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1. Introduction

Myrberg's approximation theorem [11] asserts that certain automorphic
functions in the unit disk D come arbitrarily close to every complex value
on every curve that intersects the unit circle, at, any point of a certain set
of measure 2n , at & nonzero angle. f have obtained [2] analogous results
for some normal functions. Hedlund [8] has established an approximation
theorem for various automorphic functions in which the curves involved
&re arcs of circles tangent to the unit circle instead of curves that intersect
the unit circle at an angle different from zero. This motivated me to attempt
to find some horocyclic versions of my results for normal functions, and
this in turn led to the more fundamental investigation of horocyclic bound-
ary behavior of meromorphic functions presented in this paper.

fn Section 2 we gather together for convonient reference the definitions,
terminology, and notation that will be required.

Section 3 contains our results. We first prove a fundamental lemma
(Lemma I) which a,sserts that a particular kind of region has a rectifiable
boundary. We then show that for a function meromorphic in D, almost
every Plessner point is a right horocyclic Plessner point. This leads to an
extension (Corollary l) of Plessner's theorem (see [14, p. 217]). We also
show (Theorem 2) that almost every right horocyclic X'atou point is a X'atou
point, and this leads to a horocyclic version (Corollary 3) of Priwalow's
uniqueness theorem [14, p. 210]. We obtain a generalization (Corollary 5)
of Meier's category-theoretical analogue [10, p. 330, Theorem 5] of Plessner's
theorem. We also prove a, horocyclic version (Theorem 8) of Noshiro's
generalization [I3, p. 74, Remark] of Meier's two-chord theorem for holo-
morphic functions. We conclude with two tangential approximation theo-
rems (Theorems I and l0) for normal functions.

2. Terminology and notation

We denote the unit circle in the complex plane by l" and the open
unitdisklry D.If 0 < r <-1, then D, standsfortheopendisk lzl<r.
Theextended complexplanewillbecalled Q, Wetake arr,orz,. . .,a.)tu, ., .
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to be those points of O with both real and imaginary parts rational, enume-

rated in a specific sequence. when we write A c B, we meanthat .4 is a

proper subset of B.
suppose that § is a subset of J-. when we speak of »almost every

point of §», we mea,n every point of § with the exception of a set of
linear Lebesgue measure zero; and when we speak of »nearly every point

of §» , we mean every point of s with the exception of a linear set of
first Baire categorY.

By an arc at a point 4 € J- we mean a continous ctrve A; z - z(t)

(0<r<I) suchthat lz(t)l<1 for 0<r<l and l;y1z(t\:C' A

terminalsubarc of 1L meansasubarcof ,'1 of the form z :z(t) (to <, < I),
where 0 ( fo( L By an admissible arc at ( we mean an arc at ( having

a tangent, at 6 different from the tangent to I at e .

A circle internally tangent to f at a point 6 € l" is called a horocycle

al C, and will be denoted bV h(0, where r (0 < r < 1) is theradius
of the horocycle. The point ( itself is not reckoned as belonging t'o h,(l) .

The right half of ä,(() (the terms »right» and »left» throughout this paper

are relative to an observer at the origin looking out toward J-) is denoted

bV h!G), and is called the right horocycle at { with radius r ' Note

thak h:(q is an arc at c , and includes its initial point in D but not its

terminal point ( . The left horocycle ä,-(() is defined analogously. We shal

often, in what follows, define formally only the right one of a pair of entities

when the definition of the left one is completely analogous. similarly, we

shall state theorems only for right entities when the corresponding theorems

for left entities are obviously also valid.
Suppose that 0 ( rr( rr.--l, 0 < rzlL, and that r, is so large

that the circle lzl : ra intersects bothof thehorocycles ä"r(f) and h,r(e)'

Then r, , rz, f s taken in that order will be called an admissible triple of
numbers. The symbols u , n mean that the union or intersection is

to be taken over all 
"å'#iJ.itiä'tjit". 

or numbers. sometimes, however,

only admissible triples of rational numbers are involved in a discussion,

and then such a union or intersection is to be interpreted accordingly as

being taken over all admissible triples of rational numbers.

