p +

. , . ul rp-L al ,pal

. . ' uz rp-l a2 rp+L

1] . . .lru, y)

. . . Ulry

. . . Ug
-rI

an rL 4u,,,2 . U*rp_L a* 
, p*l . 'ru* ry
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f uin - ui,n-.t if n * kp * | (u;,0 : 0) ,
Ol. : <-rn - ['t)io- 't)i,n--z if n: kP + t,

where j , n , and lc are natural numbers. By subtracting from the jth
column (j:5, ll - 1,...,2) thepreceding columnwecannowexpres§
D(m ,0) in the form

Denote

(j ; n):

and

(L2.7) * 2"*n;-L la, ll (u; 2) {u; p 1) (a; p -i- 1) . (u; y)

lfr,L %L,z 'lLt,p-L %r,p-r-I 'ltt.r

'lly ,l 1[2 ,2 , 't[2 .7t-7. Lt= , p -, , , 112 , ;, ,

%n ,1 Urr, ,2 ' tCru ,p-L Utc . p-=-1 ' Xlrr' .,

t(* 1) is of the form hp + I , elservhere y * kp ,- I
the determinant in (L2.7). By (1 l.2l), we thus get

39. Consider the elements of D" (m) . All of them are integers except
the first o elements in the first, column. If, however, v'e multiply the first
column Lty 2 , we get a determinant, each element of which is an integer
without any exception. It follov's immediatelS. from the definition of tlie
numbers \, tlnal

(12.9) ,lliny!2.

Wenorvestimatetheelements (j;n).If j> 2 and n*kp + I ('ru>2) ,

we obtain

Denote by I)" ('*)

( 12.8)



rfj
iU;

From this \r'e conclude that

(12.10) ',(j; n) i<

(Lz. It) iÄ,;i< {s 
if

ri 
lz@

Trmo Lnrrsrö, On the first factor of the class

n)l-ilj,nl-U,n-2)

kp

kp

a)

5I

(i ;n) I : I U,n) - U,n - Il I : m-t | )'(nr,-r) - 1((n - r)rr'-r) - rj_.t

:m*'(l)'(nrj-)- 1((n - 1)r;-r) l* lr;-rD<2-rn-t.

t_i-_

llif n+
t2 ir n-

In order to estimate K by mea,ns of a determinant it is convenient to
start from the expression D"(m), since the absolute values of the elements
in D"(m) are -{ 2 except possibly the first c elements in the first column
(see (I2.9) and (r2.10)).

40. By applying the above results we now prove theorem 6. Consider
first the case nt :2 (u > 3) . We use the so-called Haoavu.nD's lemma
(cf. e.g. [f0], p. 259) in (8.7). Since each element of the determinant D(2")
is absolutely S l, the sum of the squares of the elements in everv row is
{ zo . We thus obtain the result

K 112"-3ytz ,

which proyes the first part of our theorem.
Consider now the case rL: pu , where p is an odd prime and u Z 2 .

We divide the first column of D"(m) b:* i* and the (k(p - l) f l)st
column (k:1,2, ..., t@ - t)) br" 2. Since the absolutevalues of the
elementsinthe jth rou,(j:1,2,...,u) a,-e, by(12.10), ( I, thesum
ofthe squares is lS.Let zi (j:ulL,ul2,...,g) denotethe
number of the elements in the jth rorv, the absolute values of u'hich are
: 2. The number of non-zero elements in the jth rorv is thus { 27t - zi

and the number of the elements absolutely equal to one in the jth row is
< 2(p - zi) . Let 1/; denote the sum of the squares of the elements in
the jth row. We then obtain the result

ff we apply HaoaMARD's lemma, we get

(L2.L2) i D"(*,) I < vlx 2tu-t)tz g"t' (1p)*-'
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Here we have made use of (12.11). It follows now from (12.8) and (12.12')

that

l{ 12(«-t)lz*u ,ol2 p'*'l' .

This implies the second part of our theorem.
Using (8.10) in order to estimate an upper bound for hr(2") we obtain

hrS2"
rvhere 

":f i zi-, : (u - 4)2,-t + L
j:r

and this leads to (8.1I).
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