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1. Introduetion

'we first prove a theorem (Theorem l) that generalizes a classical theorem
of Gross and Iversen (see [6, p. t2+]) and a recent theorem of Maclane
[7, Theorem 1t]. rt is closely related to the collingwood-cartwright main
theorem in the small [6, Theorem 16], and it is a local relative of a global
theorem in 19, Theorem 21. rn Section 3 we generalize the result of Mazurkie-
wicz [8] that states that the asymptotic value set of a function meromorphic
in the disc is an analytic set. we proye, roughly speaking, that for functions
meromorphic in the disc, the asymptotic image of an analJrtic set (in the
circumference) is an analytic set. This result is applied in the proof of
Theorem L rn section 4 we apply Theorem I to the study of ambiguous
properties, and prove that if a holomorphic function has no ambiguous
points, then it must have a principal cluster value at each point of a residual
set.

Let f be a function meromorphic in the open unit disc D : Jzl < L,
let C denote the circumference of D, and let O denote the extended
plane. We use the chordal metric d(a, b) on .(), and let I{(a, e) and Å-,(a, e)

@e Q,e) 0) denotethesets {w:d,(a,w) <e} and {w:0qd,(a,w) .--e},
respectively. We say that a simple curve B : z(t) (O <, < l) contained in
D is a bound,ary curue provided lz(t)l---> I as f --> I, and we sa,y that f
hasthelimit a@eQ) on B if f(z(t))-->o as t-+1. Theset pnC
(the bar denotes closure) is called t]ne end, of B. We call a boundary curve
withendthepoint C of c avarcat {. we saythat / has theasgmgttotia
aulue a in the sel B (§ c C) if / has the limit a an a boundary curve
that has end contained in §, and that / has the asymptotic aalue a at
C (C e C) if there is an arc at ( on which / has the limit a. Denote the set
of all asymptotic values of / in B (S c C) by J-(§) and the set of all
asymptotic values of f at points of § by fp(S). For a set s c e, let
1(§) denote the set {e e C: there exists a € § such that / has the
asymptotic value a at C\, and let A : A(Q). We say that a closed
arc y of C with endpoints f, and (, is a Koebe arc of / for the value
a @ e O) if to each positive number e there corresponds a Jordan ilrc yt
contained in {f - e I lzl ( l}, having distance less than e from both
(, and Cr, and on which d(f(z) ,a) < e @ e y,).
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2, Local asymptotic properties

Theorem l. Suytpose that the aalue a @ e Q) 'i,s not assumed, by f
arbi,traril,y near C G e C), and that there em,sts cr sequence {".\ c D such

that z^--> | and, f(",) * a. Then at least one oJ the followi,ng three statements

i,s tru,e.

(1) ,f has the asymptoti,c ualue a in etlch open a,rc

(2) e ,i,s one end of a Koebe arc oJ f fo, the ualue cL.

(3) For each posi,ti,ue n'umber t and open a,rc

y fi A(IV'(0, t)) has pos'it'iue Lebesgue measure

IV(a, e) n fÅy) ha,s pos'it'iae li,near measure.

cotltcri,n'ing e .

T containd,ng C,

(in [0,2*7), and

(See the end of Section 3 for the definition of linear measure.)

Remark 1. A special case of the collingwood-cartwright main theorem

in the small [6, Theorem 16] is the inclusion (in their notation)

p - R(f, 6)l n c$, q c x*ff , c)u @$, e),

which generalizes the classical theorem ofGross and rversen (see [6, p. t2a]).

It is clear that Theorem I is a refinement of this inclusion.

Remark 2. Since a function meromorphic and normal in D can have no

Koebe arc 14, Theorem 1], Theorem I leads to an instructive proof of the

theorem of Bagemihl and Seidel [4, Theorem 3] that states t]rat if / is

holomorphic and normal in D, then for each arc y of C, either some

point of 7 is a Fatou point of / for which the corresponding tr'atou value

is oo, or the set, of n'atou points of f on u ha§ positive Lebesgue measule.