Given an admissible triple f 11 12 > f B t we d.efine the right horocyclic

angle f1.+r,,r,,r(() at 6 v-ith radii r, ,r21rs as the set of point's of inter-
.""tion of the-circles lzl : r (rs Sr < L) v-ith the right' horocycles å](()
(rr< r'1rr) . The corresponding left horocyclic angle is H;r,"r,,r(C) ' ff we

wish to refer to a horoeyclic angle at c , but do not, care to specify

whether it is a right or a left one, we write it as H,r,,r,,r(() .

we define an admissible tangential arc at a point e e f tu be an arc

A at e for which there exists a §equence {HÅ'a.,y).'(")(()} of nested right
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or of nested left horocycles at 6 with lim 1rl") - ,1")) : 0, each term of

which contains some terminal subarc of A.
Given a perfect nowhere dense subset P of l- and an admissible triple

of numbers r12 12 2 rg » we define the right region associated with P ,
11 1 t2, r, to be

Gu(P i rt, 12, Ts):-- ( HI,r2,r3(å)) U D,'

The corresponding left region is denoted by G-(P;r1, t2, rs), and
G(P ; r, , 12 , rs) means either one of the two regions thus defined.

If z and z' are points of D , then g(z , z') represents the non-Euclidean
hyperbolic distance between z and z' (see [5, p. 3+3]).

In what follows we shall be concerned with a function J@) that, is mero-
morphie or holomorphic in D. The reader should know what is meant
by a normal function lI3, p. 86]. It is also assumed that he knows the rudi-
ments cf cluster set theory (see lf 3]) and the customary notation for cluster
sets; in particular, he should know what is meant by a Plessner point,, as
well as by a X'atou point, of f and the corresponding Fatou value [13, p. 61].
By a Meier point of / is meant a point ( € J' such that,, for every chord

7, at e ,

crff,e):c$,e)cI.
We use the customary notation A(f) for the set of asymptobic values of /.

Define the right outer horocyclic angular cluster set of / at a point
§€-l- tc be

C,+(l' , ;) Cn+ff, e) ,

and the right inner horocyclic angular cluster set of t at, e to be

n
H+

U
-'€ P

H+

lr,'here in each case H+ ranges over all
we define the outer horocyclic angular

Cr-(J,e) ,

right horocyclic
cluster set of f
i) U ]rt-(f , e) ,

anglesat €. Then
at e tobe

to beand the inner horocyclic angular cluster set of f at C

Co(/ , e) - Cu+(/', a) n Cr-(/ , 6) .

Define the right prirrcipal horocyclic cluster set of f at { t,o be

Ir:,(f , a) -o .f. ,O 
o!(r (/ , e) ,
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and the principal horocyclic cluster set of / at ( to be

Ir*ff , q : n:ff , e) n r;$, c) .

We call a point C e f a right horocyclic X'atou point of / provided that

C»t$ ,1) : {"}

for some a e Q; a is then called the corresponding right horocyclic Fatou
value of f at C. We call ( a horocycHc n'atou point, of f ff e is either
a right horocyclic Fatou point of J * ^ 

left horocyclic X'atou point of /
or both; we then speak of a horocyclic Fatou value of f at e (so that there
may be either one or two such values at a horocyclic tr'atou point). The
sets of right horocyclic, left horocyclic, horocyclic X'atou points of / will
be denoted by lXff) , I;(f) , X -(f) , respectively.

We call a point ( € J" a right horocyclic Plessner point of / provided that

C»n(l ,0:Q'
We say that 6 € -f- is a horocyclic Plessner point of / provided that

c»U,e):o'
The sets of right horocyclic, left horocyclic, horocyclic Plessner points of /
will be denoted bV IIff) , I;(f) , 1,,(f), respectively. A point e e f that
is both a Plessner point and a horocyclic Plessner point of / will be termed
a generalized Plessner point of /.

We call a point C e f a right horocyclic Meier point of / provided that

n:ff,0:c$,c)cQ.
We say l}rat C € .l' is a horocyclic Meier point of / provided that

il.,(f,il:c(f,c)cQ.
A point f € J" that is both a Meier point, and a horocyclic Meier point of
/ will be termed a generalized Meier point of /.

We define K,,(f) to be the set of points | € l such that

C"(f , e): Cr'(f , e)

for every pair of horocyclic angles H , H' &t, ; .

In [2] we have definedthe set IIr(,f , ;) as 
? 

C ^r(J, ;) ,

section is taken over a,ll admissible arcs A at å . \Ye
set ilr_(f , il as 

? 
C r(f , C), rvhere the intersection is

admissible tangential arcs A at e , and \r/e put

r,vhere the inter-

no\4' def ine the
taken o\rer all

Ifr.(f ,il: IIr(f , å) n lfr,,,(f , €)
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3. Results and proofs

Lemma 1. The bound,ary of eaery region G(P;rr,r2,rr) ,i,s a recti,fiable
Jord,an curae.

