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On Runge's General Rule of Signs *

Introduction

1. For a finite sequence of real numbers It1 t... tlh we denote
b;r the symbol V(u,, , . . . , ui or Y(u,,) the number of the yariations
of sign in this sequence. In computing this number all vanishing er,.

can be deleted, further the symbol has by definition the values 0 if
onlv one or none of the 'LL). is + 0 .

We have then obviously

,'llkr. ,Uil Y(Ur,

In particular the difference in (1) has the r.alue 0 if w, * 0. Further
we have^ if u1 u1 { 0 , the rela,tion

(2) V (zc, ,

1 sgn ur?tt
ut) 

- , (mod 2)

which is verified immediatelv.

2. For a fixed real polynomial f(r) of exact degree n we denote
by Vo the number of the variations of sign in the complete sequenc: of
the derivatives of / aL 0,,

(3) v" : v(l(a),f,(a),...,1@r@)).

Then the famous Theorern of Budan-Fourier consists in the inequality

(4) V,--V02l{(a,b) (a<b)

where under I{(a,b) is understood the total number of roots of f(r)
in the interval a < r { b . counted rvith their multiplicities. As a

matter of fact, the Theorem of Budan-Fourier contains a further assertion,

* This investigation vras carried out under t'he contract DA-91-591-EAC-2824 of
the US Army u.ith the Mathematical Institute of the University of Basel.
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where A (u , b) , the BF -def ect af f , is

ever, this follou's easilv from (2).

3. Both V, - Vt and N(a,b) are additive interval lunctions of
the half-open interval (o ,b), and the total value of V" - Yo oYer

the whole real axis is fL , while that of N(a ,b) is the total number of
real roots of f(ru). Therefore, Å(a,b) is a non-negative interval
function whose value over the whole real axis is equal to the number of
couples of conjugate non-real roots of /(r).

4. From (5) it follows now that if f(r) has only real roots lt'e have

equality in (a). Ho.w.ever, the practical usefulness of the formula (5) with
this interpretation of a(a ,b) goes bel-ond the abor.e corollary. Indeed,

if by some special argument v'e can localize a set of intervals J, over

which /(a,b) already assumes its maximal value it follows that for

any interval (a , Ö) .rvithout any point in common rvith the interYals J,
we have the formula (a) with the equality-sign. A corresponding partial

improvement in the formula (4) is possible whenever we succeed to find a
set of intervals J* over which /(a,b) is positive.

5. The numbers f@(n) used in (3) are essentially the coefficients

of the Taylor development of f (") at a . This development is a special

case of the general Neu-tonian developmelt of f(*) alising from the

general Newton interpolation formula. consider a sequence of n num-

:f,n and pllt

namelv, that the difference between both
so that rn'e can write

sides of the inequality (a) is euen,

2 A(a ,b) ,

a, non-negative integer. How-

.,tt), &(6) --=1

-=.- a" PoG) )

(5)

bers ff1 t

(7)

Then the development in question is

f G) : uo P"(E) -r- at Pn_r(§) --;-

where the coefficients e,e are uniquelv determined by f(E) and the

sequence fr,.
The reader may he reminded here, although u'e will make no use of this

in the following discussion, that the coefficients a, are obtained by
forming Newton's devided differences both in the case of distinct n, and

in the case that the values of some of the n,, coincide.



A. M. Osrnowsr{r, On Runge's general rule of signs

6. We assume in what follows until the end of this introduction that
the numbers fr, in (7) are all real and consider another set of such real
numbers At , . . . , U, and the corresponding polvnomials

,n), Qo(§) -_ I

Developping f(€) in Q,,G) we have

(e) f G) -_ bo Q"G) + b, Q*_,(§) -1- . + b" QoG) .