Remark 3. Maclane [7, Theorem ll] proved that if / is holomorphic in
D and -/. isdense orr C, thenforeacharc y of C, either y n A(a\) + a

or y n A@ - { "o}) has positive Lebesgue me&sure. It' is clear that this
result is implied by Theorem l. In my thesis [9, Theorem 2] I extend.

Maclane's arguments and prove that if / is holomorphic in D, has only

finitely many asymptotic tracts for oo, and the union of the ends of the

arc-tracts of / for the value co is not, all of C, lherr A(O - {co}) has

positive Lebesgue me&sure (for the definition of »tract» see Section 3). The

proofs of this result and Theorem I are based on the same lemma [9, Lemma

21.

Remark 4. The linear measure part of Theorem I is related to theorems

given by Bagemihl [2].
Proof of Theorem 1. Suppose that (1) is false. Let ö be a positive number

such that / does not have the asymptotic value a in C n {1, - 6l < ä}'

and / does not assumethevalue a in Dn{lz- fl <2å}'Wewrite
(J: D n {1, - rl < d}, and to simplify the notation, we suppose that
z,€[] (n2L). Let /. be the component of. {z:d(l@),a) <2d,(f(z*),a))
that contains zr. suppose now that (2) is also false; then the diameter
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of /*U{l\ tends to zero &s 7?, --> @. We wish to prove that (3) is true.
Let e be a positive number, let 7 be an open arc containing 6, and let

no be such that A*o cU U y and Zd,(f(z^o), a) <e. Let /o: /^o and

öo:2d'(f(z*o),a). Then do{t, Åo is a component of /-l(-l[(a, äo)), and

Zo c tl U 7. We now prove that there exist a positive number ä' (ä' < ä0)

and some component of f-l(N(a, d')) that is contained in lo and in which

/ is bounded. away from a. Otherwise, we could choose ö" J 0 (ö, ( öo),

let D, be a component of /-l(N(o, ör)) that is contained in lo, let' D,
be a component, of I-'(N(o, ör)) that rs contained in Dr, and in this way,
define a sequence {D"} such that D, c /0, Dn*, c Do, and D, is a
component of f-l(N(a, d")). It is clear that f would have the limit o on

a boundary curve contained eventually (for sufficiently large lzl) in each

Do, and this is not compatible with the inclusion lo c U. Thus, we may
Iet ö' and A be such that (ä' < ä0) / is a component of f-L(I{(a, ö'))

that is contained in ls and in which / is bounded away from a. A proof
in [9, Proof of Lemma 2] yields

Lemma l. Suppose that f is hol,omorgthic i,n D, and' that f d,oes not

haue the asymptot'ic aal,ue q. Sulrytose that A is a component of {z : lf (z)l> 1}

i,n which f i,s bound,ed,. Then there er'ists a set E C C of Ttosi,tiae erterior

Lebesgue n'Leasure such thut there 'is a,n arc at each eio e E that i,s contained,

i,n Å and on, which f has q,limi,t at eio.

It is clear that we can apply Lemma I to the restriction of the function
I

- 
to [/ to obtain that the set y i A(N'(a, e)) has positive exterior

l-a
Lebesgue measure. Thus, since the measurability of. A(N'(a, e)) follows

from Theorem 2, Corollary (ii)', we have proved that y n A(N'(a, e)) has

positive Lebesgue measure.