Proof. We shall assume that the region in question is a right region.
The boundary of the region consists of the set P, of arcs of the circle

lzl: rr, and of arcs of all right horocycles hI(C) and åd((') such that
6 is the right endpoint and f is the left endpoint of an arc @ of I
complementary to the set P ; it' is obviously a Jordan curye. The length of
the boundary is not greater than

meas (P) * 2 n rB + Zl, (@) ,

where meas (P) denotes the (linear) Lebesgue measure of P , @ ranges
over the open subarcs of l" complementary to the set P , and l(@) repre-
sents either the sum of the lengths of h\(4 and h\(C') if these right
horocycles do not intersect, or if they do intersect, the sum of the lengths
of those subarcs of these horocycles that extend from J- to their point of
intersection. Only a finite number of these pairs of right horocycles do not
intersect, because only a finite number of the arcs @ exceed any given
positive number in length (we shall denote the length of an arc @ by @) .

W-e aro going to show that there exists a positive constant K, depending
only on rr and rz, such that, if h\(e) and h\(t') intersect, and if
s1, 8s denote their respective lengths, then sr* sr( K .@ . This will
establish the convergence of 

4, t"l and hence the rectifiability of the

boundary of G(P ; rr, rr, rr) .

Referring to X'ig. 1, we take

A? - rr, BT : rz,

so that

(l) §r:11 gt, sz:tzgz, l,(@):§r*sz.
ft is evident that

(2) pt:o(* §: § *y * ö, Vz:a*@:@ * Z * ö.

Let d, be the length of AB. Applying the law of cosines to triangle
ATB, we obtain

dz - r?+ rZ-_ 2rrrzcos §(3)

Now

OA: 1-rt, OB: 1-rz
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Fig. I

Applyirrg the law

(4) d2 (1

and hence

p - arc sin

of cosines to triangle AOB, wo obtain

- rr)z * (1 - rz)' - 2 (L - rr) (1 - rz) cos O.

Elimination of dz from (3) and (4) yields

: arc cos 
v' * r'- 11 + tl - "tTtTz

{ 4 - [(r, + rz- 1) + (1 - rr) (1 - r,') cos @]2

Tt Tz

QB: (1 -r)sin@,

t-;

ri

Observing that

and

so that
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\re obtain

1 [rr* (1 - rz) cos @] '

Finally, applying the law of sines to triangle ABT , 1lre have

do

It is clear that, &s @ + 0 ,

@4t;; G d$-')"-'!->o
TtTz

T, sin 6
Sothat§*0andconSequent1yT-+0.tr'urthermore,

(1 -rr) sin@_ _ >o
1 [rr* (1 - r) cos @] .

We are now in a position to estimate § , y, and å for small O ,

First, since arc sin fr - O(*) as fi -> 0 , we have

§ -r(
/ct ö!riri

TtTz

But cos@:l+O(@'), and hence

\/
:'\/
:'\/
: { - zrrrr(t - rrl tt - rr» o(@') - tt - rt)'z G - rr','z o(@)

- o(o) .

Consequentl.y,

(5) p-o(@l .

Next, since arc tan ff < fr for small positive fi , we have

\ I [rr* (1 - rzl.o* q : O(Ol '
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trinally,

and hence

(7)

ö:r(t#) ,

r, sin B

d -o(§)'
§-o(o),

ö : O(@)

If we combine (1) and (2) with (5), (6), and (7), we see that the asserted
constant ff exists, and the proof of Lemma I is complete.

Lemma 2. Let the functi,on f(z) be meromorphic in D , and,let M be

a measurabl,e subset of I of pos,itiue measure. Suppose that, for some ad,mi,ssi,ble

triple of numbers t11 T21 r's; we hnae

(8) Cr|,,,,,4t(f , C) + Q

Jor euery C e M . Ihen M contains a subset M, of positiue measure such
that eaerg poi,nt of M, i,s a Tatou poi,nt of J.