'I'hen Runge's Getteral Rule of S'igns is the
Theorem L Su,ppose that we hat;e 'in (6) ctnd (8)

then i,t ,follouts for tlre coe,f.f ici,ents e, *?ttl b,,, in (7 ) awl (9)t)

(1 1) I/ 1ct,,) - Y (b,,) 
= 

Ä'(rz , b) .

7. The special case of the Budan-Fouriel Theorem is obtained from
the Theorem I if all n, become - a and all U, become - b .

Runge's method of proof of the Theorem f is of particular interest since

it is based on the generalisation of the process of the so-called synthetic
d,i,aision to the polynomials given in the form (7) (Theorem III). On
the other hand, the detailed working-out of this idea becomes in Runge's
presentation ver;r complicated, since Runge tries to proye everything anew
inclusive the classical Budan-Fourier case. Horvever, the proof can be

considerably simplified if we assume the Budan-Fourier as given. Then
Runge's Theorem follou-s immediatel5r from the following Tund,amental
Lemma:

Theoretn fL

(12)

th,en it follow.o

( 13)

1) A special case ol this Theorem corresponding in a certain sense to the assurnption
that either all ff! are : -& or all A" are : m has been published with
Runge's permission 1914 by G. Pdlya (G. Pölya: tfber einige Verallgemeinerungen der
Descartesschen Zeichenregel. - Arch. Math. Phys. (3) 23, 1914, pp. 22-32) who gave
an elegant direct proof in this ease, Following up somo indications by G. Pdlya in
the paper quoted, I unearthed the Theorem I from a manuscript of B,unge's course
given at, the University of Göttingen in Summer 1907 and edited tho corrosponding
parts of this manuscript with the necessary corrections and developments (see Carl
Ilunge: Eine Vorzeichenrogel in der Theorie der algebraischen Gleichungen. Aus einem
Vorlesungsmanuskript, von Ca,rl Runge herausgegeben von Alexandor Ostrowski. -

Jber. Deutsch. Math. Veroin. 66, 1963, pp. 52-66),

Assume that ue haue i,n (6)- (9) t
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8. I3eyond that, b_r,' means of the Fundamental Lemma we can make
use of the advances which have been made in the direction of the Budan-
Fourier Theorem in the last 100 years and obtain some corresponding
generalisations in the case of the general Neryton-Runge set-up. See in
particular the Theorems V (sec. 2l), VI (sec. 27), VII (sec. 32) and \IIII
(sec.4l).

Generalized Synthetic Division

9. If the polynomial f(§) is given in the form (7) we have, for a
parameter y + t identicallv

(r4)'* : a'n p,-JE) + oi p.-,(€) + . . . i ol,-, p,,(€) * -L€-y
where the a:". depend on y .

Multiplying this on both sides by €-y we have

(r5) f(€) :"toi,r^-,-,(6) (f -il * a',.

10. Putting in this identity € : A we obtain

(16) a: : f@).

On the other hand, decomposing the factor E-y in the z-th term of
(15) in (€-r^-,) - (y-r^-,) we have

(rz) /(6) : 
i__,o,, 

r^-,(U, - |',ot 
(y-r,-,)P,-,-,(§) ,

where the term q,n has been taken into the first right-hand sum as the
term corresponding to v : n .

The second right-hand sum becomes, if we introduce /+ I as the new
summation variable and denote it again by 't),

f, ":,-, (a-*,-+r) P^-,(t) .

Introducing this into ( I 7) and taking the term of the first sum corresponding
to v:0 separatell'- u.e obtain

(18) lG) : a'o P^(€) + i A: - (y-n.-,+r) a',-r) P^-,(E) .
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I l. Comparing this development of f tt) r,vith (i) we

We have now immediately the
Theorem III. In the forruula (14) each a',, (r: 0 ,... ;h) is o

polynomial of eract degree y in y and, these a, c&n be cornputed
recurrently bg (19). In particular, we haue o'": ftil.

