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1. Introduection

Myrberg’s approximation theorem [11] asserts that certain automorphic
functions in the unit disk D come arbitrarily close to every complex value
on every curve that intersects the unit circle, at any point of a certain set
of measure 27z, at a nonzero angle. I have obtained [2] analogous results
for some normal functions. Hedlund [8] has established an approximation
theorem for various automorphic functions in which the curves involved
are arcs of circles tangent to the unit circle instead of curves that intersect
the unit circle at an angle different from zero. This motivated me to attempt
to find some horocyclic versions of my results for normal functions, and
this in turn led to the more fundamental investigation of horocyclic bound-
ary behavior of meromorphic functions presented in this paper.

In Section 2 we gather together for convenient reference the definitions,
terminology, and notation that will be required.

Section 3 contains our results. We first prove a fundamental lemma
(Lemma 1) which asserts that a particular kind of region has a rectifiable
boundary. We then show that for a function meromorphic in D, almost
every Plessner point is a right horocyclic Plessner point. This leads to an
extension (Corollary 1) of Plessner’s theorem (see [14, p. 217]). We also
show (Theorem 2) that almost every right horocyclic Fatou point is a Fatou
point, and this leads to a horocyclic version (Corollary 3) of Priwalow’s
uniqueness theorem [14, p. 210]. We obtain a generalization (Corollary 5)
of Meier’s category-theoretical analogue [10, p. 330, Theorem 5] of Plessner’s
theorem. We also prove a horocyclic version (Theorem 8) of Noshiro’s
generalization [13, p. 74, Remark] of Meier’s two-chord theorem for holo-
morphic functions. We conclude with two tangential approximation theo-
rems (Theorems 9 and 10) for normal functions.

2. Terminology and notation
We denote the unit circle in the complex plane by I' and the open

unit disk by D. If 0 <r < 1, then D, stands for the open disk |z| < 7.
The extended complex plane will be called 2. We take w;,wy,...,0., ..
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to be those points of £ with both real and imaginary parts rational, enume-
rated in a specific sequence. When we write 4 C B, we meanthat 4 isa
proper subset of B.

Suppose that S is a subset of I'. When we speak of »almost every
point of S», we mean every point of S with the exception of a set of
linear Lebesgue measure zero; and when we speak of »nearly every point
of S», we mean every point of S with the exception of a linear set of
first Baire category.

By an arc at a point { € I’ we mean a continous curve Az =z(t)
(0 <t < 1) such that [2(f)] <1 for 0 =¢t<1 and lim z(t) = (. A

t—>1

terminal subarc of A means a subarc of A of the form z = z(t) ({, = ¢ < 1),
where 0 < t,<< 1. By an admissible arc at { we mean an arc at { having
a tangent at ( different from the tangent to I' at (.

A circle internally tangent to I at a point { € I' is called a horocycle
at ¢, and will be denoted by k.({), where r (0 <r <1) is the radius
of the horocycle. The point ¢ itself is not reckoned as belonging to 4,() .
The right half of h,(f) (the terms »right» and »lefts throughout this paper
are relative to an observer at the origin looking out toward [I") is denoted
by hkf(¢), and is called the right horocycle at with radius r. Note
that hF(¢) is an arc at {, and includes its initial point in D but not its
terminal point ¢ . The left horocycle A;(¢) is defined analogously. We shal
often, in what follows, define formally only the right one of a pair of entities
when the definition of the left one is completely analogous. Similarly, we
shall state theorems only for right entities when the corresponding theorems
for left entities are obviously also valid.

Suppose that 0 <r<r,<<1, 0 <<ry<1l, and that ry is so large
that the circle |z| = r; intersects both of the horocycles %, (£) and %, (C) .
Then r,, 7y, 75 taken in that order will be called an admissible triple of

numbers. The symbols U , (1 mean that the union or intersection is
to be taken over all adlmizss;blza ‘zri;)les of numbers. Sometimes, however,
only admissible triples of rational numbers are involved in a discussion,
and then such a union or intersection is to be interpreted accordingly as
being taken over all admissible triples of rational numbers.