Proof. Let {Qr, Q, Q", . . .} be the enumerable set of closed
squares (interior and boundary points) in the plane, the coordinates of
whose vertices are rational. Suppose that e e M . Because of (8) and the
fact that Cul.,,r,,s@(f , () is a closed set, there exists an z such that

Cri,,2,,r(l(f , f) n Qn: o '

Consequently, there exists a natural number k so large, that if
I

r; : | - i, then rr! r'r, and in Hf,,,r,,r,G), f(z) omits allvalues be-

longing to Q,. Let the set of points e e ilI with which the natural
numbers n , k can thus be associated be denoted by En,n . T}r.en the set
of such sets is enumerable, and M :9*r^,0. Denote hy EI ,r the set of

allpoints Cef suchthatin H1,,r,,",(C), where ri:t-|,t0,
omits all values belonging to Q". Then evidently E!,* is a closed set, and
hence it is measurable. Since .&/ is also measurable, and Eo,1o : Ef ,1, fl M,
the set E,p is measurable too. And since lly' is of positive measure, at
least one of the sets Z,,r , call it E^,*o, is of positive measure.

By means of a suitable linear transformation W : g(w), we map the
complement of 8" onto a region in the disk lwl < l. Then the function
W:l*@)-q(f(z) ) is meromorphic in D, and for every e e t.o,*o,

Ann. Acad. Sci. Fenniere
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the set Cr[,,r,,r4:)(f , C), where ri : l - +, is a subset of the disk

lwl < | . Let {S-} be a monotonically increasing sequence of numbers

greater tlnan ri and converging to t. Eor every m , let

A*: {C e E,o.*o:lf*@)1 <L (2eHtr,,,.,,,(C) , lzl } e-)}.

Then ALg AzE. .. E A^9.. . and Eos,*s: U A^' Hence, there

exists aL nt,o such that A^o is of positive measure, and there is a perfect

nowhere dense subset P of -4-o having positive measure. Set q-o : Q .

Thenforevery 6€P, wehave l/*(z)l <l for zeH[,,r,n?).
Consider the region G(P ; rr, rz, Q) . According to Lemma 1, the bound-

ary J of this region is a rectifiable Jordan curYe. Let ar, a2, . . . , crp be

all the poles of f*(z) in lzl S e , and form the function

(z - o) J*@) ;

it is evidently holomorphic and bounded in G(P ; rr, rz, Q) . By an exten-

sion of X'atou's theorem [4, p. 129], g(z) , and consequently also /(z) ,

has angular limits at almost all points of 7 . Now J O l-: P , and at
almost every point c e P , J has a tangent that, coincides with the tangent
of J- at f , since P is perfect,. Ilence, the angular limits of J@) in D
and in G(P;rr,rr, p) coincide at almost every point, C eP . This implies

the existence of a set M, witltthe properties described in Lemma 2.

Theorem 1. f,et the function f(z) be meromorphic in D . Then almost

eaery Plessner poi,nt of f is a ri,ght horocycl'ic Plessner point of f .

Proof. According to Plessner's theorem [14, p. 217f, f : DtU EzU Es,
where -&', is the set of X'atou points of / , every point of E, is a Plessner

point of f , arrd -8, is of measure zero' The sets E, and E, are measurable,

and if .8, is of me&sure zero, then there is nothing to be proved.

Assume then that E, is of positive mea§ure. Let rr,r2,ts b@ an ad-

missible triple of rational numbers (there are only enumerably many such

triples), and define 114?r"z'4) as the set, of all points f € J' for which
C+,,r,,r]r(l , C): Q. It is readily seen that n4('r-'tz"t) is a Borel set, and

hence it is measurable. Therefore, if we set

E!;t,r2,ts) - Ez(1 M\t'r2'rs) , R!;r'1r2'ors) - Ez- E{r"2"3\ 7

then EY'' 12 "rs)

t'o Lemma 2,

Now let

is measurable and- Ez: Et' 'r2'rB) U R{t'r21rs). According
R!;t ' 

12 ' 13) is of measure zero.

E- n E{t,r2,rs), B: U Rllr'rz'rl).
rL rrLrtg rltr2trg
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Then

DZ: EUR,
.B is of measure zero, and every point of Z is a right horocyclic Plessner
point of /.

Corollary 1. Let the functi,on l@) be meromorphic in, D . Then
f : MrU MzU Mr, where M, is the set of latou points of f , euerg point
ol M, is a generalized, Pl,essner poi,nt of f , and, M, ,is of measure zero.

Proof. According to Plessner's theorem, l: EtU EzU Ds, where
,O, is the set of Fatou points of ;f , every point of E, is a Plessner point
of /, and .8, is ofme&sure zero. By Theorem l, almost every point of E,
is a right horocyclic Plessner point, and it can be shown analogously that
almost every point' of E, is a left horocyclic Plessner point. Hence,
Ez: MzU Rr, where every point of M, is a horocyclic Plessner point
and .8, is of measure zero. ff we set Mr:,E, and Ms: Rrl) Er, we
obtain Corollary l.