The practical computation of f(y) and of all other coefTicients o',,

can be carried out using Runge's diagram:

obtain

.rn")

{lo CT,L ct, Z firr --- | CIn

Monotony 0f the variation number in Synthetic Division

Under this hypothesis u-e x-ill theu conlpar.e l/kt,,) r,*ith V(a,,) .

We use for this purpose the follou-ing
Lemma. If i,n a sequence uo.tq,....?r,, u:e replace for a. r,2 t

and a p- 0 the element u,. by

(22) u,:?,tr,_,*%, (u21, p]0).

the number o,f the uariations of sign, itt our sequence does not increase.

13. Proof. Indeed, the assertion is evideut if ?r,. - 0 , since then
u, is either : 0 or has the same sign as 7t,_t . Further,, if u,, a 0
and %, has the same sign as 1t.,, the assertion is erident too,

On the other hand, if LL,, is * 0 and u| is either 0 or has the
opposite sign to that of %y , then we must har.e a rariation of sign between
%,_r and u, which is lost if vre replace zr,, b1- u: u-hile to the right
of ltl at the most one variation of sign could be l-on. 'Ihis proves out:
Lemma.

12. \{te assltme r}o\\- that all
in (14) satisfies the condition

are reel a'Id that the parame)ter Il

11. We consider no\r,, a real sequence
the transformation analogous tc ( 19)
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into the sequence

(24) carCL)... ron"

This transformation can be considered as effected by means of n con-

secutive transformations T, ( * : l, . . ., % ) given by

I co cl 
"'r-, 

cx cr.ll cn
(25) T" ), , , , , .

I Co Ct C*_r C, C,tt Cn

The transformation T* consists in replacing the one element cx by
c!,. : c*-, (y-r^-,*r) I c* ,

Under the condition (2I) the Lemma of the section 12 can be applied
then to the transformation T, and we see that the number of the varia-
tions of sign is not increased by this transformation.

15. But then the same holds for the transformation of all cy into
the c:" and even, more generally, for the transformation of the first row of

C0 CL . . , C, Crf-L . . , Cn

tll
C0 CL . o . O, C**l . . Cn

t;< - I )... ,'fu)(26 )

into the second ro'vl'.

We obtain the
Theorem IV. If the sequence cs , cr , . . . , co is transformed' by (23)

into the sequence ,'o,"1r,...,c'", the number of the uariati,ons of sign in the

selluence cs 1c1 t . . . , co is not smaller than the number of the uoriation.s of
sign'in the second row of (26), for x:1,2, . . ,%.

Proof of the Fundamental Lemma

16. We go from (7) to (9) in n single steps, dividing fG) for
v:Q,lr...r% by Q,,G):

(27\ f : A,Q,,+8, (r,:0,L....,ni Bo:0),

where the degree of B,(€) is { r,-l and that of A,(€) exactlv
: n-'y,

Develop, putting n-N' : m, A,,(€) in P, and B,(€) in Q,:

A, : doP**... + d.^Ps, 8,, : §oQ,_.r*...+ §,-rQn,

and consider the sequence

(28) d0,.. tdm-t>a^,§o,...,§,-r (n-r:m).
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I

For r, :0, (2s) coincides with (a,) in (7), and for Y: n with
(b,) in (9). It is therefore sufficient to show that the number of variations

of sign in (2S) does not increase if we go from v t'o v+l '

17. Indeed., dividing A,(E) by €-y,*, we can write

(2e) A, : (€-Y,+,) Ai'*, * o^,

and, putting this into (27),

f - A',*rQ'*, * e'^Q,, + 8,"

so that, we have Bn+r : ul*Q, * 8,, A',*r: A,.- r.
If rre put then

A',*,:6oP^-r+.''*'l-"

the sequence (28) corresponding to t'*L becomes

(30) d;,...,a'^-t,o'^, §o, §t,,.., §,-r.