Given an admissible triple r,, ry, 73, we define the right horocyclic
angle H; . ..(¢) at { with radii ry,7,, 75 a8 the set of points of inter-
section of the circles |z = r (ry =7 < 1) with the right horocycles %7({)
(ry< 1'< ry) . The corresponding left horocyclic angle is H, ,, ,.(C) . If we
wish to refer to a horocyclic angle at ¢, but do not care to specify
whether it is a right or a left one, we write it as H, ,, .. ().

We define an admissible tangential arc at a point { € I' to be an arc
A at ¢ for which there exists a sequence {H,x) (), ,gn)(g“)} of nested right
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or of nested lett horocycles at ¢ with lim (+{? — #{”) = 0, each term of
n—0oo

which contains some terminal subarc of A .

Given a perfect nowhere dense subset P of I' and an admissible triple
of numbers r,, r,, r3, we define the right region associated with P,
ry, rs, r5 to be

GH(P 1y, g, 73) = (QEJPH;{;,fg,r;;(C)) U Dr3 .
The corresponding left region is denoted by G (P ;ry, ry r3), and
G(P;ry,ry,r;) means either one of the two regions thus defined.

If z and 2’ are points of D, then o(z, z’) represents the non-Euclidean
hyperbolic distance between z and z' (see [5, p. 343]).

In what follows we shall be concerned with a function f(z) that is mero-
morphic or holomorphic in D . The reader should know what is meant
by a normal function [13, p. 86]. It is also assumed that he knows the rudi-
ments cf cluster set theory (see [13]) and the customary notation for cluster
sets; in particular, he should know what is meant by a Plessner point, as
well as by a Fatou point of f and the corresponding Fatou value [13, p. 61].
By a Meier point of f is meant a point { € I' such that, for every chord
1 at g,

Ox(f’g)ZC(j,C)CQ.

We use the customary notation A(f) for the set of asymptotic values of f.
Define the right outer horocyclic angular cluster set of f at a point
€I tc be

Cgl+(f> :) = }{-{C *(f) ;))

and the right inner horocyclic angular cluster set of } at { to be

Om(f, §) = N CH+ (fz 0,
HT

where in each case H* ranges over all right horocyclic angles at {. Then

>

we define the outer horocyclic angular cluster set of f at ¢ to be
Colf 5 8) = Coslf, DU Cy=(f . ),

and the inner horocyclic angular cluster set of f at { to be
Co(f 5 8) = Cof, N Cu=(f, 0) -

Define the right principal horocyclic cluster set of f at { to be

T, 0= N G0,

0<r<1
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and the principal horocyclic cluster set of f at { to be
IT,(f, &) = II5(f, O NIT(f . 0)
We call a point ¢ € I' a right horocyclic Fatou point of f provided that
Cotf > §) = {x}

for some o € 2 ;« is then called the corresponding right horocyclic Fatou
value of f at (. We call { a horocyclic Fatou point of f if  is either
a right horocyclic Fatou point of f or a left horocyclic Fatou point of f
or both; we then speak of a horocyclic Fatou value of f at { (so that there
may be either one or two such values at a horocyclic Fatou point). The
sets of right horocyclic, left horocyeclic, horocyclic Fatou points of f will
be denoted by FI(f), F.(f), F (f), respectively.

We call a point { € I" aright horocyclic Plessner point of f provided that

C\B‘*‘(j ’ C) - ‘Q .
We say that ( € I' is a horocyclic Plessner point of f provided that
Culf, ) = Q.

The sets of right horocyeclie, left horocyelic, horocyclic Plessner points of f
will be denoted by I'(f), I(f),I,(f), respectively. Apoint { € I' that
is both a Plessner point and a horocyclic Plessner point of f will be termed
a generalized Plessner point of f.

