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1. Introduection

We first prove a theorem (Theorem 1) that generalizes a classical theorem
of Gross and Iversen (see [6, p. 124]) and a recent theorem of MacLane
[7, Theorem 11]. Tt is closely related to the Collingwood —Cartwright main
theorem in the small [6, Theorem 16], and it is a local relative of a global
theorem in [9, Theorem 2]. In Section 3 we generalize the result of Mazurkie-
wicz [8] that states that the asymptotic value set of a function meromorphic
in the disc is an analytic set. We prove, roughly speaking, that for functions
meromorphic in the disc, the asymptotic image of an analytic set (in the
circumference) is an analytic set. This result is applied in the proof of
Theorem 1. In Section 4 we apply Theorem 1 to the study of ambiguous
properties, and prove that if a holomorphic function has no ambiguous
points, then it must have a principal cluster value at each point of a residual
set.

Let f be a function meromorphic in the open unit disc D : |z| < 1,
let C denote the circumference of D, and let Q denote the extended
plane. We use the chordal metric d(a, b) on Q, andlet N(a, ¢) and N'(a, ¢)
(@ € 2, e > 0) denote the sets {w:d(a, w) < e} and {w:0 < d(a, w) < &},
respectively. We say that a simple curve B:z(t) (0 <t < 1) contained in
D is a boundary curve provided |z(t)] —1 as ¢t—1, and we say that f
has the limit « (¢ €2) on g if f(2(f))—>a as t—1. Theset FNC
(the bar denotes closure) is called the end of . We call a boundary curve
with end the point { of C an arc at . We say that f has the asymptotic
value a in the set 8 (S < C) if f has the limit ¢ on a boundary curve
that has end contained in S, and that f has the asymptotic value a at
£ (¢ €0) if there is an arc at { on which f has thelimit a. Denote the set
of all asymptotic values of f in S (S cC) by I'(S) and the set of all
asymptotic values of f at points of S by I7,(S). For a set S c 2, let
A(S) denote the set {{ € C: there exists @ €S such that f has the
asymptotic value a at (}, and let 4 = A(R2). We say that a closed
arc y of (' with endpoints ¢, and ¢{, is a Koebe arc of f for the value
a (a € Q) if to each positive number & there corresponds a Jordan arc y,
contained in {1 — & < |2] < 1}, having distance less than & from both
{1 and £, and on which d(f(z),a) <e (z €y,).
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2. Local asymptotic properties

Theorem 1. Suppose that the value a (a € Q) is not assumed by f
arbitrarily near C (¢ €C), and that there exists a sequence {z,} €D such
that z, — ¢ and f(z,) — a. Then at least one of the following three statements
s true.

(1) f has the asymptotic value a in each open arc containing (.

(2) ¢ is one end of a Koebe arc of f for the value a.

(3) For each positive number & and open arc y containing C,

y N A(N'(a, €)) has positive Lebesgue measure (in [0, 27]), and
N(a, &) N I',(y) has positive linear measure.
(See the end of Section 3 for the definition of linear measure.)

Remark 1. A special case of the Collingwood —Cartwright main theorem
in the small [6, Theorem 16] is the inclusion (in their notation)

[2—R(f,DINC(f, ) cyz*(f, HU DS, D),

which generalizes the classical theorem of Gross and Iversen (see [6, p. 124]).
It is clear that Theorem 1 is a refinement of this inclusion.

Remark 2. Since a function meromorphic and normal in D can have no
Koebe arc [4, Theorem 1], Theorem 1 leads to an instructive proof of the
theorem of Bagemihl and Seidel [4, Theorem 3] that states that if f is
holomorphic and normal in D, then for each arc y of C, either some
point of y is a Fatou point of f for which the corresponding Fatou value
is oo, or the set of Fatou points of f on y has positive Lebesgue measure.

Remark 3. MacLane [7, Theorem 11] proved that if f is holomorphic in
D and A isdenseon O, thenforeacharc y of C, either y N A({0}) # o
or yN A(Q — {w}) has positive Lebesgue measure. It is clear that this
result is implied by Theorem 1. In my thesis [9, Theorem 2] I extend
MacLane’s arguments and prove that if f is holomorphic in D, has only
finitely many asymptotic tracts for oo, and the union of the ends of the
arc-tracts of f for the value oo is not all of C, then A(Q — {=}) has
positive Lebesgue measure (for the definition of »tracty see Section 3). The
proofs of this result and Theorem 1 are based on the same lemma [9, Lemma
2].

