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On systems of equations in finite fields

1. Introduction. Let K be a finite field of ¢ elements where ¢ = p", p
is a prime and 7 a positive integer. Let f;(£;) be a polynomial of degree
¢; with coefficients in K such that f,(0) =0 and fi(—a) = — fi(~),
for every element « of K. Let, furthermore, K ; be a subset of K such
that (i) 0 € K;, (i) « € K; implies —a € K;, and (iii) g; » the number
of elements in K;, is > 1. We study the non-trivial solvability of the

system

(1) Zﬁj(gj):o,gjejfj (t=1,...,8,
j=1

t
using exponential sums Z'e(kfj(fj)) where Kf;(&;) = Z xifif(&) s e(x) =
B i=1
TPty (x) is the absolute trace of &, and the summation DU s
5
over all the elements of K;. Our main result is

Theorem 1. Let r,,...,r, be real numbers such that

(2) Z'e(kf](g])) 2 - Tj s
5
Jor every K. Then the system (1) has a non-trivial solution (& ,...,&,) if
(3) n(9j+7j)>9tﬂ(rj+l)-
j=1 j=1

As consequences of this theorem we find some results which extend,
improve, or sharpen previous results of CHEVALLEY [2], LEwWis [10], GRAY
[9], Crowra ([3]—[8]), SHIMURA [8], and TIETAVAINEN ([12], [13]). As a
simple example of them we mention here the following corollary of theorem 5.

Let d, the g.cd. of ¢ and ¢ — 1, be odd. Then the system

s

Dy =0 (i=1,...,1

Jj=

!

has a non-trivial solution (& ,...,&) in K if

s = 21 4+ max (logy(d — 1), 1)).
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2. Preliminary remarks. Let V be the space of t-tuples over K .
Let a=(x,...,0) and b= (f,...,B) be elements of V and «
an element of K . Define, as usual,

at+tb=(+p, .., x+pB),
X = (X0qp 5 v v, XX,)
and
ab=of + -+ f.

The 0-element (0,...,0) of V will be denoted by 0.
Define the trace of x as

—1

tr(x) = o 4 af £ af

5o that tr(x) may be considered as an integer (mod p). Define, furthermore,

e(x) = 2D
Then (see [13], section 3)
4) e(k(a + b)) = e(ka) e(kb) ,
for every element k of ¥V, and, moreover,
¢'ifa=0,
15) 7 k) = {o ifa £ 0.
Here and hereafter, in the sums of type ; and ' the summation is over
K70

all the elements of ¥V and over all the non-zero elements of V', respectively.
Furthermore, in the sums of type Z Z and Z’ the variable runs through

§j 5y S
all the elements of K, through all the elements of K;, and through all
the non-zero elements of K;, respectively.

Denote
(Ej) - (flj(é'j) I 7ftj(§j))

Then the system (1) may be written in the form

:Zf(s)—o £eK;.

J
It is easy to show that the exponential sum Z e(kf;(&)) is real, for

every element k of V. Indeed, we have, by the deflmtlons of K; and

fj(Ej) ’

Sve(kt (&) = De(kt(—£) = Ye(—ki(&) = Se(kE(£))
5 5 5 5
where Z denotes the complex conjugate of z.
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3. Proof of theorem 1. Let
=JE, . L E)={j€{l,...,s}&=0},
Lif & # 0, for every j,

(6) A, b = TT (r; + 1) otherwise,
el
and
t 1 ; o . =
(7) .B(S] PEETRE Y l 51 T BS) lf]; fJ(SJ) 0 ’

[O otherwise.

Let, furthermore,

(8) M= SUBE, ).

Then (1) has a non-trivial solution if M > TT (rj+1).
We have, by (5), (7), (8), and (4),

I = X SAG 8 X el

9 s
Y = XX DA ) TT k)

It can be shown, by induction, that

(10)  37eee S ) TTellet(&) = TT 0+ Srei(s)

j=1 j=1 5

j=1

P

Indeed, it is easy to see that the statement (10) is true for s = 1, and we
assume it to be true for s — 1 variables &;. Siuce, by (6),

[(’rs—% 1) A(§1,~- . 155_1) lf§5:0,
|4, ... &) ifE, =
then the left side of (10) equals

Ay, ... 8) =

s—1

(1) X7 DVAG L &) TT ekE(E) +
<1 Ss—1

j=1
S VA6 ]:[ elkf() Se(kL(E)
By 1 j= 5=

Using the equation

De(kE(£) = DVe(kE, () — 1

s z
5570 ss
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and the induction hypothesis, we find that this is, moreover, equal to

s—1

(r,+ De(kE,(&) X7 DVAG - -, OTT e(kt,(£)

51 Ss—1 j=1

s

=TT (r; + Dekis£)) -

j=1 5j

Thus we have proved the equation (10).
Using (9) and (10), we get

¢M = 3 TT 0+ Yelkt&))
k j=1 g

=TT (@+r)+ 2 TT 0+ Dreki(E)) .
j=1 h=+0j=1 i

We have hence, by (2) and (3).

s

M gq_t]_ll-(q]"f‘rj) >]_|1-(7"j"‘ 1)
j=

j=

which is the required inequality.