We call a point ¢ € I'" a right horocyclic Meier point of f provided that

We say that ¢ € I' is a horocyclic Meier point of f provided that
II(f,0)=C(f,)c Q.

A point ¢ € I' that is both a Meier point and a horocyclic Meier point of
f will be termed a generalized Meier point of f.
We define K (f) to be the set of points { € I' such that

Culf,8) = Culf, )

for every pair of horocyclic angles H , H at (.
In [2] we have defined theset I7(f, ) as ) O (f, ), where theinter-
1

section is taken over all admissible arcs A at . We now define the
set Iy (f, ) as N C,(f, ), where the intersection is taken over all
w A

admissible tangentiaJI arcs A at ¢, and we put

Hpu(f, 0) = (f, 0N HTM(f’ 0.
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3. Results and proofs

Lemma 1. The boundary of every region G(P ;ry, 1y r3) is a rectifiable
Jordan curve.

Proof. We shall assume that the region in question is a right region.

The boundary of the region consists of the set P, of arcs of the circle
jz| =r3, and of arcs of all right horocycles h,*'l((:) and h;:(é’) such that
{ is the right endpoint and (' is the left endpoint of an arc @ of I’
complementary to the set P ; it is obviously a Jordan curve. The length of
the boundary is not greater than

meas (P) + 2ary + Zl(@),
Z

where meas (P) denotes the (linear) Lebesgue measure of P, @ ranges
over the open subarcs of I" complementary to the set P, and [(@) repre-
sents either the sum of the lengths of h:;(g’) and k,*z(é") if these right

horocycles do not intersect, or if they do intersect, the sum of the lengths
of those subarcs of these horocycles that extend from I' to their point of
intersection. Only a finite number of these pairs of right horocycles do not
intersect, because only a finite number of the arcs @ exceed any given
positive number in length (we shall denote the length of an arc @ by ).
We are going to show that there exists a positive constant K , depending
only on r; and r,, such that, if k;i(é) and k;;(g”) intersect, and if
8y, 85 denote their respective lengths, then s;,4 s,<< K-©@ . This will
establish the convergence of »'1(@) and hence the rectifiability of the
“

boundary of G(P ;rq, 7y, 13) .
Referring to Fig. 1, we take

AT =r,, BT =r,,

so that

(1) S =T1Q1, S =Ty¢y, 1(0) =5+ s,.

It is evident that

(2) pr=0+p=Ff+y+9, gs=x+0=0+y+0.

Let d be the length of AB. Applying the law of cosines to triangle
ATB , we obtain

(3) d? = 1} 15— 2r,rycos B
Now
OA =1—7r,, OB =1—r,.
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Fig. 1

Applying the law of cosines to triangle AOB, we obtain
(4) B= (1 —r)2+ 1 —r)?—2( —r) (L —ry) cos O.
Elimination of d? from (3) and (4) yields

(ry +7r5 —1) + (1 — 1)) (1 —1ry) cos O

r17s

p = arc cos

and hence

r% 7‘3 — [y +ry—1)+ (1 — ry) (1 — 7y) cos OF .
Ty T2

p = arc sin

Observing that
QB= (1 —r,)sin@,
and
0Q = (1 — ry) cos O
so that
QA=1—r,— (1 —ry)cos0,
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we obtain

(1 —7,)sin @

y = aretan ;77 [ri+ (1 —7ry) cos O] °

Finally, applying the law of sines to triangle 4ABT, we have

. rysinf
0 = arc sin g

It is clear that, as & — 0,

Vi — i+ r— 1)+ (1 —r) (1 —r)csOF

T2 ’
ry8in
so that 8— 0 and consequently — R 0. Furthermore,
(1 —ry)sin @

1—[r+ (l—rg)cos@]—)o'

We are now in a position to estimate $,y, and ¢ for small O .
First, since arc sin x = O(z) as z— 0, we have

Ty 72

But cos @ =1 4 0(6? , and hence

VP —[(ry+ 75 — 1)+ (1 —1y) (L —1,) cos OF

=VER —[(ri+ra— 1) + (1 —r) (1 —ry) {1+ OO}

=V —[rrs 4+ (1 — 1) (1 — 7,) O(OY)P

=V =27, (1 — 1) (1 —15) 002 — (1 —ry)? (1L — 1,2 0(6")
= 0(0).

