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On Runge’s General Rule of Signs *

Introduction
1. For a finite sequence of real numbers u;,...,% we denote
by the symbol V(u,,...,w) or V(x;) the number of the variations

of sign in this sequence. In computing this number all vanishing wu,
can be deleted, further the symbol has by definition the values 0 if
only one or none of the w, is ==0.

We have then obviously

) 1 = Vg, ooty ) — Viug,oooyu) — Vg, ...,wm) =0

In particular the difference in (1) has the value 0 if w, == 0. Further
we have., if w; u == 0, the relation

(2) Vi, .o oo y) = ——— (mod 2) .
which is verified immediately.
2.  For a fixed real polynomial f(x) of exact degree = we denote

by V., the number of the variations of sign in the complete sequenc: of
the derivatives of f at «,

(3) Ve = V(f@) .f(@),....["a«)).
Then the famous Theorem of Budan—Fourier consists in the inequality
(4) Vo— Vs = N(a,b) (a <b)

where under N(a,b) is understood the total number of roots of f(x)
in the interval a« <x =b. counted with their multiplicities. As a
matter of fact, the Theorem of Budan— Fourier contains a further assertion,

* This investigation was carried out under the contract DA-91-591-EUC-2824 of
the US Army with the Mathematical Institute of the University of Basel.
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namely, that the difference between both sides of the inequality (4) is even,
so that we can write

(5) Vi—Vy = N(a,b) + 24(a,b),

where A(a,b), the BF-defect of f, is a non-negative integer. How-
ever, this follows easily from (2).

3. Both V.,— ¥V, and N(a.b) are additive interval functions of
the half-open interval (a,b), and the total value of V.— V. over
the whole real axis is n, while that of N(a,b) is the total number of
real roots of f(x). Therefore, A(a,b) is a non-negative interval
function whose value over the whole real axis is equal to the number of
couples of conjugate non-real roots of f(z) .

4. From (5) it follows now that if f(x) has only real roots we have
equality in (4). However, the practical usefulness of the formula (5) with
this interpretation of A(a,b) goes beyond the above corollary. Indeed,
if by some special argument we can localize a set of intervals J, over
which A(a.b) already assumes its maximal value it follows that for
any interval (a,b) without any point in common with the intervals J,
we have the formula (4) with the equality-sign. A corresponding partial
improvement in the formula (4) is possible whenever we succeed to find a
set of intervals J_  over which A(a,b) is positive.

7

5. The numbers f®(a) used in (3) are essentially the coefficients
of the Taylor development of f(x) at . This development is a special
case of the general Newtonian development of f(x) arising from the
general Newton interpolation formula. Consider a sequence of »n num-
bers a;,...,x. and put

6) P& = (b—a)...(f—2) (r=12,...,n), Pyé)=1.
Then the development in question is
(7) f(E) = (‘oPn(§)+a1Pn_1(5)+~--;(’nP0(5),

where the coefficients a, are uniquely determined by f(§) and the
sequence x, .

The reader may be reminded here, although we will make no use of this
in the following discussion, that the coefficients a, are obtained by
forming Newton’s devided differences both in the case of distinet , and
in the case that the values of some of the x, coincide.



A. M. OstrowsKI, On Runge’s general rule of signs 5

6. We assume in what follows until the end of this introduction that

the numbers «, in (7) are all real and consider another set, of such real
numbers ¥;,..., 4. and the corresponding polynomials

8) Q) = (E—y)...E—y) (r=1.2....0), Q) = 1.
Developping f(§) in @,(5) we have

(9) J(&) = by Qu(&) + by @, (5) + ... + ba Qp(8) -
Then Runge’s General Rule of Signs is the
Theorem I. Suppose that we have in (6) and (8)

(10) a = Maxz, < b = Myin Y,

v

then it follows for the coefficients «, and b, in (7) and (9)1)

2

(11) Via,) — V(b,) = N(a,b).

7. The special case of the Budan—Fourier Theorem is obtained from
the Theorem T if all x, become =a andall y, become =025b.