Remark 1. In connection with Theorem 1, it is natural to ask the follow-
ing question: Suppose fhat f(z) is meromorphic in D . Is it true that
almost every right horocyclic Plessner point of / is a Plessner point of / ?

I do not know the answer, but f would guess that it is in the negative.

It is false that if f(z) is meromorphic in D then almost every Fatou
point is a right horocyclic X'atou point; this follows from a well-known result
due to Littlewood [9]. However, we do have the following theoremr

Theorem 2. Let the functi,on J@) be meromorph,ic i,n D . Then almost
euery right horoc,yclic Uatau point of f i,s a Uatou point of f .

Proof. Corollary I implies that almost every point of l- is either a
Fatou point of f or a right horocyelic Plessner point of /. The conclusion
of Theorem 2 now follows from the fact that no right horocyclic X'atou point
of / is a right horocyclic Plessner point of /.

Corollary 2. Let t@) be a rwrwonstant merom,orphic function i,n D ,

and, En be a subset of I of pos,i,tiae measure. Suptpose that eaery poi,nt of E,
is a horocycli,c Xatou Ttoi,nt of f , and,let E. d,enote the set of correspond,i,ng
harocycli,c ?atou aalues. Then E* is of posi,ti,ae inner harmnnic nl,eq,sure.

Proof. It clearly suffices to consider the case b}rral E* I () , and then
there is no loss of generality in assuming that q tlU.. The set .['jff)
is readily seen to be a Borel set, and hence it is measurable; so, likewise, is
tho set X;(l) . Consequently the sets

E! : E,n Pl$) , Df, : E"n l;ff)
&re measurable too. Sinoe .8, : E! U E; , arrd ,O, is of positive measure, at
least one of the sets I'j, E; is also of positive measure; suppose that.Oj is.
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It follows from Egoroff's theorem thaf E! contains a perfect subset

P, of positive measure on which / approaches the corresponding right

rrå*o"y.ii" x'atou values uniformly; the set' P. of these values is therefore

a closed and bounded subset of 8..
we infer now from Theorem 2lhat, P, contains a subset Q, of equal

mea§ure such that every point of Q, is a X'atou point of /. consequently

[4, p. 2f0] the set 0, of tr'atou values of f at the point's of Q, contains

u, clå*ed subset, § of positive harmonic me&sure. My ambiguous-point

theorem F, p. 382, Corollary t] implies that every point of §, with at

most enumerably many exceptions, belongs to P. ' Hence

§:(P,ns) u-8,

where .B is at most, enumerable. Since P- O B is closed and bounded, it
follows F2, p. r27l that P,n § is a subset of t* of positiveharmonic

measure, and Corollary 2 is Proved.
Corollary 3. Let f(z) be o nxerornorphi'c functi'on in D , Eo be a subset

ol f of påsiliae n1,eas'ttre, an'd, ot e Q . Buptpose that eaery poi'nt of En is

å n**yrtt" Iatou poi,nt of I rDi,th a corresptond,i,ng horocycl,i,c Xatau oalue u ,

Then f(z):x.
Thäorem Z. Let the functi,on f(z) be meromorphi,c i,n D . Then almost

eaery Lleier point of f is a rigtrt lwrocycli'c Meier poi'nt of f '
i"oof. By plessner's theorem, almost every point of l" is either a

x,atou point or a Plessner point of /. since no Meier point of / is a Plessner

point Jf /, it follows that almost, every Meier point of / is a Fatou point

or 7. n"t a point § € J' that is both a Meier point and a x'atou point of

/ is a point at which

tim t@),,;;

exists, and this implies that § is also a right horocyclic Meier point of /.
Hence almost every Meier point of / is a right horocyclic Meier point of / .

Remark 2. If f(z) is meromorphic in D, is almost every right horo-

cyclie Meier point of / a Meier point of / ? I suspect that this is not so.

Theorem ,1. Let ihp functi,on f(zl be merornorphi,a in D . Then nearly

eaery Pl,essner poi,nt of f is a ri,ght h,orooyclic Pl,essner pi,nt of f , and, nearly

eoeiy ri,ght horocycli,a Plessner poi,nt of f i's a Pl'essner poi'nt ol f '
p"oor. If a point 6 € l' is a Plessner point or a right horocyclio Plossner

point of /, thän C(f , q - A . By a theorem of Collingwood [7, p' l24l'
Th"o""* 4], for nearly every point 6 € -l' we have

13

(e)

t,
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where zl is an arbitrary stolz angle at e . An appropriate modification
of the proof of collingwood's theorem shows that for nearry every point
( € -I' we have

(10)

where ä+ is an arbitrary right horocyclic angle at C . Rerations (g) and
(10) obviously yield our theorem.