Consequently,
(5) B = 0(0).
Next, since arc tan x <« for small positive x, we have

6 (1 —r,)8in @
(6) Y<1—[r1+(1—r2)0039]=0(9)'
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Finally,
7, sin B!
o= 0( i)
rysin
=00,
p=00),
and hence
(7) 8= 0) .

If we combine (1) and (2) with (5), (6), and (7), we see that the asserted
constant K exists, and the proof of Lemma 1 is complete.

Lemma 2. Let the function f(z) be meromorphic in D, and let M be
a measurable subset of I of positive measure. Suppose that, for some admissible
triple of numbers ry, vy, 75, we have

(8) O, o8 # 8

for every €M . Then M contains a subset M, of positive measure such
that every point of M, is a Fatouw point of f.

Proof. Let {Q,, @5, ..., @ ...} be the enumerable set of closed
squares (interior and boundary points) in the plane, the coordinates of
whose vertices are rational. Suppose that { € M . Because of (8) and the
fact that OH:,rz ,’3(:)( f, ) is a closed set, there exists an n such that

Cy+ o O)N@.=0.

r1,T2, 73

Consequently, there exists a natural number £ so large, that if

r3 =1 then r; <7;, and in H . (L), f(z) omits all values be-

-5
longing to @, . Let the set of points (€ M with which the natural
numbers 7, k can thus be associated be denoted by E,,.. Then the set
of such sets is enumerable, and M = {J E,,. . Denote by E¥ , the set of
n,k

1
all points (€I such that in HY , (), where 7r3=1— T f(z)

omits all values belonging to .. Then evidently E¥, is a closed set, and
hence it is measurable. Since M is also measurable, and . = Ef , N M,
the set K, is measurable too. And since M is of positive measure, at
least one of the sets E,;, callit K, , ,is of positive measure.

By means of a suitable linear transformation W = ¢(w), we map the
complement of . onto a region in the disk |W| < 1. Then the function
W = f*(z) = ¢ (f(2) ) is meromorphic in D, and for every [ €E

ng.ko ?
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1
the set Cy+ (f,¢), where ry =1 — =, is a subset of the disk

rl,rz,r3’(:) k ’
W|<1. Let {on} be a monotonically increasing sequence of numbers
greater than r; and converging to 1. For every m, let

An={C€E, ;,:1[*@) <1 EE€H] ,, (0, [z] = en)}-

Then 4,€A4,E...€4.S... and E, , = U 4n. Hence, there

exists an m, such that A, is of positive measure, and there is a perfect
nowhere dense subset P of A, having positive measure. Set om, = ¢ .
Then for every ¢ € P, we have |f*(z)] <1 for z € H , ().

Consider the region G(P ;7,75 0). According to Lemma 1, the bound-
ary 7 of this region is a rectifiable Jordan curve. Let a;, ay, ..., q, be

all the poles of f*(z) in |2| = ¢, and form the function
9(z) = (2 — 1) (2 — @) . . . (2 — @) [*(2) ;

it is evidently holomorpbic and bounded in G(P ; 7y, 75, 0) . By an exten-
sion of Fatou’s theorem [14, p. 129], ¢(z), and consequently also f(z),
has angular limits at almost all points of 7. Now /N I'= P, and at
almost every point ¢ € P, 7 has a tangent that coincides with the tangent
of I' at ¢, since P is perfect. Hence, the angular limits of f(z) in D
and in G(P ;ry, 7y, 0) coincide at almost every point £ € P . This implies
the existence of a set M, with the properties described in Lemma 2.