Runge’s method of proof of the Theorem I is of particular interest since
it is based on the generalisation of the process of the so-called synthetic
division to the polynomials given in the form (7) (Theorem III). On
the other hand, the detailed working-out of this idea becomes in Runge’s
presentation very complicated, since Runge tries to prove everything anew
inclusive the classical Budan—Fourier case. However, the proof can be
considerably simplified if we assume the Budan—Fourier as given. Then
Runge’s Theorem follows immediately from the following Fundamental
Lemma:

Theorem II. Assume that we have in (6)—(9):

(12) yuzxf ('U,V-_—'l,2,...,n);

—_ »

then it :follozvs
(13) V(e = V(,).

1) A special case of this Theorem corresponding in a certain sense to the assumption
that either all =z, are = —oo or all y, are = oo has been published with
Runge’s permission 1914 by G. Pélya (G. Pélya: Uber einige Verallgemeinerungen der
Descartesschen Zeichenregel. - Arch. Math. Phys. (3) 23, 1914, pp. 22—32) who gave
an elegant direct proof in this case. Following up some indications by G. Pélya in
the paper quoted, I unearthed the Theorem I from a manuscript of Runge’s course
given at the University of Gottingen in Summer 1907 and edited the corresponding
parts of this manuscript with the necessary corrections and developments (see Carl
Runge: Eine Vorzeichenregel in der Theorie der algebraischen Gleichungen. Aus einem
Vorlesungsmanuskript von Carl Runge herausgegeben von Alexander Ostrowski. -
Jber. Deutsch. Math. Verein. 66, 1963, pp. 52— 66).
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8. Beyond that, by means of the Fundamental Lemma we can make
use of the advances which have been made in the direction of the Budan—
Fourier Theorem in the last 100 years and obtain some corresponding
generalisations in the case of the general Newton—Runge set-up. See in
particular the Theorems V (sec. 21), VI (sec. 27), VII (sec. 32) and VIII
(sec. 41).

Generalized Synthetic Division

9. If the polynomial f(§) is given in the form (7) we have, fer a
parameter y == & identically

e, a,

1) = a P+ ay P o) + oA apy Py(d) + p—

where the a, depend on .
Multiplying this on both sides by &—y we have

n—1

(15) f&) = 2 a Py () (€ —y) +a,

10. Putting in this identity &=y we obtain
(16) a, = fy)
On the other hand, decomposing the factor &—y in the »-th term of

(15) in  (§—=,_,) — (y—x,_,) Wwe have

n n—1
(17) f&) = Z a, P,_(§) — X a, (y—=,.,) P, 1(§)

»=0

where the term «, has been taken into the first richt-hand sum as the
term corresponding to v =mn.

The second right-hand sum becomes, if we introduce »-+1 as the new
summation variable and denote it again by v,

Zn ai"——l (y—_xn—v-{—l) Pn——y(f) .
y=1

Introducing this into (17) and taking the term of the first sum corresponding
to » =0 separately we obtain

A8 f©) = 6 PO + 3 (@~ ) €iy) Pus(9)
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11.  Comparing this development of f(&) with (7) we obtain
(19) a, = a,, a,=da, , (y—a, ) +a, (v=1..... n).

We have now immediately the

Theorem III. [n the formula (14) each a, (v=10..... n) is a
polynomial of evact degree v in y and these a, can be computed
recurrently by (19). In particular, we have a, = f(y) .

The practical computation of f(y) and of all other coefficients «,
can be carried out using Runge’s diagram:

o ay a, a, (tn
’ ’ ’ ’ P
(20) a, (y—x,.ﬂ)r. Lo, (y~.r,r,7_z*l)‘.”. sy (g{j:z"g) Uy };7{_951)_
ag ay ... a, e al_, a,

Monotony of the variation number in Synthetic Division

12 We assume now that all ., are real and that the parameter y
in (14) satisfies the condition

(21)

Under this hypothesis we will then compare 1(a)j with Vi(a,).
We use for this purpose the following

Lemma. If in a sequence wg.uy.....un we replace for a v =1
and a p =0 the element u, by

(22) u, = pu,_, +u, (r=1. p=0).

the number of the variations of sign in our sequence does not increase.