We now prove that l[(o, e1n \0) has positive linear measure. Let
Z* denote exterior linear measure (see the end of Section 3). It is routine to
verify that if ?(z) is a linear transformation of A and the set R in Q

satisfies l,*(R) > 0, then l*(T(R)) ) 0. Thus, since the linear measurabi-

lity of 4(Z) follows from Theorem 2, Corollary (i)', it is sufficient to prove

that l,*(N(a, e; n J-o(Z)) ) 0 under the assumption that Q, : 6. We may
clearly suppose that f assumes a positive real value in Å0, for otherwise

we could arrive at this case by a rotation of. Q. We suppose then that
a: @ and that the positive real number zo is assumed by / at, some

point of /0. Lel h, he apositive number such that if we write L : {u * i,u :

% : 'tto, lal < hj, then L has a lifting -t* onto the Riemann surface s

of /, and Z* corresponds under f t'o a curve in /o' Since / does not have

the asymptotic value oo in O O C and / is holomorphic in /0, for
each real number z satisfying lol < h, there is a largest real number z,
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with the property that {u { ia : u, I u 4 r,l,} has a lifting onto s be-
ginning at the point of Z* over uo I i,u. ft follows that each uo { ,i,a

(lul < ä) is an asymptotic value of / in the arc y and must, because of
the choice of /0, lie in -l/'(oo, do). Wenowwrite y* : {lz - 6l < ä} n C,
and prove that f can have only countably many asymptotic values on
boundary curyes that end in subarcs of y*. Ifthis were not the case, there
would exist boundary curves fri U:1,2) with gnd yrCy* onwhich /
has the limit a;, such that y, t\ y, + a and wr * wz. We clearly may
suppose that FrU §, is a simple curve and that if we let A* be the sub-
domain of D that has §rU §rU yrU y, as its boundary, then / is
holomorphic in /*. Since ytfiyz * a, it follov's easily from Koebe's
lemma (and is obvious from the theory cf prime ends) that under con-
formal mapping of Å* onto D, §rU §, corresponds to C minus a single
point. Thus, from a well known theorem of Lindelöf (see [5, p. B8]), / is
unbounded in A*; and from a theorem ofGross and Iyersen (see [6, p.124]),
the restriction of f to /* must haye the as5,pplotic value oo. That is, /
has the as5rmptotic value w in y*, and this is not compatible with the
choice of d. Thus, since Äof'l C cy*, all but countably many cf the
points u, | ,ia (lal < h) are in -l/(oo, e) n \0); and by projection of
these points onto L, we seethat l*(-l[(oo, e) O Ir(Z)); 0. Thus,assuming
the results from Section 3, the proof of Theorem I is complete.

3. The asymptotic value sets

The main result of this section is
Theorem 2. Supgtose that f ,i,s meromorgthoc i,n D. Then
(i) for each analytic set S CC, both lo(S) and, l(S) are analyt,ia sets
i,n d),

and,

(ii) for each analyti,a set S c Q, A(B) is an analytic set in C.
We first introduce the notion of an asymptotic tract of / (for a dis-

cussion of asymptotic tracts, see 17, p. 5]). Let a € O, and suppose that to
each positive number e there corresponds a component D(r) of
f-l(N(a, e)) such that D(er) c D(er) (e1 { e2) and f) D(e) : s.

Then we say that {r(u)} is an asgmgttotic tract (or si-ply"iå,cfl o! f for
the ualue a, and call fl D1e; the end of the tract. A tract is a poi,nt-tract

or an arc-tract d"p"råirL on v'hether its end is a point or an arc of C.
We say that a boundary atrve belongs to the tract {D(e)} if for each e it is
eventually (for sufficiently large lzl) in D(e).
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We shall need
Theorem 3. With the enception oJ only countabl,g many tracts of f, each

bound,ary curue belong,i,ng to a tract has end, equal, to the end, of the tract.
Remark. Theorem 3 generalizes a (rather trivial) theorem in [9, Theorem

51.