Theorem 1. Let the function f(z) be meromorphic in D . Then almost
every Plessner point of f is a right horocyclic Plessner point of f .

Proof. According to Plessner’s theorem [14,p.217], I'=E, U E, U E;,
where E, is the set of Fatou points of f, every point of K, is a Plessner
point of f, and Ej is of measure zero. The sets £, and E, are measurable,
and if E, is of measure zero, then there is nothing to be proved.

Assume then that E, is of positive measure. Let 7, r,, 73 be an ad-
missible triple of rational numbers (there are only enumerably many such
triples), and define M1>"2™) as the set of all points { € I' for which
Cyr  5(f,0) = 2. Itis readily seen that MC172>'9 is a Borel set, and

T1,72.73
hence it is measurable. Therefore, if we set

E(zfl"z"a) — Ez N M(r-r2-7s) , Rghfz,’s) — E2 _ Eg{l”":":ﬂ) ,

then E{t™™ is measurable and E, = E§1-279 U R{1-™2°™)  According
to Lemma 2, R{1°"> is of measure zero.
Now let
E=nN Eg’l”‘z”s)’ R= U _R(2'1a'2v'3).

Ty ,T2,T3 r1.72573
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Then
E, = FEUR,

R is of measure zero, and every point of E is a right horocyclic Plessner
point of f.

Corollary 1. Let the function f(z) be meromorphic in D . Then
I'=M;,UM,U Mz, where M, is the set of Fatou points of f, every point
of M, 1is a generalized Plessner point of f, and M, is of measure zero.

Proof. According to Plessner’s theorem, [I'= E,UE,UE,, where
E, is the set of Fatou points of f, every point of K, is a Plessner point
of f, and Ej is of measure zero. By Theorem 1, almost every point of E,
is a right horocyclic Plessner pcint, and it can be shown analogously that
almost every point of K, is a left horocyclic Plessner point. Hence,
E,= M,UR,, where every point of M, is a horocyclic Plessner point
and R, is of measure zero. If weset M, =K, and M, = R, U E;, we
obtain Corollary 1.

Remark 1. In connection with Theorem 1, it is natural to ask the follow-
ing question: Suppose that f(z) is meromorphic in D . Is it true that
almost every right horocyclic Plessner point of f is a Plessner point of f ?
I do not know the answer, but I would guess that it is in the negative.

It is false that if f(z) is meromorphic in D then almost every Fatou
point is a right horocyclic Fatou point; this follows from a well-known result
due to Littlewood [9]. However, we do have the following theorem:

Theorem 2. Let the function f(z) be meromorphic in D . Then almost
every right horocyclic Fatow point of f is a Fatou point of f.

Proof. Corollary 1 implies that almost every point of I' is either a
Fatou point of f or a right horocyclic Plessner point of f. The conclusion
of Theorem 2 now follows from the fact that no right horocyclic Fatou point
of f is a right horocyclic Plessner point of f.

Corollary 2. Let f(z) be a monconstant meromorphic function in D ,
and E, be a subset of I' of positive measure. Suppose that every point of E,
is a horocyclic Fatou point of f, and let E,. denote the set of corresponding
horocyclic Fatou values. Then E,., 1is of positive inner harmonic measure.

Proof. It clearly suffices to consider the case that E, # 2, and then
there is no loss of generality in assuming that oo € B,. The set Fi(f)
is readily seen to be a Borel set, and hence it is measurable; so, likewise, is
the set F_(f). Consequently the sets

Ef =E.NFif), EC=E,NFLf

are measurable too. Since E, = E U E;, and E, is of positive measure, at
least one of the sets E, E. is also of positive measure; suppose that E; is.
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It follows from Egoroff’s theorem that E contains a perfect subset
P, of positive measure on which f approaches the corresponding right
horocyclic Fatou values uniformly; the set P, of these values is therefore
a closed and bounded subset of E. .