13.  Proof. Indeed, the assertion is evident if u, = 0, since then
u, is either = 0 or has the same sign as u,_, . Further, if w, == 0
and wu, has the same sign as u, the assertion is evident too.

On the other hand, if w, is %= 0 and u:, is either 0 or has the
opposite sign to that of u, . then we must have a variation of sign between
u,; and w, which is lost if we replace u, by w«. while to the right
of wu, at the most one variation of sign could be won. This proves our

Lemma.

14. We consider now a real sequence «¢,.¢;...., ¢, undergoing
the transformation analogous to (19)

‘ ’ ’ 4 " 4
(23) Cy = Cp, ¢, = ¢, (y—x,_,.;)+c, (vr=1,...,n)
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into the sequence

¢ 4 ’ !
(24) 60!617--'70

n °

This transformation can be considered as effected by means of =» con-

secutive transformations 7', (% =1,...,n) given by
] e, ¢ c c, ¢
.. 3 : c
_ 0 1 - G G, Gy - Cn
(20) Tz I ’ ’ 7 ’ ‘
o €1 ... Coq C, Coy Cn

The transformation 7', consists in replacing the one element ¢, by
¢, =,y (Y—T_p1) +C, .

Under the condition (21) the Lemma of the section 12 can be applied
then to the transformation 7', and we see that the number of the varia-
tions of sign is not increased by this transformation.

15. But then the same holds for the transformation of all ¢, into

v

the ¢, and even, more generally, for the transformation of the first row of

Cg €1 -+ €, €y ... Cn
(26) { 0 , (x—1,....n)
Co € .en €, Coiy ... Cn

into the second row.
We obtain the
Theorem IV. If the sequence ¢o,¢y,...,cn 15 transformed by (23)

. ’ ’ ’ . . . .

into the sequence ¢y ,Cy ,...,C,, the number of the variations of sign in the
sequence ¢y, Cy,-...Cn 1S not smaller than the number of the variations of
sign in the second row of (26), for »=1,2.....n.

Proof of the Fundamental Lemma

16. We go from (7) to (9) in = single steps. dividing f(§) for
r=0,1,....,n by Q/):

(27) f= 4.0, + B, (r=0.1...., n; By=0),
where the degree of B,(£) is = r—1 and that of A (§) exactly
= n—y.

Develop. putting n—r = m, A(§ in P, and B/ in @,:
A4, = agPu+ ... +onPy, B, =+ ...+ .10,
and consider the sequence

(28) Qg s e v vsOmeys&msfPos-nes B (n—v=m).
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For » =0, (28) coincides with (a,) in (7), and for v =n with
(b,) in (9). It is therefore sufficient to show that the number of variations
of sign in (28) does not increase if we go from » to »+1.

17. Indeed, dividing A4,¢&) by &—y,,, Wwe can write
(29) A, = E—tn) A + 20
and, putting this into (27),
f= A0+, @ + B,

’

so that we have B,., = «,Q,+ B,, 4,,=4_,.
If we put then

7

! ’
A, = Py + oo s
the sequence (28) corresponding to »--1 becomes
’ ’ !
(30) P Y (Y /P SR

And here the oc;‘ are obtained from the «, by (29), that is by Synthetic
Division.

If we identify the sequence (28) with the sequence ¢5,¢;....,¢n in
(23) and apply to the ¢ the transformation (23) with y=¢ and z,_,.,
=y, ,, We obtain a sequence ¢ Cr....,c, and the sequence (30) is

identical with

7 ’
CosevosCmsCmuilseeesCn.

From the Theorem IV. applied for x = m , it follows then that the
number of the variations of sign is not increased, going from (28) to (30),
and the Theorem II is proved.

Proof of Theorem I

18.  We have, under the conditions of the Theorem I, if the develop-
ments (7) and (9) are compared with the Taylor developments at « and
b, by the Theorem II:

V)=V, =V, = Vb, .

vl = a

where V., V, are defined by (3).
We have therefore

I/v(av) - V(bv) 2 Va - Vb ’
and (11) follows immediately from (4). The Theorem I is proved.
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The Parity Discussion

19. The inequality (11) contains though (4) but, of course, not the
relation (5). It is therefore of interest to discuss under what conditions
both sides of the inequality (11) have the same parity:

(31) Via,) — V(b,) = N(a,b) (mod?2).
We assume in this discussion that «,b. &= 0 that is
(32) fl@y) &= 0, fy) = 0.