And here the oi, are obtained from the d," by (29), that is by Synthetic

Division.
If we identify the sequence (28) with the sequence c6 , c1 ; ' ' ' ; cn in

(23) ancl apply to the c tine transformation (23) with Y:€ and nn-,*r

-U,-t, we. obtain a sequence ,!0,"i,...,c'" and the sequence(30) is

identical v'ith

c; r.,. ;cm ; cm+r 2, .. 2ca.

x'rom the Theorem IV. applied for i4: r.fl, it follows then that the

number of the variations of sign is not, increased, going from (28) to (30),

and the Theorem II is Proved.

Prool of Theorem I

1g. we have, under the conditions of the Theorem I, if the develop-

ments (7) and (9) are compared with the Taylor developments at a and

b, by the Theorem II:
V(a,)2V,ZVu>V(b").

where Vo, Vt are defined by (3).

We have therefore
V(a,) - Y(b") > V, - Vu ,

and (I1) follows immediately from (4). The Theorem I is proved'
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The Farity Discussion

19. The inequality (11) contains though (4) but, of course, not the
relation (5). It is therefore of interest to discuss underwhat conditions
both sides of the inequality (tl) have the same parity:

(31) V(a,) - V(b,) :: l{(a,b) (mod 2) .

We assume in this discussion that q,n b* * 0 that is

(32) f(*r) + o, f(ar) # 0.

X'urther it can be assumed without loss of generalitv that ao: bo * 0 .

20. Then we have from (2)

V(a,,) - V(b,,) -

other hand, obviously

sgn b,, sgn f ("r)

.g,, 1" _- lgn Ö"

2 
1- * (mod 2)

On the

sgn a,?

2

and therefore

(33)

\4re see that

that is

(34)

( 35)

sgn f (Yr)
-= lY(r, ,!/) (mod 2)

V(ct,) V(b,) I{(x, , Ut) (mod 2) .

necessary and sufficient for (31) is the congruence

,rY(r, , Ut) -- l{ (a , b) (mod 2) ,

2

Åt(rr , a,) - ,\'(ö ,Ut) (mod 2)

2L. (31) is certainly satisfied if u-e have in particnlar"

A more symmetric sufficient condition is obtained if rre introduce the
smallest closed interval (nr,...,t^) containing all t1 1...tfrn and
the correspondingly defined interval (A, , . . . , U.) i then we have the

Theorem V. Und,er the cond,i,tions of Theorem I and, in the hygtothesis

(32), the cond,ition Qa) is necessary and, sufficient for the relation (31). In,
part,icular, the relation (31) certainly hold,s, if the i,nteraals (x, , . . . , r.)
and, (Ar, . . . , U.) are free of the roots ,f f(").
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22. As the relation (5) holds also if /(a) or f(b) vanishes one
could expect that the condition (32) is not essential in the above discussion.
However, the following counter example shows that the analogv can brea,k
down if (32) is not satisfied.

Consider the polynomial

f(€):1(§-t) (6-11
and take

frr: frz: ee: -li h: 0, Uz : As: 2.

Then we have on the one side X(-1,0) : I. On the other side, we
have from the 'Iaylor development at -l : V(a,.):3, while the
development corresponding to (9) is

.f : Q, _ Qr : ,e (§_2)2 _ ,.

and therefore T/(b,) : L . We see that in this case both sides of (31)
have not the same parity.

Specialisations of Theorem I

23. Take in the formula (1I) all b, equal, 4: bz : b*: b

rvith a ö greater than all roots of f(€),1'G),....,ftr-')(§) . Then we
haye

Y(b,.) : Vt : 0, J(n, ,b) : ,\:(c, co)

and (11) becomes

(36) rY(a, oo) ! V(a,) .

the special case of Runge's Rule of Signs published and proved directl5,- in
G. P6lya's above mentioned article. From our discussion in the sections
19-21 it follows further that if f(*r) + O , then the necessary and
sufficient conditions for the both sides of (36) to have the same parity is

(37) N(r, , a) : 0 (mod 2) .