4. Consequences of theorem 1.  Since e(kf,(0)) = ¢(0) =1 then
Z’e(kfj@j)) = 2 —¢q;. Therefore we may take 7, =g¢; —2 in theorem

=J
1. Then

s s

TTg+m=2TTG—n=2 D).
j=1 j

j=1 J=1

Consequently we have the following corollary of theorem 1.

Theorem 2. The system (1) has a non-trivial solution if
2° > q'.

This theorem is an extension of a result of CHOwWLA’s (see, for example,
[5]) .For some related theorems, see [11], theorem 1, and [13], lemma 3.
Theorem 2 can be proved also by using CHOWLA’s method but it is inter-
esting to see that all the theorems 1—5 can be proved by using exponential
sum methods only.

If we put K, =---=K,= K , we get immediately, by theorem 1,
the following result.



~1

Ao TIETAVAINEN, On systems of equations in finite fields

Theorem 3. Let 7,,...,r, be real numbers such that »e(kf;(&;)) =
5
— 1;, for every k. Then the system

(11) Zf'J(EJ):O (i:l,...,l)
=1

has a non-trivial solution in K if
TTa+r)=>¢TTe;+ 1.
j=1 j=1

Carrrrz and UcHryama [1] have proved

Lemma 1. The inequality

[ YefE) = (e — g
holds on the assumption that f is a polynomial of degree ¢ over K such that

f#9"—g+8,

for every polynomial g over K and for every element p of K.

In the following theorem we must suppose, because of the assumption
of lemma 1, that the system (11) satisfies the subsequent condition (cf. [13]).

Condition B. For any value of j no non-zero linear combination of the
polynomials  fy;, ..., f; over K can be written in the form g" — g+ f
where ¢ 1s a polynomial over K and f is an element of K .

It should be noted that condition B is satisfied at least in the case
where ¢; =p — 1, for every ¢ and j. Therefore (see [13]) condition B
is no restriction in prime fields.

Define the degree of the 0-polynomial as — co and suppose that there
exists at least one non-zero polynomial f;(§;). Combining theorem 2
with theorem 3 and lemma 1, we then find

Theorem 4. Assume that the system (11) satisfies condition B. Then
it has a non-trivial solution in K if

(12) s = 2 #(1 + max (logy(c — 1), 1))

where ¢ = maxc;; .
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This theorem sharpens theorem 1 of [13]. For some related results,
see corollary 1 of theorem 2 of [13] and theorems I and II of [12].
For small values of ¢ our method gives better results than that mentioned
in theorem 4. For example, we may replace the inequality (12) by s =
14+ 2¢ in case ¢ =2 and by s =3¢ in case ¢ = 3.

Proof of theorem 4. If ¢ =<2, our assertion is a consequence of a
well-known result of CHEVALLEY’s [2] (and it is easy to prove also by a
slight modification of the following proof). Therefore we may assume that
c=3.

Suppose that, contrary to our assertion, the system (11) has only the
trivial solution in K . Then we have, by theorem 2,

(8]

s g qt .
Jombining this with (12), we find

(13) qs_zz 2 (C . 1)".’5

o=

We may take, by lemma 1, r; = (¢ — 1)¢* , for every j. Then

s
1

TT (@ + ) = ¢ + ¢ — 1))

j=1
=" — 17 = Dg* + (¢ — 1y
> ¢ e — )7 — Vgt 1)y
from which we get, by (13),

s

TT (@ + 7)) > ¢'((c — 1)g* 41 —-9|| ri41).

j=1 j=1

This is, by theorem 3, an impossible inequality. Hence theorem 4 is true.
We say (cf. [13]) that the system
(14) Z;/U (t=1,...,1),

where c¢ is a positive integer, is an A-system if —1 is a cth power in K
(for t =1, cf. paper [5] by CHOWLA). Using the same method as in the
proof of theorem 4, we can prove
Theorem 5. The A-system (14) has a non-trivial solution in K if
s = 2¢(1 4 max (logy(d — 1), 1))
where d is the g.c.d. of ¢ and ¢ — 1.
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Theorem 5 is an extension of some results by CHowLA ([3]—[8]) and
SHIMURA [8] and an improvement for theorem 4 of [13] (see also theorem
III of [12]). It is, practically, a corollary of our theorem 4. It should be
noted, however, that in the proof of theorem 5 we may use, in place of the
deep lemma 1, the following well-known lemma 2 which can be proved
elementarily.

Lemma 2. If y is a non-zero element of K then
YeE) | = d — gt
where d isthe g.c.d. of ¢ and ¢ — 1.
Theorem 5 implies immediately

Corollary. Let d, the g.c.d. of ¢ and q — 1, be odd. Then the system
(14) has a non-trivial solution in K if

s = 2t(1 + max (loge(d — 1), 1)) .

University of Turku
Turku, Finland
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