Further it can be assumed without loss of generality that @, =b,= 0.

20. Then we have from (2)

Via,) — V(b,) =

On the other hand, obviously

son a, — sen b, sgn f(x;) — sen f(y;)
sen 5 g = e J@) )—gfL = N(x;.y,) (mod2).

and therefore
(33) Via,) — V(b,) = N(x;,y,) (mod?2).
We see that necessary and sufficient for (31) is the congruence
N@,y) = N(@,b) (mod2),
that is
(34) N(@y.a) = Nb.y,) (mod?2).

21.  (34) is certainly satisfied if we have in particular

(35) Ny, a) = N Y1) = 0.

A more symmetric sufficient condition is obtained if we introduce the
smallest closed interval <{a;,...,2,> containing all x,....,2, and
the correspondingly defined interval <y, ,...,%.>: then we have the

Theorem V. Under the conditions of Theorem I and in the hypothesis
(32), the condition (34) is necessary and sufficient for the relation (31). In
particular, the relation (31) certainly holds, if the intervals {ay, ..., %)
and Yy, ..., Yny are free of the roots of fl(x).
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22.  As the relation (5) holds also if f(a) or f(b) vanishes one
could expect that the condition (32) is not essential in the above discussion.
However, the following counter example shows that the analogy can break
down if (32) is not satisfied.

Consider the polynomial

and take
X=Xy =y = =1y =0,y = yy = 2.

Then we have on the one side N(—1.,0)= 1. On the other side, we
have from the Taylor development at —1: TF(«,)= 3, while the
development corresponding to (9) is

f=0s—0Q = §(E=2—¢

and therefore V(b,) = 1. We see that in this case both sides of (31)
have not the same parity.

Specialisations of Theorem I

23.  Take in the formula (11) all b, equal, by =b,=...=0b,=25
with a b greater than all roots of f(&). f'(&),....f" (&) . Then we
have

Vi) =V, = 0, N ,b) = N(a. o)
and (11) becomes
(36) N, ©) < Vi(a,),

the special case of Runge’s Rule of Signs published and proved directly in
G. Pélya’s above mentioned article. From our discussion in the sections
19—21 it follows further that if f(x;) == 0, then the necessary and
sufficient conditions for the both sides of (36) to have the same parity is

(37) N@,,a) = 0 (mod 2).
This is in any case satisfied if we have

(38) v, =x, (v=2,...,n), Sf@) = 0.

24. In the completely symmetric manner we obtain another specialisa-
tion of Runge’s Rule (cf. Pélya’s above mentioned article)

(39) N(—w,0) = V(©,),
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where the b, are given by (9) and b by (10). If f(y) #+ 0, the
condition

(40) Nb,y;) = 0 (mod2)

is necessary and sufficient in order that both sides of (39) have the same
parity. And this is certainly the case if

h =y (r=2,....1m), fly) = 0.

25. Consider now the case where for a fixed 2 > 0
=D, Ty=p +h, ..., ‘m=p+m—1h=a.
hh=q=0b, y=q+h, ..., Yo =q + n—1) h .

Since we have the general Newton—Gregory formula

R e e N N N N L]

where the differences " f(«) correspond to the step /. it follows for
the coefficients in the developments (6) and (8):

A" f(p) b A" f(q)

T A

We obtain now from the Theorem I the
Corollary. If ¢ — p > (n — 1)k for a positive h then we have

41) N+ @m—1)h,q) = V& f@)— V& fl@) (¢—p=>@m=1h.

In the special case that the difference g—p is a multiple of 7 this
result has been stated by N. Obreschkoff (N. Obreschkoff: Sur les racines
des équations algébriques. - Annuaire Univ. Sofia Fac. Sci. Phys. Math.
Livre 1 Math. 23, 1927, pp. 177—200; cf. also Obreschkoff’s book: Verteilung
und Berechnung der Nullstellen reeller Polynome. - Hochschulbiicher fiir
Mathematik 55. Deutscher Verlag der Wissenschaften. Berlin. 1963, pp.
116—118).