We infer now from Theorem 2 that P, contains a subset @, of equal
measure such that every point of @, is a Fatou point of f. Consequently
[14, p. 210] the set @, of Fatou values of f at the points of @, contains
a closed subset S of positive harmonic measure. My ambiguous-point
theorem [1, p. 382, Corollary 1] implies that every point of S, with at
most enumerably many exceptions, belongs to P.. Hence

S=(P.NS)UR,

where R is at most enumerable. Since P, N S is closed and bounded, it
follows [12, p. 127] that P, NS is a subset of E, of positive harmonic
measure, and Corollary 2 is proved.

Corollary 3. Let f(z) be a meromorphic function in D, E, be a subset
of I' of positive measure, and « € 2. Suppose that every point of E, 1is
a horocyclic Fatow point of | with a corresponding horocyclic Fatou value o .
Then f(z) =« .

Theorem 3. Let the function f(z) be meromorphic in D . Then almost
every Meier point of f is a right horocyclic Meier point of f.

Proof. By Plessner’s theorem, almost every point of I' is either a
Fatou point or a Plessner point of f. Since no Meier point of f is a Plessner
point of f, it follows that almost every Meier point of f is a Fatou point
of f. But a point € I' that is both a Meier point and a Fatou point of
f is a point at which

lim f(z)

250

z€D

exists, and this implies that ¢ is also a right horocyelic Meier point of f.
Hence almost every Meier point of f is a right horocyclic Meier point of f.

Remark 2. If f(z) is meromorphic in D, is almost every right horo-
cyclic Meier point of f a Meier point of f? I suspect that this is not so.

Theorem 4. Let the function f(z) be meromorphic in D . Then nearly
every Plessner point of f is a right horocyclic Plessner point of f, and nearly
every right horocyclic Plessner point of [ is a Plessner point of f.

Proof. If apoint ¢ € I is a Plessner point or a right horocyclic Plessner
point of f, then C(f, ()= £2. By a theorem of Collingwood [7, p. 1241,
Theorem 4], for nearly every point ( € I' we have

(9) CA(f: C) = O(f s C) s
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where / is an arbitrary Stolz angle at ¢. An appropriate modification
of the proof of Collingwood’s theorem shows that for nearly every point
€I we have

(10) Cuf,0)=C(f, ),

5

where H* is an arbitrary right horocyclic angle at ¢ . Relations (9) and
(10) obviously yield our theorem.

Lemma 3. Let f(z) be a normal meromorphic function in D . If there
exists a right horocycle h(l) at a point ¢ € I' such that C;.j(;)( .0 c

C(f L), then there exists a right horocyclic angle H ., ..(8) at ¢ such that

Cuf yrolf> O €O, 0)
Proof Let

(11) 77€0f C h+()f f) .

Suppose that Ont . a5 8) =C(f, {) for every right horocyclic angle
HY () at ¢ Then in particular, % € OH, g (f, ) forevery right

horocychc angle HE . (0 at ¢ (‘onsequently there exists a sequence
of points {z.} in D where lim z, = { and lim f(z]) = 5, such that,
for an appropriate sequence of points {z,} on AF({) with lim 2, = ¢,

n— oo

we have lim g(z,2,) = 0. Since f(z) is a normal meromorphic function
n-—> oo
in D, we infer [4, p. 10, Lemma 1] that lim f(2.) = #, which contradicts

n— oo

(11). This proves Lemma 3.

Theorem 5. Let f(z) be a bounded holomorphic function in D . Then
nearly every point of I' is a horocyclic Meier point of f.

Proof. Since f(z) is bounded in D, we have O(f, () c Q for every
{ €1I'. Now suppose that for some ¢ € I' we have

(12) II,(f,0)ecC(f, 0.
Then there is either a 1ight or a left horocycle at ¢, say %7(l), such that

Cupld VUYL D).