This is in any case satisfied if we have

(38) r, 2 r,, (u:2,...,n), J@) + O.

24. In the completely symmetric mannervye obtain another specialisa-
tion of Runge's Rule (cf. P6lya's above mentioned article)

(3e) i/(- oo ,b) < V(b,) ,

11
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where the b,, are given by (9) and b by (t0)' Tf f(yr) { 0 , the

condition

(40) N(b ,Yr) : 0 (mod 2)

is necessary and sufficient in order that both sides of (39) have the same

parity. And this is certainly the case if

ur = u,, (r'_--2, ,n), f(ur) + o

25. Consider now the caselrhere for a fixed h > 0

frr:?, frz:P+lt t frn:P*(n-l)h:a,

Ut:e:b, Uz:e*h, U":Ql(n-l)h.
Since we have the general Newton-Gregory formula

" a'f(E) .-
f(t) : \# Ge-o) (€-"-h) "'(å-"-(t"-t)h) '

l:0

where the differences i1'' f(") correspond to the step h , it follows for

the coefficients in the developments (6) a,nd (8):

a -4:le) b :{''f!q)n-t »l- h,o ' un-, 
- tl. h,

We obtain now from t'he Theorem I the

Corollary. If q-p) (n-l)h forapositiae h thenwehaau"

(41) N(p * (n-L) h , q.) { V(/' f(p)) - V(Å' f(q)) ( ct-p ;, (n-r) k) .

In the special case that the difference q-p is a multiple of å this

result has been stated by I{. Obreschkoff (N. Obreschkoff: Sur les racines

des dquations algdbriques. - Annuaire univ. sofia Fac. sci. Ph1's. I[ath.
Livre 1 Math. 23,1927,pp. 177-200; cf. also obreschkoff's book: Yerteilung
und Berechnung der Nullstellen reeller Poh'nome. - Hochschulbiicher fiir
Mathematik 55, Deutscher Yerlag der \Yisselschaften. Berlin. 1963, pp.

rr6- r18).

Reality Discussion

26. It has been already mentioned in the section 4 that' we have

equality in the Budan-Fourier formuh (a) if /(§) has only real roots.

since the inequality (11) of Runge's Rule has been obtained from (4) it can

be expected that for polynomials with onlSr real roots the formula (11) could

be proved wi,th the eqrm,li,ty-si'gn in some important cases.
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As a matter of fact, more general results can be derived if we use the
formula (5) and restrict ourselves to the subintervals of the real axis on

which A, theBF-defect'of f, vanishes.
Put under the h.vpothesis of Theorem I

(42) A:Minr,,, B:MaxY,.

Then rve have, considering the Taylor developments of /(§) at, A ,

ct, b, B, and using the Theorem II
Vo 2 V(a,) >- V, 2 Vu Z V(b,,) > llB

and therefore

(43) V, - Vu 2 V(a,.) - Y(b,,) > V" - Vb .

X'rom (43) it follows, sr-rbtracting N(a,b) from the 2-nd and the 3-rd
term of the inequality and using (5),

(44) V(o,,) - Y(b") - N(a ,b) 2 2 A(a ,b) ,

and in the same way, subtracting N(A , B) from the first and the 2-nd

term of the inequality (a3),

(45) 2 A(A , B) > Y(o,) - V(b,) - Ii(A , B) .

27. We have now- the follorving
Theorem VI. Assu,me thut und,er the hypothesis of Theorem II al,l x,,

q,nd, a, a.re contained in an interaal (c , C) , open from the left and, closed

from the ri,ght, for whiclt the B(-d,efect uani,shes, A(c , C) : g .

?hen we haue

(46) N(A,B) > V(a,) - V(b,) > l{(a,b),

and, if
(47) N(A,a) : N(b,B) : 0

holds, eaen

(48) V(o,) - V(b,) : I{(a,b) ,

28. Indeed, from our assumption about Å(c , C) follows that
A(A , B) : /(a ,b) : 0 and therefore (a6) is an immediate consequence

of @4 and (a5).