Remark 4. The linear measure part of Theorem 1 is related to theorems
given by Bagemihl [2].

Proof of Theorem 1. Suppose that (1) is false. Let 6 be a positive number
such that f does not have the asymptotic value @ in CN{lz — (| < o},
and f does not assume the value a in DN {jz — {| <20} We write
U=DnN{}z— ¢| <6}, and to simplify the notation, we suppose that
2, €U (n >1). Let A, be the component of {z:d(f(2), @) < 2d(f(z.), a)}
that contains z,. Suppose now that (2) is also false; then the diameter
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of A,U{Z} tends to zero as n— co. We wish to prove that (3) is true.
Let ¢ be a positive number, let y be an open arc containing ¢, and let

n, be such that jno cUUy and 2d(f(z,), a) <e. Let 4,=4, and
8y == 2d(f(z,), @). Then 6, e, A, is a component of f~Y(N(a, d,)), and

A . € UUy. Wenow prove that there exist a positive number 0’ (6" < ;)
and some component of f~1(N(a, 6')) that is contained in 4, and in which
f is bounded away from «. Otherwise, we could choose 9, 310 (9, < d),
let D, be a component of f~Y(N(a, d;)) that is contained in 4, let D,
be a component of f~1(N(a, d,)) that 1s contained in D;, and in this way,
define a sequence {D,} such that D, c4, D,,cD, and D, is a
component of f~1(N(a, d,)). It is clear that f would have the limit « on
a boundary curve contained eventually (for sufficiently large [2]) in each
D,, and this is not compatible with the inclusion 4, € U. Thus, we may
let & and A be such that (8’ < dy) 4 is a component of f~(N(a, d"))
that is contained in 4, and in which f is bounded away from a. A proof
in [9, Proof of Lemma 2] yields

Lemma 1. Suppose that f is holomorphic in D, and that f does not
hawe the asymptotic value oo. Suppose that A is a component of {z: |f(2)|> 4}
in which f is bounded. Then there exists a set E C C of positive exterior
Lebesque measure such that there is an arc at each ¢'® € E that is contained
in A and on which f has a limit at €.

Tt is clear that we can apply Lemma 1 to the restriction of the function

f_l p to U to obtain that the set y N A(N'(a, ¢)) has positive exterior
Lebesgue measure. Thus, since the measurability of A(N'(a,¢)) follows
from Theorem 2, Corollary (ii)’, we have proved that y N A(N'(a, ¢)) has
positive Lebesgue measure.

We now prove that N(a,e) N I',(y) has positive linear measure. Let
I* denote exterior linear measure (see the end of Section 3). It is routine to
verify that if 7'(z) is a linear transformation of £ and the set £ in Q
satisfies I*(R) > 0, then I*(T(R)) > 0. Thus, since the linear measurabi-
lity of I',(y) follows from Theorem 2, Corollary (i)', it is sufficient to prove
that 1*(N(a, &) 0 I'y(y)) > 0 under the assumption that @ = co. We may
clearly suppose that f assumes a positive real value in 4,, for otherwise
we could arrive at this case by a rotation of 2. We suppose then that
a = oo and that the positive real number u, is assumed by f at some
point of 4,. Let % be a positive number such that if we write L = {u + w:
u = Uy, [v] < h}, then L has a lifting L* ontc the Riemann surface s
of f, and L* corresponds under f toa curvein 4, Since f does not have
the asymptotic value oo in UNC and f is holomorphic in 4,, for
each real number v satisfying |v| < h, there is a largest real number u,
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with the property that {u 4 v :u, <u <wu,} has a lifting onto s be-
ginning at the point of L* over wu, 4 . It follows that each wu, -+ i
(lv| < h) is an asymptotic value of f in the arc y and must, because of
the choice of 4, lie in N'(o0, d;). We now write y* = {|z — ¢| <6} N C,
and prove that f can have only countably many asymptotic values on
boundary curves that end in subarcs of p*. If this were not the case, there
would exist boundary curves f; (j = 1,2) with end y; € »* on which f
has the limit w; such that y, Ny, # ¢ and w; # w,. We clearly may
suppose that f, U f, is a simple curve and that if we let 4* be the sub-
domain of D that has p,Up, Uy, Uy, as its boundary, then f is
holomorphic in 4*. Since y, Ny, # o, it follows easily from Koebe’s
lemma (and is obvious from the theory of prime ends) that under con-
formal mapping of 4* onto D, f; U, corresponds to C minus a single
point. Thus, from a well known theorem of Lindelsf (see [5, p. 38]), f is
unbounded in A4%; and from a theorem of Gross and Iversen (see [6, p. 124]),
the restriction of f to 4* must have the asymptotic value oo. That is, f
has the asymptotic value co in y*, and this is not compatible with the

choice of 4. Thus, since 4,N C Cy*, all but countably many cf the
points u, + w ([v] <h) are in N(co,¢) N I',(y); and by projection of
these points onto L, we see that I*(N (oo, &) N I'(y)) > 0. Thus, assuming
the results from Section 3, the proof of Theorem 1 is complete.