Reality Discussion

26. It has been already mentioned in the section 4 that we have
equality in the Budan—Fourier formula (4) if f(§) has only real roots.
Since the inequality (11) of Runge’s Rule has been obtained from (4) it can
be expected that for polynomials with only real roots the formula (11) could
be proved with the equality-sign in some important cases.
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As a matter of fact, more general results can be derived if we use the
formula (5) and restrict ourselves to the subintervals of the real axis on
which 4, the BF-defect of f, wvanishes.

Put under the hypothesis of Theorem I
(42) A = Minz, , B = Maxy, .

Then we have, considering the Taylor developments of f(§) at 4,
a,b, B, and using the Theorem II

Vy = Vi) =V, =2V, = Vb)) = Vg

and therefore '
(43) V,—Vy = V(a,)—V®,) =V, —V,.
From (43) it follows, subtracting N(a,b) from the 2-nd and the 3-rd
term of the inequality and using (5),
(44) Via,) — V(,) — N(@,b) = 24(a.b),

and in the same way, subtracting N(4 ,B) from the first and the 2-nd
term of the inequality (43),

(45) 24(A,B) = V() — V(b,) — N4 .B).

27.  We have now the following

Theorem VI. Assume that under the hypothesis of Theorem II all =,
and 1y, are contained in an interval (c ,C) , open from the left and closed
from the right, for which the BF-defect vanishes, A(c.C) = 0.

Then we have

(46) N4, B) = Vi) — V() = Na.b),
and f

(47) N4 ,a) = Nb,B) = 0
holds, even

(48) V(a,) — V(b,) = Na,b).

28. Indeed, from our assumption about A(c,C) follows that
A4(A ,B) = A(a,b) = 0 and therefore (46) is an immediate consequence
of (44) and (45).

Further, (48) follows from (46) if N(4,B) = N(a,b) and this is
certainly true under the hypothesis (47).
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In particular, (46) holds if f(£) has only real roots.

29.  Consider for instance the case where

y=a—m+l, vy=a—-n+2, ..., =x =a—1, X = a;

n—1

==, Yo =b+1, iy Yo, =b+n—2, yp=0b+n—1.

Then the developments (7) and (9) are the corresponding Gregory — Newton
developments with the step h =1

E—at+n— 1‘)

P J —_—

=10

f&) = i A fla—n—+1) (& = f‘*jrf(b) (S:b‘);

and therefore
(m—y)!a, = A" fla—n-+1), (n—r)lb, = A" f() .
Since 4 = a—n-+1, B = b+n—1 we have
V(A fla—n-1)) — VL f®) = N(a.b).

if f(&) has only real roots, if b—a is greater than n—1 and if there
are no roots of f(£) in the intervals (¢a—n-+1.a)>, (b,b+n—1).

Generalisation of Obreschkoff’s Theorems

30. For a fixed real polynomial f(£) of exact degree n, a real
a and a non-negative m,. we denote by M(a,m,) the number of
roots w of f satisfying the condition:
49 | "
(49) arg (w—a)| < e
where w = a is not counted even if « is a root. and by JI(b, ms)
the number of roots w . satisfying the condition:
_ ‘ 7
(50) arg (b—w)l = -
where b = w is counted with its multiplicity, if & is a root.

Further, the number of rcots w of f(&) satisfying both conditions
(49) and (50) will be denoted by N(a,b, m,, ms) .

If m, in (49) or m; in (50) becomes = 0, the corresponding
conditions become meaningless and have to be disregarded in the definition
of the above symbols.
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31.  Using these notations and those of sections 2 and 6, Obreschkoff’s
Theorems in question are given by:
A. We have for real a <b

(51) Na,b,.n—V,, V) < Vo—1T, (a<<b);
B. We have for any real a,b

(52) Ma,n—V,) = V,, Mb.Ty) =n—Vy;
C. If for a real a we have

(53) p = Mla,n+2—p), n—p = M, p+2),

then it follows V.= p?2).