Hence, according to Lemma 3, there is a right horocyclic angle H; Craurs($)
at { for which

(13) Cut (0O, 0.

rl 272,

But by a ready generalization of a theorem of Collingwood [7, p. 1241,
Theorem 4] from Stolz angles to horocyclic angles, the set of ¢ € I' for
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which (13) holds is of first category, and therefore the same is true of the
set of £ € I' for which (12) is true, which completes the proof.

Corollary 4. If f(z) is a bounded holomorphic function in D, then
nearly every point of I' is a generalized Meier point of f .

Proof. This follows immediately from Theorem 5 and a theorem of
Meier [10, p. 330, Theorem 6].

Theorem 6. Let the function f(z) be meromorphic in D . Then nearly
every point of I 1is either a right horocyclic Meier point of f or a right horo-
cyclic Plessner point of f.

Proof. Let E be the set of points of I that are not right horocyclic
Plessner points of f. We shall show that nearly every point of E is a
right horocyclic Meier point of f.

If m,n is a pair of natural numbers and r,,r,,r; is an admissible
triple of rational numbers, define

—_——

1
(14) Et(m,n;r,re,13) = {C € |fz) — wm| > ;forallzGH,"l’,,z,,B(C)

Then there are only enumerably many of these sets E+(m ,n;7r,,7,,73),
and evidently
(15) E= U Etm,n;r ,ry,rs).
m,n;ry,rg,r3

Now suppose it is false that nearly every point of E is a right horocyclic
Meier point of f. Then there exists a subset S of £, where S is of
second category, such that no point of § is a right horocyclic Meier point
of f. In view of (15), there exists a pair of natural numbers m’, n’, and
an admissible triple of rational numbers r,’, 7,’, 7y’ such that the set

(186) S = SNE+Hm', n';r,, ry, r5)

is of second category. Consequently S’ is everywhere of second category
on some open subarc I” of I'. Let {; and (, be the right and left end
points of I, and denote by R the region bounded by I",h}(Z,), Bi(¢5),
and |z|=r;. Then clearly we have

RcUH;,, (0.

ces

This means, according to (16) and (14), that the function
1

f(Z) — Wy

is bounded in R . By an obviously valid localization of Theorem 5, nearly
every point of I is a right horocyclic Meier point of g . But then nearly

9(z) =
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every point of I, in particular, nearly every point of §’, is a right horo-
cyclic Meier point of f, which contradicts the definition of S . This proves
Theorem 6.

Theorem 7. Let the function f(z) be meromorphic in D . Then nearly
every Meier point of [ is a right horocyclic Meier point of f, and nearly every
right horocyclic Meier point of f is a Meier point of f.

Proof. According to Meier’s theorem [10, p. 330, Theorem 5], nearly
every point of I is a Meier point or a Plessner point of f. But no right
horocyclic Meier point of f is a Plessner point of f. Consequently nearly
every right horocyclic Meier point of f is a Meier point of f.

From Theorem 6 we know that nearly every point of I" is a right horo-
cyclic Meier point or a right horocyclic Plessner point of f. Since no Meier
point of f is a right horocyclic Plessner point of f, it follows that nearly
every Meier point of f is a right horocyclic Meier point of f.

Corollary 5. Let the function [f(z) be meromorphic in D . Then nearly
every point of I' is a generalized Meier point or a generalized Plessner
point of f.

Proof. This follows immediately from Theorem 4, Theorem 7, and the
theorem of Meier quoted in the proof of Thecrem 7.

Remark 3. We note for the sake of completeness that nearly every
Fatou point is a right horocyclic Fatow point, and nearly every right horocyclic
Fatou point is a Fatouw point. This follows readily from horocyclic versions
of theorems of Collingwood [7, Theorems 2 and 4].