X'urther, (48) follows from (46) if N(A,B) : N(a,b) and this is

certainly true under the hypothesis (47).

A. 1\[. OsrnowsKr, On Rung;e's general rule of signs
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In particular. (a6) holds if /(§) has only real roots.

29. Consider for inst'ance the case where

frt: {l-?L*L , rz: a-n12, ..,, fro-r: a-L , tn: a;

Then the developments (7) and (9) are the corresponding Gregory -- Newton
developments with the step h: L

f(€) : .f ryp-n+r) (§-'1"-t) , /(§) : ,\o'r,u,(u;') ,

,rd ,h"r";;"
(n-u)l a,, : l"-'' f (a-nll) , (n-t)l b, : ,7"-'' f(b) .

Since A:a-nll , B:bln-l rrehave

V(A, f(a-n+1)) - V(/" f(b)) : N(a,b),

if /(6) has only real roots, if b-a is greater than n-L and if there
are no roots of /(f) in the intervals (a-n*L,a), (b,b*n-l).

Generalisation of Obreschkoft's Theorems

30. For a fixed real polynomial f(€) of exact degree n , a real
ru and a non-negative lrlat we denote by M(a,m") the number of'
roots w of f satisfying the condition:

(4e) iary @^-a)l < '
l7l o

'w,here w: a is not counted even if a is a root. and br- -il1b,mi
the number of roots w . satisfying the condition:

(50) larg (b-w)l S 
^,

where b : w is counted with its multiplicity, if ö is a root.
X'urther, the number of roots w of f(€) satisfying both corud,iti,ons

(a9) and (50) will be denoted by I{(a ,b , nlu , nlt) .

If ,flLo in (49) or nlt in (50) becomes : 0 , the corresponding
conditions become meaningless and have to be disregarded in the definition
of the above symbols.
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31. Using these notations and those of sections 2 and 6, Obreschkoff's
Theorems in question are given by:

A. We haae for real a < b

l{(u,b,n-Vo,Vl 
= 

Vu Vu (a<b);

15

(51)

(52)

c.

(53)

B. W e, lr,aue fo, &ny real a , b

M(o . n-V,) . T/, ,

If for a real cL we haue

M(u ,Iru) 
= 

lL -- Vu i

p :- lI (ct , 1L*2-p) ,

then i,t follows V":p2).
Obreschkoff's relation (51) generalizes the Budan-Fourier inequality (a)

very considerably; while l{(a,b) in (a) is the number of real roots in
the interval (a,b), the left side expression in (5I) is equal to N(a,b)
plus the number of the non-real roots insid,e of the quadrangle of the Fig. I,
symmetric to the real axis.

trig. I

32. f'rom the Theorems A, B, C we will derive.
mental Lemma:

Theorem VII. W e haue 'in the notations ,f the

CLTLd,

applying the Funda-

sect'ions 2, 6 and 30 :

(a <b),

v(o,) ;

2) cf. the exposition in obreschkoff's book quoted in sec. 25, which contains also
a complete bibliography. As a matter of fact, in Obreschkoff's formulation l. c. p. gB,

b , if it is a root, is still not counted in the left side expression in (5 t ). rrowever, the
inequality including å is obtained immodiately from that given by obreschkoff
by a continuity argument.
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(56)

further', i,f we huae

JVI(a,z+n--p) _- p, tt6,2+p) - %-P,

and, no roots of f satisfy the conil,ition lary (A-w)l: n I Q*il or lie in A ,

then aoan*0, V(a,):P, and, forany a,:0 wehuae a,-rct',.r, 10'

33. Proof. Defining a and b by (10) we have (51). The righ+'

hand expression of (51) is, in virtue of (a3). majorized b5' V(a,) - V(b,') '
On the other hand, by the Theorem II, Vu < V(a,) , n - V" 5
n -v(b,), so that the quadrangle corresponding to the left side expression

in (5a) is contained in that corresponding to (51). This proves (54)'

To d.erive (55) from (52), take in (52) b : A and obserYe that rve have

n-Vo3n, VoSn

and that, by the Theorem II,
V"!V(a,){Vr.