Proof of Theorem 3. Suppose that the assertion is false. Then / has un-
countably many tracts f with the property that there exists a boundary
cuwe p(T) belonging to ? such that the end y(T) of BQ) is a proper
subset of the end K(T) of T. It follows that there exist a positive number
d, a nonnegative integer n, and an open arc y* of C with length (z f l)ä
such that for uncountably many 7 it is the case that (1, denotes length)
l\(n) - qy(T)l> ö, nö <lly(T)l < (n + I)d, and y(T) cy*. But
for any three of the tracts 7 satisfying the relation y(T) C 7*, one must
satisfy K(T) c y*; and this contradicts the relations

t\(nl> ö + tW(Tl > d + nö : t9*1.
Thus the proof of Theorem 3 is complete.

The lllazurkiewicz metric (see [8]) on the Riemann surface s of / is
defined as follows. Let P and Q be points of s, and let g(P, @) denote
the infimum over all Jordan arcs ,f on s joining P and Q of the dia-
meter (in the chordal metric) of the projection of "I onto ,f). Then (see
Mazurkiewicz l8l and Seibert [2, pp. 341-342 and footnote 5]) p is a
metric on s, the completion {s*, e} of {s, g} is a (complete) separable
metric space, and the projection mapping on s has a continuous extension
?v to s*. We write -B : s* - s.

Now let P e B, and let {P"} be a, sequence of points of s such that
Q(P, P") -> 0. For each positive number e, leh A(P, e) be the component
of s over N(n(P), e) that contains all but finitely many of the points P,.
It is clear that /(P, e) does not depend on the choice of {P"}. Let D(P, e)
be the subset of D trhat corresponds under f to Å(P,e). Then {D(P,e))
is an asymptotic tract of J for the value z(P), and it is clear that the
correspondence P<-+{D(P, e)} is one-to-one. We let BP denote the set of
points of B that correspond to point-tracts of /. It is clear that for each
positive integer n, \he set of points of .B that correspond to arc-tracts

with ends having length greater than or equal to I is closed in s*. Thus,

Bp ,i,s a Gu set in s*. Let y(P) (P € BP)denote the point of C that is the
end of the tract of / corresponding to P. Then rp ,i,s continuous on BP.

In the following proofs we make repeated use of the facts that (in O
or C) a Borel set is an analytic set, and the union or intersection of two
analytic sets is an analytic set (see [3, pp. 212-213]).

Proof of (i). Let § be an ana\rtic set, in C. Since rp is continuous, it is
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elementary that 9-1(§) (: {P e BP : y(P) € §}) is an analytic set, relative
to BP. Thus, since BP is a G, set in s*, ?-'(§) is an anal;rtic set, in s*.
Now iet B' be the set of points of B that correspond to tracts 7 with the
property that there is an arc at some point of § that belongs to T. It
fcllows from Theorem 3 that B' is equal to rp-l(§) plus a countable set, and
is thus an anal;rtic set in s*. Since B' is an analytic set in the complete,
separable metric s* and z is a continuous mapping of B' onto l-"(§)
(which is contained in the complete, separable metric space J2), it follows
that Ir(§) is an analytic set (see [13, p. 219]). (Mazurkiewicz [8] used z
to prove that j-(C) is an analytic set.)

Now let B" denote the set of points of B that' correspond to tracts 7
with the property that there is a boundary curve that belongs t,o 7 and
has end contained in §; then n(8") : J-(§). As in the argument just given,
in order to show that J'(§) is an analytic set,, it is sufficient to prove lhat B'
is an ana§tic set in s*. For a set H cC, let B* denote the set of points
of B that correspond to tracts with ends contained in H. We now prove
that i,f y 'is an arc of C, then B, is a Guo set in s*. Since we can write
any arc as the union of an increasing sequence of closed arcs, it, is sufficient
to prove that if y is a closed arc, then B, is a Gu set in s*. Suppose then
that y is a closed arc of C, andlei B(n) denote the set of points of B
that correspond to tracts with ends containing points at a distance greater

I-
thanorequalto I from 7. Since 7 is closed, Br:B- U B(z). Thus,

'lb n:l
since B and B(n) (n 2 t) are closed in sx, B, is a G, set.