Lemma 3. Let f(z) be a normal meromorph,ic function in D . I.f there
ex'ists a ri,ght horocycl,e h!(() at a poi,nt I e f sur,hthat Cu+1,.,U, t) c
C(f , C), then there erists a right horocyclic angle Hf,,,r,,r(C) at e suchthat
c4,,r,,,o(f 

' c) cc(f ,61 '
Proof. Let

q e CU , e) Co+6jl , å)

Suppose that Cr+,,r,,r(il(,f , e): C(f , q for every right horocyclic angle
Hl,,r,,r(C) at ( . Then, in particular, rl e Cq,,r,"rc)(f , 6) for every right
horocyclic angle Hlr,,r,,r(O at 4 . Consequentiy there exists a sequence
of points {2"} in D , where lim z'": ( and lim f(z'"): 7 , such that,

for an appropriate sequence of points {"^} on h!(q with lim zn: e ,

we have lim q(2,,2'^): 0. Since ,f(z) is a normal -""o-o"ffiXfunctionD+@
in D , we infer [4, p. 10, Lemma l] that lim f(2,): 4 , which contradicts

(Il). This prorres Lemma 3. 
n+m

Theorem 5. Let f(z) be a bound,ed, holomorpthi,c Juncti,on i,n D . Then
nearly euery po,int of I i,s a horocycl,ic Mei,er poi,nt of f .

Proof. Since /(z) is bounded in D , we have Cff , 0 q (2 for every
€ e f . Now suppose that for some ( € J' we have

(11)

(12)

(13)

If ,,,(f , C) c C(l , C)

Then there is either a right or a left horocycle at f, say hl(q , such that

colsu,e)ccff,il.

Hence, according to Lemma 3, there is a right horocyclic angle H[,.r,,r(C)
at f for which

c4,'2,'rG\(f ' () c c(f ' e)

But by a ready generalization of a theorem of Collingwood [7, p. 1241,
Theorem 4] from Stolz angles to horocyclic angles, the set of 6 €./, for

t4
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which (f 3) holds is of first category, and therefore the same is true of the
set, of 6 € l" for which (12) is true, which completes the proof.

Corollary 4. If f(") i,s a bounded, holomorgthic functi,on in D , then
nearly eaery point of I i,s a general'ized, Mei,er poi,nt of f .

Proof. This follows immediately from Theorem 5 and a theorem of
Meier [I0, p. 330, Theorem 6].

Theorem 6. Let the functi,on J@) be meromorphi,c i,n D . Then nearly
euery point of I is ei,ther a right korocyclic Meier poi,nt of f or a ri,ght horo-
cycl,i,c Plessner point of f .

Proof. Lei E be the set of points of l- that are not right horocyclic
Plessner points of /. We shall show that, nearly every point of Z is a
right horocyclic Meier point of /.

If m , rc is a pair of natural numbers and t1 1r2 , r, is an admissible
triple of rational numbers, define

(14) E+(m ,,n; 11 t rz, rs):{, , , ,lf(") - o)ml > L *, allze H!r, 
'r, 'r(()l

Then there are
and evidently

(15)

only enumerably many of these sets E+(m , tu i rr, rz, rs) ,

E :*,,,Y, 
,r,,: (m '%)rt'rz'rs)

Now suppose it is false that, nearly every point of .E is a right horocyclic
Meier point of /. Then there exists a subset § of -E', where § is of
second category, such that no point of § is a right horocyclic Meier point
af f . In view of (I5), there exists a pair of natural numbers m', rL', a\d
an admissible triple of rational numbers r 1' , r 2' , rr' such that the set

(16)

is of second category. Consequently §' is everywhere of second category
on some open subarc l' of I . Let (r and (, be the right and left end
points of l', and denote by .B theregionboundedby l',h!r(C),h\(€z),
and lzl:rr. Then clearly we have

o ttY'fld'"""(o'

This means, according to (16) and (14), that the function

I
se):f@)_a),

is bounded in "B . By an obviously valid localization of Theorem 5, nearly
every point af I' is a right horocyclic Meier point of g. But then nearly

§' - § n E+(m' , %'; r;,, ,'r, ,'r)
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every point of l', in particular, nearly every point of §', is a right horo-
cyclic Meier point of /, which contradicts the definition of § . This proYes

Theorem 6.