34. To prove the last assertion ofthe Theorem vII observe that unde}

the hypothesis (56) all roots of f lie inside of the tu.o angular domains

of Fig. 2, symmetric to the real axis.

But then we have from (56)

fr@ ,2+p) - n-p ,

and C, applied to cL ) gives l'o - P .

On the other hand it follou's frorn (56)

J(,1 ,2+?t-p) - 'p ,

andC, apptiedto A, gives V1-P. Since,

V (o,) is contained between V, and V A , r'e

35. fntroduce now the PolYnomial

b5r

see

the Theorem II,
that V(o,): p ,

?( I (2*p) iQ*n*P)

Fig. 2

ittl : (-I)" f(-å)
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for which we have obviously from (56):

fr(-",2*n-p): P, M(-A,2*P): n-P

so that, for i , we have to replace p by n-p .

On the other hand, replacing 6 by --§ , in (7), and multiplying
on both sides by (-1f we obtain:

rt /'

i@ : Z (-L)'a,P"-,(€), P-(€) : (-L)'P,(-1) : TJ Gl.r,,),

so that n-:* ,n" t, are to be replaced by the -.fr, ,,,a 

:'t'" 
av by

(-T)' a,. Applying then to ft{-l the par"l of the Theorem VII which is

already proved, we obtain V((-\ a,) : n-p, and therefore

(57) V(a,,)*Y((-r)'a,): n.

The last assertion of the 'Iheorem YII will therefore follow immediately
from the corollary of sec. 40 from Gauss' Lemma u'hich '!Ye now proceed

to formulate and to prove.

Symmetric Variation Numbers

36. For a sequence

(58) ao.ctr,...1an

we put

(59) 14'1«,,1 : Y(u,,) -7 V((-r)'' «")

and call W(a,) the Symmetri,c Vari'ation lumber of the sequenoe a-.
Here, the exponent of (-r)' at 4,, is the order number of &, in the

sequence, diminished by I '

If none of the o1, vanishes, 7((-1)" 4,) is the number of perma-

nences iri the sequence at, so that then lV(a,,) :1 .

If we replace then some of the o,, bY zeros the r''ariation numbers

cannot increase, so that we have:

(60) W(a,){n, W(a,):n (a,,*0).

X'urther, if an ax * 0 we have obviouslv

(61) W(o,) : W(as,'.',ub)lllr(an,"',ctn) (at*0)'

37. If we have in the sequence of the a,

(62) q,k*0, &k4r :ct,1"*o:0, or".+p+rt0.
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we have here a ga.p of the length P , brid,ged, oaer bv a variation if
artar"-p:r ( 0, or by a permanence if a,xa1"-o-1 ) 0', this gap is called
odd, or eaen according its length p is odd or eYen.

Then the gist of an argument due to Gauss and published in 1828

(C. F. Gauss: Beweis eines algebraischen Lehrsatzes. - J. Reine Angew.
Math. 3, 1828, pp. l-4, reprinted in Carl Friedrich Gauss Werke III,
Königliche Gesellschaft der Wissenschaften zu Göttingen, 1876, pp. 67-70)
can be formulated as the

Gauss' Lemma. Assume that we haue in (58) aoao * 0 and, d,enote

by x the total number of odd, galts bri,d,ged, ouer by uariations' by P the

total number of odd, gaps brid,ged, oaer by pernlanences and by )' the sum of
lengths of all gaps in (58). Then we haae

n W(a,,) -_ ^-,:r 
+fi

Proof of Gauss' Lemma

(63 )