Obreschkoff’s relation (51) generalizes the Budan— Fourier inequality (4)
very considerably; while N(a,b) in (4) is the number of real roots in
the interval (a,b) . the left side expression in (51) is equal to N(a , b)
plus the number of the non-real roots inside of the quadrangle of the Fig. 1,
svmmetric to the real axis.

Fig. 1

32.  From the Theorems A, B, C we will derive, applying the Funda-

mental Lemma:
Theorem VII. We have in the notations of the sections 2, 6 and 30:

(54) N(a,b,n—V®,), V(@) < V(@)— V@) (a<b),

and

(55) Ma.n) < Vi), J(A,n) =n—Ta,):

%) Cf. the exposition in Obreschkoff’s book quoted in sec. 25, which contains also
a complete bibliography. As a matter of fact, in Obreschkoff’s formulation L. c. p. 83,
b, if it is a root, is still not counted in the left side expression in (51). However, the
inequality including b is obtained immediately from that given by Obreschkoff
by a continuity argument.
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further, if we have
(56) M@,2+n—p) = p, MA,24p) =n—p,

and mo roots of f satisfy the condition |arg (A—w)| =z | (2-+p) or licin A,
then agan == 0, V(a,)=p, and forany a, =0 wehave a,,a,, <.

33. Proof. Defining ¢ and b by (10) we have (51). The right
hand expression of (51) is, in virtue of (43), majorized by V(a,) — V,).
On the other hand, by the Theorem II, V, = 7V(,), n—V, =
n —V(b,), so that the quadrangle corresponding to the left side expression
in (54) is contained in that corresponding to (51). This proves (54).

To derive (55) from (52), take in (52) b = A and observe that we have

n— Ve < n, Visn

and that, by the Theorem II,

34. To prove the last assertion of the Theorem VII observe that under
the hypothesis (56) all roots of f lie inside of the two angular domains
of Fig. 2, symmetric to the real axis.

Fig. 2

But then we have from (56)
Ha.2+p) = n—p,

and C, applied to a, gives Vo=1p.
On the other hand it follows from (56)

NA.,2+n—p) = p.

and C, applied to A, gives V,=p. Since, by the Theorem 1T,
V(a,) is contained between V. and V,, we see that V(a,) =1p.

35. Introduce now the polyncmial

f&) = (=1 f(=§).
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for which we have obviously from (56):
J(—a,2+n—p) = p, M(—A,2+p) = n—p
so that, for f, we have to replace p by n—p.
On the other hand, replacing & by --&, in (7), and multiplying
on both sides by (—1)* we obtain:

n i3

J& = Y (—1ya,P _ &, P = (=P8 = T[E+r2),

=0 r=1

so that here the x, are to be replaced by the —z, and the a, by
(—1) a,. Applying then to f(§) the part of the Theorem VII which is
already proved, we obtain V((—1)a,) = n—p. and therefore

(57) Vie,) + V((—1)a,) = n.

The last assertion of the Theorem VII will therefore follow immediately
from the corollary of sec. 40 from Gauss’ Lemma which we now proceed
to formulate and to prove.

Symmetriec Variation Numbers

36. For a sequence

(58) oo Ay . - oo Uy
we put
(59) W(a,) = Via,) + V{(—=1)"a)

and call W(a,) the Symmetric Variation Number of the sequence a, .
Here, the exponent of (—1)" at «, is the order number of «, in the
sequence, diminished by 1.

If none of the @, vanishes, V((—1) «,) is the number of perma-
nences in the sequence «,., so that then W(«,)=n.

If we replace then some of the «, by zeros the variation numbers
cannot increase, so that we have:

(60) W(a,) = n, W(a,) =mn {(a, +=0).
Further, if an a; == 0 we have obviously

(61) Wa,) = Wiag,...,a)+ W(ar, ..., an) (ar 2= 0).

37. If we have in the sequence of the «a,

(62) a =0, @, =...=a.,=0, @, 0.
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we have here a gap of the length p. bridged over by a variation if
ar . < 0. or by a permanence if apa,_,., > 0: this gap is called
odd or even according its length p is odd or even.