Theorem ?. Let the functi'on f(z) be meromorph'ic in D . Then nearl,y

eoery Me'i,er point of f is a right horocyclic Meier poi,nt of f , and neo,rly euery

ri,ght horocyclic Meier poi,nt of f i,s a Me'ier poi,nt of f .

Proof. According to Meier's theorem [0, p. 330, Theorem 5], nearly
every point of .I- is a Meier point or a Plessner point of /. But no right
horocyclic Meier point of / is a Plessner point of l'. Consequently nearly
every right horocyclic Meier point of / is a Meier point of /.

From Theorem 6 we know that nearly every point, of l- is a right horo-

cyclic Meier point or a right horocyclic Plessner point of / ' Since no Meier
point of / is a right horocyclic Plessner point of /, it, follows that nearly
every Meier point, of / is a right horocyclic Meier point of /.

Corollary 5. Let the functi,on f(z) be merorruorphi,c i,n D . Then nearly
eaery poi,nt of I is a generalizeil Meier po'int or a generali,zed, Plessner

poi,nt of f .

Proof. This follows immediately from Theorem 4, 'I'heorem 7, and the
theorem of Meier quoted in the proof of Theorem 7.

Remark 3. We note for the sake of completeness that nearly eaery

Iatou Ttoi,nt is a right horocyclic Fatou point, and, nearly euery ri'ght horocyclic

Iatou point i,s a Xatou gtoi,nt. This follows readily from horocyclic versions

of theorems of Collingwood [7, Theorems 2 ar'd 4f.

Theorem 8. Let f(z) be holomorphi,c in D , and, S be a subset of f .

Suppose that to euery I e S there corresponil two arcs at ( on which f i,s

bounded,, such that there erists a horocycl,'i,c angle at I lyi,ng between these two

arcs. Then al,most eaery point of S is a Patou poi,nt of J .

Proof. According to Corollary l, almost every point, of J- is a Fatou
point or a generalized Plessner point of f . Let' f € § and suppose tha,t

( is a generalized Plessner point of f . Let' A, and A, be the two arcs at'

6 on which / is assumed to be bounded, and let H,r,"r,,u(C) be a horocyclic
angle at f lying between Ar and Az. Since

C*"r,rr,r;:y(f'i.):Q'

it follows from a theorem of Iversen and Gross (see [I3, p. 14, Theorem 1]

for the special case in which the set .E there consists of a single point)

that m is an asymptotic value of f at f . Consequently 4 is an ambiguous

point, of /. But / has at, most enumerably many ambiguous points [1,
p. 380, Theorem 21. This implies that almost every point of § is a X'atou

point of /.
Lemma 4. Let f(z) be a normal meromorphi,c function in D , and, sugtpose

that Ce K",(f). Then IIr.,(f ,C):Caff,0.
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Proof. Suppose that a e flr,,(l , e) . Then a eO-r(f , () for every

admissible tangential arc A at C . By definition, there exists a horocyclic
angle ä at ( containingaterminalsubarc of A. Clearly C,tff,Oe
CHff , C), so that a e C2,(f , C) .

Now suppose that, * € C,.r(! , C) . Let A be anv admissible tangential
arcat 6. Since Ce K,,(f), wehave aeCs$) foreveryhorocyclicangle
H at (. Hence, there exists a sequence of points {z;} in D , where

litm z'^: f and lim f(z'") : a , such that, for an appropriate sequence
n+- n+m

of points {z^) on zl with lim z^: f , we have lim p(z*,2'^): 0. This

implies f4, p. 10, Lemma rilirt limf(z^):", ;;fhence rv eCrU,0.
This holds for an arbitrary ua*i.iil'fltangential arc A at i , and there-
fore ae ilr,,,(f ,e),

Theorem 9. Let f(z) be a nonconsta,nt normal meromorphi,c functi,on i,n

D , and, suppose that A(f) is of harmonic meq,sure zero. ?hen there exists
q, res'id,ual, subset § ,f f of measure 2n suclt, that, for eaerg f € S ,

IIr.,(l ,C):9.
Proof. According to Corollary l, almost every point of J- is either a

Fatou point or a generalized Plessner point of /. Since / is nonconstant
and A(t) is of harmonic measure zero, Priwalow's theorem [4, p. 210]

implies that the set of Fatou points of / is of measure zero. Hence, the set,

/.,(/) is of measure 2n . An obviously valid horocyclic analogue of 16, p. 382,

Theorem 3l implies lhat 1,,,(f) is also a residual subset of l . If f € 1,,(f) ,

then C,,(/, e): l) , andsince 1.,,(/) 9K,,,(f), Lemma 4yields ilr,,(f , e):
CrV , 0. Setting § : 1.,(,f) , we obtain Theorem 9.