3. The asymptotic value sets

The main result of this section is

Thecrem 2. Suppose that [ is meromorphic in D. Then

(i) for each amalytic set S < C, both I',(S) and I'(S) are analytic sets

m Q,
and

(ii) for each analytic set S € Q, A(S) is an analytic set in C.

We first introduce the notion of an asymptotic tract of f (for a dis-
cussion of asymptotic tracts, see [7, p. 5]). Let ¢ € 2, and suppose that to
each positive number ¢ there corresponds a component D(e) of
fYN(a, €) such that D(e;) € D(ey) (5 < &) and ) D(e) = o.

e>0
Then we say that {D(e)} is an asymptotic tract (or simply tract) of f for
the value a, and call () D(¢) the end of the tract. A tract is a point-tract
e>0
or an arc-tract depending on whether its end is a point or an arc of C.
We say that a boundary curve belongs to the tract {D(e)} if for each & it is

eventually (for sufficiently large [z]) in Df(e).
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We shall need

Theorem 3. With the exception of only countably many tracts of f, each
boundary curve belonging to a tract has end equal to the end of the tract.

Remark. Theorem 3 generalizes a (rather trivial) theorem in [9, Theorem
5].

Proof of Theorem 3. Suppose that the assertion is false. Then f has un-
countably many tracts 7' with the property that there exists a boundary
curve B(T) belonging to 7' such that the end y(7) of B(T) is a proper
subset of the end K(T') of 7. It follows that there exist a positive number
d, anonnegative integer n, and an open arc y* of C with length (n - 1)8
such that for uncountably many 7 it is the case that (! denotes length)
UE(T)] — y(T)] > 9, no <Iy(T)]<(n+1), and (T)cCy* But
for any three of the tracts 7' satisfying the relation y(7') C»*, one must
satisfy K(T) c y*; and this contradicts the relations

UK(T)]> 0+ [y(T)] = 6 + nd = I[y*].

Thus the proof of Theorem 3 is complete.

The Mazurkiewicz metric (see [8]) on the Riemann surface s of f is
defined as follows. Let P and @ be points of s, and let o(P, Q) denote
the infimum over all Jordan arcs J on s joining P and @ of the dia-
meter (in the chordal metric) of the projection of J onto 2. Then (see
Mazurkiewicz [8] and Seibert [12, pp. 341—342 and footncte 5]) o is a
metric on s, the completion {s*, o} of {s, o} is a (complete) separable
metric space, and the projection mapping on s has a continuous extension
n to s*. We write B = s* —s.

Now let P € B, and let {P,} be a sequence of points of s such that
o(P, P,) — 0. For each positive number ¢, let A(P, &) be the component
of s over N(n(P),¢) that contains all but finitely many of the points P,.
It is clear that A(P, ) does not depend on the choice of {P,}. Let D(P, ¢)
be the subset of D that corresponds under f to A(P,e). Then {D(P,e)}
is an asymptotic tract of f for the value n(P), and it is clear that the
correspondence P <« {D(P, ¢)} is one-to-one. We let BP denote the set of
points of B that correspond to point-tracts of f. It is clear that for each
positive integer n, the set of points of B that correspond to arc-tracts

with ends having length greater than or equal to ” is closed in s*. Thus,

BP is a Gy setin s*. Let y(P) (P € BP)denote the point of C that is the
end of the tract of f corresponding to P. Then v is continuous on BP.
In the following proofs we make repeated use of the facts that (in 2
or () a Borel set ig an analytic set, and the union or intersection of two
analytic sets is an analytic set (see [13, pp. 212—213]).
Proof of (i). Let S be an analytic set in C. Since o is continuous, it is
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elementary that ¢ (S) (= {P € B? : ¢(P) € S}) is an analytic set relative
to BP. Thus, since BF is a G, set in s*, 371(S) is an analytic set in s*.
Now let B’ be the set of points of B that correspond to tracts 7' with the
property that there is an arc at some point of S that belongs to 7. It
follows from Theorem 3 that B’ is equal to 9 71(S) plus a countable set, and
is thus an analytic set in s*. Since B’ is an analytic set in the complete,
separable metric s* and 7z is a continuous mapping of B’ onto I,(S)
(which is contained in the complete, separable metric space £2), it follows
that I7,(S) is an analytic set (see [13, p. 219]). (Mazurkiewicz [8] used z
to prove that I'(C) is an analytic set.)