Now let U denote the interior of §, lel Z denote the set of endpoints
of the components of U, and write H : U U (Z n §). Since for each

component y of H, B, is a Guo set, we see t'hat B, is a Gro set' Thus,
since B": Bu U p-t(§), B, is an analytic set in s*; and it follows from
Theorem 3 that B" is equal to B" plus a countable set, and is thus an

analytic set in s*. Thus the proof of (i) is complete.
Proof of (ii). Let § be an analytic set in 0, and let n6 be the restriction

of n to B. Since z, is continuous, z!-1(§) is an analytic setrelativeto B.
Thus, since B is closed in s*, zr-1(B) is an anal;rtic set in 8*, and

BP O za1(§) is an analytic set in s*. Thus, as before, ,tt(B'n 2"1(§)) is

an analytic set in C. (We note that we neither need nor have that Tp has a

continuous extension to the complete space.) That is, the set A' of ends of
point-tracts for values in § is an analytic set. Since the end of an arc-tract
is the end of a boundary curve belonging to the tract, it is easy to see that
for a given tract of f, the set of points of C that are ends of arcs belonging
to that tract is closed. Thus it follows from Theorem 3 that -4(§) is equal

to A' plus a countable union ofclosed sets, and is thus an analytic set; and
the proof of (ii) is complete.
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The exterior linear measure 7*(§) of a set § in the plane is defined as

follows. Let e be a positive number, and let f denote a sequence of
(Euclidean) discs each having diameter less than e whose union contains §.
Lef d,@) denote the sum of the diameters of the discs in .X'' (possibly
d(I) : oo), iet l"(B) be the infimum of the numbers d,(E) far all such
sequences -n', and let l*(B) : 

lrS 
r,(§). It is routine to prove that l*(§)

is an outer measure in the sense of Carath6odory (see pI, p. a3]). Thus
(see [I, remark on p. 48]), the analytic sets in Q are linearly measurable
(that is, measurable with respect to l*). The same reference shows that
analytic sets (in Q or C) are Lebesgue measurable. Thus, since the Borel
sets are analytic sets, we have the following corollary to Theorem 2.

Corollary. Suppose that f is meromorphic in D. Then
(i)' lor each Borel sef § c C, both Io(S) and, l(S) are li,nearly ntea-
surabl,e and, Lebesgue rneasurable,

and,

(ii)' Jor each Borel, set S c Q, ,4(,S) ,is Lebesgue measurabl,e.

Remark. Maclane [7, Theorem 10] needed and proved (ii)' under the
assumption Lhat f is holomorphic and -4 is dense on C, and I extended
Maclane's argument [9, Theorem l] to prove that if / is holomorphic and
B is a Borel set in !2, then /.(§) is a Borel set. These results were applied
- n the proofs of the theorems mentioned in Remark 3.

4. Ambiguous properties

The cl,uster set C, (: C"(f)) of f on the arc r at t (f € C) is the set

{a e Q: there exists a sequence {"") c z such that, z^-> ( and f(2") ---> a}.
We say that the point ( is an ambi,guous pto'int of f if there exist arcs zr
and 12 at' 6 such that C,r(1 C,r: a. The fundamental result about

ambiguous points is due to Bagemihl p], and states that an arbitrary
complex valued function in D can have only countably many ambiguous
points. Bagemihl, Piranian and Young [3] have introduced several types of
ambiguous behavior, and have shown in particular that the modular
function m, whic}n maps D onto the universal covering surface of () - {0,
1, oo), has the property that to each 6 € C there correspond three arcs
rr, 12 and rs at e such that C,r(m) n C,r(m) n C,r(m) : a (t}r,e three-

arc property at C). The most nonambiguous behavior that f can have at (
(f €C) isfortheretoexist o€O suchthatforeacharc r at [, ae C,;
in this case we call f a pri,nci,pal gtoint of f (a is called a princi,gtal cluster
aalue of f at f), and we let P (: P(/)) denote the set, of all principal
points of /. In the case of the modular function m, P(m) : b; but we note
that the ambiguous points of m ate dense on C. We prcve
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Theorem 4. Suppose that f is hol,omorTthi,c in D, and, suppose that f
hasnoambiguousptoi,ntsintheogtenarc y of C. Then P isresid,ualoru y.