Theorem 8. Let f(z) be holomorphic in D, and S be a subset of I'.
Suppose that to every €S there correspond two arcs at L on which f is
bounded, such that there exists a horocyclic angle at { lying between these two
arcs. Then almost every point of S is a Fatou point of f .

Proof. According to Corollary 1, almost every point of I' is a Fatou
point or a generalized Plessner point of f. Let [ €.S and suppose that
¢ is a generalized Plessner point of f. Let A, and /A, be the two arcs at
¢ on which f is assumed to be bounded, and let H, ,, () bea horocyclic
angle at ¢ lying between ; and A,. Since

Cy f. =2,

it follows from a theorem of Iversen and Gross (see [13, p. 14, Theorem 1]
for the special case in which the set E there consists of a single point)
that oo is an asymptotic value of f at (. Consequently { is an ambiguous
point of f. But f has at most enumerably many ambiguous points [I,
p. 380, Theorem 2]. This implies that almost every point of S is a Fatou
point of f.

Lemma 4. Let f(z) be a normal meromorphic function in D , and suppose
that ¢ € K (f). Then Iy (f, Q) = Cy(f, Q).

T1sT2s rg(:)
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Proof. Suppose that « € IIy (f, ). Then o« €C (f, ) for every

admissible tangential arc A at (. By definition, there exists a horocyclic
angle H at { containing a terminal subarc of A . Clearly C (f,{) ©
Cu(f, ), sothat x € Cy(f, ).

Now suppose that « € Cy(f, ). Let A be any admissible tangential
arc at (. Since { € K _(f), we have o € Cy(f) for every horocyclic angle
H at (. Hence, there exists a sequence of points {z.} in D, where
lim z, = ¢ and lim f(z,) = x, such that, for an appropriate sequence

of points {z,} on A with lim z, = {, we have lim g(z., z) = 0. This
n— oo n—o0
implies [4, p. 10, Lemma 1] that lim f(z,) = x, and hence x € C ((f, {) .

This holds for an arbitrary admissible tangential arc /4 at ¢, and there-
fore x €Il (f,0).

Theorem 9. Let f(z) be a nonconstant normal meromorphic function in
D, and suppose that A(f) tis of harmonic measure zero. Then there exists
a residual subset S of I' of measure 2z such that, for every €S,
Iy (f,0) = 2.

Proof. According to Corollary 1, almost every point of I' is either a
Fatou point or a generalized Plessner point of f. Since f is nonconstant
and A(f) is of harmonic measure zero, Priwalow’s theorem [14, p. 210]
implies that the set of Fatou points of f is of measure zero. Hence, the set
I (f) is of measure 2z . An obviously valid horocyclic analogue of [6, p. 382,
Theorem 3] implies that I (f) is also a residual subset of I". If €1 (f),
then Cy(f, () = 2, and since [ (f) C K (f), Lemma 4 yields ]YTW(f, {) =
Colf, ). Setting S =1I(f), we obtain Theorem 9.

Remark 4. Theorem 9 is valid if /7 T,.,( f, &) is replaced by Ilp.(f, )
we have only to apply Theorem 9 in its original form and [2, p. 4, Theorem 1].

Theorem 10. Let f(z) be a nonconstant normal meromorphic function in
D, and suppose that A(f) is of linear measure zero. Then there exists a residual
subset R of I such that, for every (€ R, Iy (f,0) = Q.

Proof. Since f is nonconstant and A(f) is of linear measure zero, we
have C(f, () = Q2 for every ¢ € I' [13, p. 51]. Hence [13, III, §3] I(f)
is a residual subset of I", and so by Theorem 4 the set I (f) is also residual.
As in the proof of Theorem 9, { € I (f) implies that /1, (f, )= Q; setting
R =1(f), we obtain Theorem 10.

Remark 5. Theorem 10 is valid if ]YTm(f, ) isreplaced by IT.(f, $);

we have only to apply Theorem 10 in its original form and [2, p. 4, Theorem 2].
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