Now let B” dencte the set of points of B that correspond to tracts T
with the property that there is a boundary curve that belongs to 7' and
has end contained in S; then n(B") = I'(S). Asin the argument just given,
in order to show that I'(S) is an analytic set, it is sufficient to prove that B”
is an analytic set in s*. For a set H C C, let By denote the set of points
of B that correspond to tracts with ends contained in H. We now prove
that if y is an arc of C, then B, isa Gy, setin s*. Since we can write
any arc as the union of an increasing sequence of closed arcs, it is sufficient
to prove that if y is a closed arc, then B, isa G set in s*. Suppose then
that y is a closed arc of O, and let B(n) denote the set of points of B
that correspond to tracts with ends containing points at a distance greater

o0
than or equal to 117 from y. Since y is closed, B,=B— U B(n). Thus,

n=1
since B and B(r) (n > 1) are closed in s*, B, isa G, set.

Now let U denote the interior of S, lev £ denote the set of endpoints
of the components of U, and write H = U U (£ N S8). Since for each
component y of H, B, isa G,, set, we see that By is a G, set. Thus,
since B, = By U y™Y(8), B, is an analytic set in s*; and it follows from
Theorem 3 that B” is equal to B, plus a countable set, and is thus an
analytic set in s* Thus the proof of (i) is complete.

Proof of (ii). Let S be an analytic set in 2, and let 7z be the restriction
of = to B. Since 7y is continuous, z#z%(S) is an analytic set relative to B.
Thus, since B is closed in s* 7g(S) is an analytic set in s* and
BP N z51(S) is an analytic set in s*. Thus, as before, (B N ag'(S)) is
an analytic set in C. (We note that we neither need nor have that y has a
continuous extension to the complete space.) That is, the set A’ of ends of
point-tracts for values in S is an analytic set. Since the end of an arc-tract
is the end of a boundary curve belonging to the tract, it is easy to see that
for a given tract of f, the set of points of (' that are ends of arcs belonging
to that tract is closed. Thus it follows from Theorem 3 that A(S) is equal
to A’ plus a countable union of closed sets, and is thus an analytic set; and
the proof of (ii) is complete.
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The exterior linear measure 1*(S) of a set S in the plane is defined as
follows. Let ¢ be a positive number, and let F denote a sequence of
(Euclidean) discs each having diameter less than ¢ whose union contains S.
Let d(F) denote the sum of the diameters of the discs in F (possibly
d(F) = o), let I(S) be the infimum of the numbers d(F) for all such
sequences F, and let [*(S) = lim I (S). It is routine to prove that I[*(S)

>0

is an outer measure in the sense of Carathéodory (see [11, p. 43]). Thus
(see [11, remark on p. 48]), the analytic sets in 2 are linearly measurable
(that is, measurable with respect to [*). The same reference shows that
analytic sets (in £ or () are Lebesgue measurable. Thus, since the Borel
sets are analytic sets, we have the following corollary to Theorem 2.

Corollary. Suppose that f is meromorphic in D. Then

(i)" for each Borel set S C U, both I',(S) and I'(S) are linearly mea-

surable and Lebesgue measurable,
and

(ii)" for each Borel set S € 2, A(S) ts Lebesque measurable.

Remark. MacLane [7, Theorem 10] needed and proved (i)’ under the
assumption that f is holomorphic and A4 is dense on C, and I extended
MacLane’s argument [9, Theorem 1] to prove that if f is holomorphic and
S is a Borel set in £, then A(S) is a Borel set. These results were applied
-n the proofs of the theorems mentioned in Remark 3.