38. If the gap (62) is an even one we leave out all vanishing elements

et"+t, . . ., ah+p and reduce thereby n by p . On the other hand, as

the parit5z of the indices is not changed, the value of W(a,) is not changed

either, while i is diminished by p , so that on both sides of (63) p
is substracted. We can therefore &ssume, proving (63), that thete are no

eaen llaps.
If the gap (62) is odd and its length p is ) I , then we leave from

(58) p-L first elements of this gap, &h+r , . . . , ar,1p_... Again. n

and ). are both diminished by p-L , while, as p-L is even. II'(4, )

is not changed. As v-e can proceed in this wav rvith all odd galls. \1'e can

assume now that there exist only odd gaps and that eaeh of them has the
length t . But then we have obviouslv 7: ti| so that the relation
to prove becomes

(61)

39.

, ctk-t) + W (o*-t t cLt; , er4 t) + trtr'(ao*,

If this gap is bridged
obviousl,l,

o\rer b), u variation, so that flu-t ctr,+l < 0

Tl'(ar_r,ak,atar)-- 2 |

' , An)

we have
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and this remains true, if we replace a1o by any number + 0 , say by
I . We see that all odd gaps bridged over by a variation can be filled up
without changing W(a,,) . We can therefore assume, in proving (6a) that
all gaps at: 0 which remain are bridged over by a perm&nence,
ar_, au*, )- 0 . But then, if we replace o,k by I 'we have

TV(u*_r,A,ar,*r)- 0, W (ao_, , I , c;r,_rt) :=: 2

so that lV (a,,) is increased by 2 , rrhile B is diminished by 1 and
both sides of (6a) are diminished b;z 2 . In this way we can reduce the
proof of (6a) to the case that there are r1o gap: at all and then (6a) follows
immediatelv from (60). Gauss' Lemma is proved.

19

40 . Corollary. I{ ecessnry n nd suffi,cien t
is tlrat {)0 c;n + 0 end that the only gaps
bri,dgec{ ouer by ct, L*flri,&tion,.

tt - 1 , so that obviouslv Go frn + 0 is

follo.,r-s from (63) that \r-e inlrst have

in order that ae haue W (a,,) '-- ,tL

dn (5 8) G,re tJaps of the l,ength l

could be replaced in (60) h,"
indead necessery. But then it

rn hile the total length ). of ell

sufficient. But A- -1 signifies
of the length I colliltecl iti ,\

galrs is certainlv 2 x+ § " 'Iherefore,

that tJre onlv galrs r,r'hich exist are those
u'hich is the assertion of our corollarv.

41. In Gauss' paper referred to in sec. 37 the expression I - u I §
in (63) was derived as a lower limit for the number of the rron-real roots of
the eqnation aot" I drfrn-'+ ... I a" : O. Correspondingly a simi-
lar result holds for the equation 

"f(6) 
: 0 , if /(f) is given by (7):

Theorem VIII. If .f(t) is giuen by (7) wi,th aaan * 0 and, accord,ing
to (10) and, (42)

v

then the number of non-real roots of f(§) plus the number of real roots from
the interual (A , a) i.s not less thayt, ), - x * fl , wltere )" is the total
length of all gaTts i,n (58), a the number of ocld, gaps brklged, ouer by a uuria-
tion and, P the nu,mber of odd go,ps bridgecl oaer by a perntanence.

42. Proof. Indeed, in virtue of (36), the number of real roots from
the interval (a , a) is 5 V(a,) .
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Replacing § in (7) by -€ and proceeding as in the section 35 we

obtain for the number of real roots of /(f) in the interval (- q , A)
the upper limit V((-l)'' a,) . Therefore a lower limit for the number of
all other roots is

n - V(a,) - V«-L)'' a,,) : n - W(a,,),

and this is by Gauss' Lemma equal to )' - " * § .
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