Then the gist of an argument due to Gauss and published in 1828
(C. F. Gauss: Beweis eines algebraischen Lehrsatzes. - J. Reine Angew.
Math. 3, 1828, pp. 1—4, reprinted in Carl Friedrich Gauss Werke IIL,
Konigliche Gesellschaft der Wissenschaften zu Gottingen, 1876, pp. 67—70)
can be formulated as the

Gauss’ Lemma. Assume that we have in (58) aya. + 0 and denote
by x the total number of odd gaps bridged over by variations, by f the
total number of odd gaps bridged over by permanences and by A the sum of
lengths of all gaps in (58). Then we have

(63) n— W) = 2 —x+ 8.

Proof of Gauss’ Lemma

38. If the gap (62) is an even one we leave out all vanishing elements
W1y, and reduce thereby = by p. On the other hand, as
the parity of the indices is not changed, the value of W(a,) is not changed
either, while 1 is diminished by p». so that on both sides of (63) p
is substracted. We can therefore assume, proving (63), that there are no
even gaps.

If the gap (62) is odd and its length p is > 1. then we leave from
(58) p—1 first elements of this gap. @ ,.....0. , . Again. n
and A areboth diminished by p—1, while,as p—1 iseven. I(q,)
is not changed. As we can proceed in this way with all odd gaps. we can
assume now that there exist only odd gaps and that each of them has the
length 1. But then we have obviously 4= x—p so that the relation
to prove becomes

(64) n— W(a,) = 28

39. If we have now « = 0, consider the decomposition
(65) W(a,) = W(ag,....aq_)+ Wi_y,ar,a, ) + Wiy, ... ).

If this gap is bridged over by a variation, so that a, ; ¢, , <0 we have
obviously

W(a,_y.ar, q,) = 2.
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and this remains true, if we replace . by any number = 0, say by
1. We see that all odd gaps bridged over by a variation can be filled up
without changing W(a,). We can therefore assume. in proving (64) that
all gaps @, = 0 which remain are bridged over by a permanence,
@,y @ > 0. But then, if we replace @ by 1 we have

W(w_y .0, a,.) = 0, Wi(a,_, .1 c) = 2

so that W(a,) isincreased by 2, while A isdiminished by 1 and
both sides of (64) are diminished by 2. In this way we can reduce the
proof of (64) to the case that there are no gaps at all and then (64) follows
immediately from (60). Gauss’ Lemma is proved.

40. Corollary. Necessary and sufficient in order that we have W(a,) = n
is that aya, == 0 and that the only gaps in (58) are gaps of the length 1
bridged over by a variation.

Proof. If ay=10 or a,=0, n could be replaced in (60) by
n—1. so that obviously aya. == 0 is indesd necessary. But then it
follows from (63) that we must have

J—x+ B =0

while the total length 7 of all gaps is certainly = x+p8. Therefore,
we must have in any case =0 and /= x, and thisis already also
sufficient. But 4 = 1 signifies that the only gaps which exist are those
of the length 1 counted in . which is the assertion of our corollary.

41.  In Gauss’ paper referred to in sec. 37 the expression 4 — x + 8
in (63) was derived as a lower limit for the number of the non-real roots of
the equation aya™ 4+ @, 2" + ...+ a, = 0. Correspondingly a simi-
lar result holds for the equation f(§) =0, if f(£) is given by (7):

Theorem VIII. If f(%) s given by (7)with aya, =0 and according
to (10) and (42)

a = Maxz,, A4 = Minx,
then the number of non-real roots of f(£) plus the number of real roots from
the interval (A .a) isnotless than A — x -+ B, where A is the total
length of all gaps in (58), o  the number of odd gaps bridged over by a varia-
tion and f the number of odd gaps bridged over by a permanence.

42.  Proof. Indeed, in virtue of (36), the number of real roots from
the interval (a, c0) is = V(a,).
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Replacing & in (7) by —& and proceeding as in the section 35 we
obtain for the number of real roots of f(£) in the interval (— oo, 4)

the upper limit V((—1)"a,). Therefore a lower limit for the number of
all other roots is

n— Vi) — V({(—=1)a,) = n— W, .
and this is by Gauss’ Lemma equal to 2 — & + 5.
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