Proof. Let U denote the union of all interiors of Koebe arcs of f for
the value oo, and wÅte V U-. Since U is open, U - U is now-
here dense in C. Thus, since U cP, U - P is nowhere dense in C.
Thus, in order to prove Theorem 4, it is sufficient to prove that V - P
is a first category set,. Let 7o denote one of the countably ma,ny components
of the open set V, and note that we need only prove that yo - P is a first
category set. ft follows from Theorem I that /. is dense oL yo, and it is
proved in 110, Corollary l] under the assumption that / is continuous in the
extended sense and -4 is dense on yo that P O yo is a G, set. Thus, in
order to prove that To - P is a first category set,, we need only prove that
ToCP. Suppose that this is not the case, andlet y' beanopensubarcof
To such that P (1 y' : 6. If A n y' has positive Lebesgue measure, it
follows from Bagemihl's ambiguous-point theorem that some point of
A fi y' is a principal point of /. Thus, from Theorem I we see that 7' C
Z-({co}). Now let e e y'il({oo}), andlet z bean arcat ( onwhich /
has t'he limit oo. Choose 0 < ,tr, t oo such that each component of
{z:lf(z)l: }',} has no multiple points, and let /* denote the component
of {z : lf@l > )",} that contains all points of z that are sufficiently near (.
Since y' (1 U : a, for sufficiently large n therc is a component o, of
{z: lf(z)l : 1,) t}r,at is on the boundary of Ån, separates /. from the
origin, and is such that o^nO cy'. Since y' cÄ({@}), there exist
points 6l and e|, io y' such that o^U {e1,11} is a Jordan arc (or a Jordan
curve); and since ( is not an ambiguous point of /, C*+ C (j: t,Z).
Thus, (| and C2, are in different components of y' - {4}. It is clear then
that oo is a principal cluster value of f at C, and with this contradiction,
'we see that the proof of Theorem 4 is complete.

F. Bagemihl suggested to me that the Schwarzean triangle functions
should serve to proYe

Theorem 5. There eri,sts a function S meromorpthin i,n D that has no
amb'iguous po'ints, and, has the three-arc propertg at each point of C. In
particular, P(S) : a.

Proof. Define the Schwarzean triangle function § as follows. Let A

be a noneuclidean (hyaerbolic) triangle in D Q c D1 with angles all
?l

having magnitude Z, and let § map / conformally onto the upper half-

plane so that the vertices correspond to the points 0, I and oo. It is well
known (see 15, pp. 158-1621) that we can, by repeated reflection, extend §
on / to afunction § meromorphicin allof D. ftisclearthat § hasthe
three-arc property at each point of C. We prove that § has no ambiguous
points by proving the stronger statement: for any two bound,ary curaes o(
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and, P, C"(S) n Cu@) * o. Suppose that this is not the case, and let a
and 0 b" boundary curves such that C"(/S)n CIS): a. Then, since
C,(§) and Cp(^S) are compact in Q, there exists a Jordan curve "I that,
does not contain 0, I or oo and is such that C"(§) and Cp(§) are con-
tained in different components of Q - J. Let [/ denote the component
of O - J lhat contains at most, one of the points 0, I and oo, and sup-
pose that the notation is such that C"(§) c [/. Since U contains at most
one of the points 0, I and co, each component of B-'(U) has positive
distance from C; and since C"(B) c U, x is eventually (for sufficiently
large lzl) in one component of §-1(U). Thus, r,r,e have a contradiction, and
the proof of Theorem 5 is complete.

University of Wisconsin-Milwaukee
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