Remark 4. Theorem 9 is valid if IIr,,,(1,6) iu replacedby llr.ff, e);
we have only to apply Theorem 9 in its original form and 12,P. 4, Theorem 11.

Theorem 10. Let f(z) be a nonconstq,nt normal meromorphi,c function i,n

D , and, suppose that A(f) 'is of linear mea,slure zero. Then there eri,sts a residual"

subset R of I suchthat,foreaery e e R,ilr.(f ,e)-Q.
Proof. Since / is nonconstant and ,a(/) is of linear measure zero, we

have C(f , q :.(J for every ( € J- [I3, p. 51] . Hence [13, III, §3] 1(/)
is a residual subset of .I' , and so by Theorem 4 the set 1.,(/) is also residual.
As in the proof of Theorem 9, C e 1",(f) implies t'hat' IIr,,,(f , C) : Q ; setting

R:1,,(f), we obtain Theorem 10.

Rcmark 5. Theorem l0 is valid if IIr,,,(1, f) is replaced by [17.ff , C) ;

we have only to apply Theorem I0 in its original form and [2, p. 4, Theorem 2].

Llniversitv of Wisconsin-Milu,aukee



Bibliography

tll Becururnr,, F., Curaili'near cluster sets of arbitrary tut'r'ct'ions - Proe. Nat. Acad.

Sci. 41 (1955), 379-382.
l2l -»- Some apTtrou'ima,t'iom theorerns for normal, functions - Ann' Acad' Sci'

Fennicm A I 335 (1963), 1-5.
t3l -t»- Me'ier points oJ holomorphic Junct'ions ' Math. Annalen I55 (1964), 422-

424.

t4l -»- and SotouL, W,, Sequenti,al, and continous li,mits of merom,orph'ic fwnat'ions
- Ann. Acad. Sci. Fennicre A I 280 (1960), 1-17'

[5] BoNNrn, II. and Soulrnn, F., llheorie iler aratlytischen Fumktionen e'iner lrcm'
plerem Vertinderl'ichen, 2d ed. ' Berlin, 1962.

[6] Cor,r,rNcwooD, E. 8., On sets of ma*imttm'indeterm'ination of analyt'ic functions '
Math. Zeitschr. 67 (1957), 377 -396.

t7l -»- Cluster sets o! arbitrarg fundi,ons - Proc. Nat. Acad. Sci. 46 (1960)' 1236-
t242.

[8] Hnnr,uro, G. A., Euchsio,n groups and, transit'ioe horocgcles - Duke Math. J'
2 (1936), 530-542.

[9] Lrrtr,rwooo, J. 8., Mafihematdco'|, notes (4): On o theorem, oJ Tatou - J. London
Math. Soc. 2 (L927), 172-176.

[10] Mnrnn, K., Uber d,'ie Ranilwerte der meromorphen Funktionem - Math. Annalen
r42 (196r), 328-344.

Ell Mvnnrne, P. J., E'in Approrimati,ott"ssatz filr d,i,e fuahsschen Gruppen, ' Acta Mat'h.

57 (1931), 389-409.
E2] NuvrrLrNNA, R., frindeut'iga arualgtische Tumkt'ionen, 2d ed. - Berlin, 1953'

[3] Nosnrno, R., Cluster Bets - Berlin, 1960.

F4l Pnrwer.ow, I. L, Rande,igemschajten analgtischer Eunlttionen - Berlin, 1956.

PrinteC Februan, 1966


	IMG_20161117_0001
	IMG_20161117_0002
	IMG_20161117_0003
	IMG_20161117_0004
	IMG_20161117_0005
	IMG_20161117_0006
	IMG_20161117_0007
	IMG_20161117_0008
	IMG_20161117_0009
	IMG_20161117_0010
	IMG_20161117_0011
	IMG_20161117_0012
	IMG_20161117_0013
	IMG_20161117_0014
	IMG_20161117_0015
	IMG_20161117_0016
	IMG_20161117_0017
	IMG_20161117_0018