4. Ambiguous properties

The cluster set C, (= C,(f)) of f onthearc 7 at { ({ € C) is the set
{a € ©Q: there exists a sequence {z,} C 7 such that z, — { and f(z,) — a}.
We say that the point { is an ambiguous point of f if there exist arcs 7,
and 7, at { such that C,, NC,=¢. The fundamental result about

ambiguous points is due to Bagemihl [1], and states that an arbitrary
complex valued function in D can have only countably many ambiguous
points. Bagemihl, Piranian and Young [3] have introduced several types of
ambiguous behavior, and have shown in particular that the modular
function m, which maps D onto the universal covering surface of 2 — {0,
1, oo}, has the property that to each € C' there correspond three arcs
7, 7 and 73 at { such that O, (m)NC (m)NC, (m)=0 (the three-
arc property at ). The most nonambiguous behavior that f can have at ¢
(¢ € C) is for there to exist @ € 2 such that for each arc = at {, a € C;
in this case we call { a principal point of f (a is called a principal cluster
value of [ at (), and we let P (= P(f)) denote the set of all principal
points of f. In the case of the modular function m, P(m) = g; but we note
that the ambiguous points of m are dense on C. We precve
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Theorem 4. Suppose that f is holomorphic in D, and suppose that f
has no ambiguous points in the open arc y of C. Then P is residual on y.

Proof. Let U denote the union of all interiors of Koebe arcs of f for
the value oo, and write ¥V =y — U. Since U is open, U — U is now-
here dense in C. Thus, since U c P, U — P is nowhere dense in C.
Thus, in order to prove Theorem 4, it is sufficient to prove that V — P
is a first category set. Let y, denote one of the countably many components
of the open set V, and note that we need only prove that y, — P is a first
category set. It follows from Theorem 1 that A is dense on y,, and it is
proved in [10, Corollary 1] under the assumption that f is continuous in the
extended sense and A is dense on y, that PNy, is a G, set. Thus, in
order to prove that y, — P is a first category set, we need only prove that
yo C€ P. Suppose that this is not the case, and let 7’ be an open subarc of
yo such that PNy =g¢. If ANy has positive Lebesgue measure, it
follows from Bagemihl’s ambiguous-point theorem that some point of
A Ny" is a principal point of f. Thus, from Theorem 1 we see that y’ C
A({0}). Now let €y’ N A({0}), and let 7 be an arc at ¢ on which f
has the limit oco. Choose 0 < 4,1 oo such that each component of
{z:|f(z)] = 4,} has no multiple points, and let A, denote the component
of {z:|f(z)| > 4,} that contains all points of v that are sufficiently near .
Since y' N U = g, for sufficiently large n there is a component o, of
{z:|f(z)| = 4,} that is on the boundary of 4, separates A, from the
origin, and is such that &,NC cy’. Since p' c A({xo}), there exist
points (% and 2 in 3’ such that ¢, U {22} is a Jordan arc (or a Jordan
curve); and since { is not an ambiguous point of f, & # ¢ (j =1, 2).
Thus, ¢, and . are in different components of 3’ — {Z}. It is clear then
that oo is a principal cluster value of f at , and with this contradiction,
we see that the proof of Theorem 4 is complete.

F. Bagemihl suggested to me that the Schwarzean triangle functions
should serve to prove

Theorem 5. There exists a function S meromorphic in D that has no
ambiguous points, and has the three-arc property at each point of C. In
particular, P(S) = o.

Proof. Define the Schwarzean triangle function S as follows. Let 4
be a noneuclidean (hyperbolic) triangle in D (j c D) with angles all

having magnitude Z—, and let § map 4 conformally onto the upper half-

plane so that the vertices correspond to the points 0, 1 and oo. It is well
known (see [5, pp. 158 —162]) that we can, by repeated reflection, extend S
on A to a function § meromorphic in all of D. It is clear that S has the
three-arc property at each point of C. We prove that S has no ambiguous
points by proving the stronger statement: for any two boundary curves o«
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and B, CS) N Cx8S) # o. Suppose that this is not the case, and let «
and f be boundary curves such that C,(S) N Cy(S) = 0. Then, since
Oy(S) and Cy(S) are compact in £, there exists a Jordan curve J that
does not contain 0, 1 or oo and is such that C(S) and Cy(S) are con-
tained in different components of 2 — J. Let U denote the component
of 2 — J that contains at most one of the points 0, 1 and oo, and sup-
pose that the notation is such that C (S) € U. Since U contains at most
one of the points 0, 1 and oo, each component of S™(U) has positive
distance from C; and since C (S) € U, « is eventually (for sufficiently
large |z|) in one component of S7Y(U). Thus, we have a contradiction, and

the proof of Theorem 5 is complete.

University of Wisconsin-Milwaukee
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