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Introduction

In this paper we use the method of normal refinements to derive the
results of Mardesic [6] simultaneously for many homology theories. The
notations and results of § 2 in [3] are assumed.

Section 1 introduces the homology theories used here and the second
section presents a uniqueness theorem for them. In the third section similar
results are outlined for relative homology. The last section is devoted to
some applications to paracompact spaces. The appendix contains some
corrections to my previous paper [3].

§1. Fine Complexes

1. Let Z denote the ring of integers. R shall be a fixed ring,
My the category of R -modules, and Cy the category of augmented
chain complexes in Mpg.

Let X be a set. The set P(X) of subsets of X together with
the inclusions ¢ :P—-Q (Pc@Qc X) is a category (cf. [2], p. 186).
If X'c X, then all functors of P(X) are identified on P(X’) with
their restrictions to P(X').

Definition 1. A complex C on X is a covariant functor P(X)— Cp,
i.e. the value of ¢ on P c X is an augmented chain complex C(P) =
(Ca(P))pez- The mn-dimensional homologyfunctor H, of C is the
covariant functor P(X)-—- My, whose value H.(P) on Pc X is the
module H,(C(P)), the functorial homomorphisms

H,(" 9 : Hy(P) — H,(Q) (Pc@cX)
being induced by the functorial homomorphisms

C(iF* Q) : C(P) — C(Q) .

2. A covering & = (4i);e;r of X is a family of subsets of X,
whose union is X . The covering o« is said to be proper, if 4; = 4,
implies ¢=j(;,j€I). If sCwa,s+# @, we shalldenote by 5 the
intersection of the members of s. If Ac X then aNA is the
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covering (4;N A),e; of A. If ¢ = (Ej);c; is another covering of X,

then «Ne stands for the covering (4:N Ej)er, je; of X.
If x is a covering of X and C a complex on X, we shall

denote by C , (p,q€Z) (i) the zero-module, if p < — 1, (ii) Cy(X),
if p=—1 and (iii) the direct sum Z Co(dsyN...Ndy), if

T seves iP €I
p>—1. Let g (k=0,...,p) denote the functorial homomorphism
Co(di N ... ﬂA,-P)—>C'q(A,~Oﬂ N4 N ﬂAiP)

for p> 0, and
Cq(AiO) — Cy(X)

for p=0. If p>0, we define a homomorphism

o4 o4

0:0,, ,—~0C,1,, (q € Z)
by
p
1) () =D (—
£=0

for c€Oy(d;yN...NAi). Ttis easy to see that 30" =0. The' family
‘Cyq=(C,, )pez becomes thus an augmented chain complex. We shall

denote by Hp,(x) the module H,('C,_;) for each p€Z.

Let p be another covering of X . The covering « is said to
be a refinement of f, if there exists a mapping #*:x—f, called
projection, such that A;c n*(4;) for each A;€x. We shall then
write « > f. The projection =* induces for each ¢€Z a homo-
morphism

with components

o B
ﬁq:Cp-q“’Op-q (r€2)

defined by

(2) ok 4 (€) = Oy(i=> = ) (o)

and linearity (c € Cy(4;)N ... N Aip)’ s=(dq,... ,A,-P)) . We cghall
denote by a(f, the functorial homomorphism

B
(n*q) H ( )—-) Hp(lo*q)
and by 7%/ the homomorphism zgf)_,: Hy(x) — Hy(f) (p,q€Z).



Orrr Jussira, On homology theories in locally connected spaces 5

3. The differentials
(3) 0: Oq(AiO n...n Aip) —> Cq—l(AiO n...n Ai )

P

of C(4:;,Nn...N Aip) commute with the differentials (1). If we denote by

(— 1)»*' 9" the homomorphism of C, , into C, ,, induced by the

homomorphisms (3), it follows that the homomorphisms ¢° and 9"

make the family O, = (C, ,),, .z an augmented double chain complex

(see [3], p. 21). It follows immediately from the definitions (1), (2) and (3),

that the homomorphisms =¥ ,9" and (— 1)»*1 9 commute with

o B
each other. Hence they induce functorially a homomorphism =z : €y, — C
of augmented double chain complexes, which coincides with 23, on

[07 ¢4
'Cy—,; and is the identity map on "C_;, = "C_,, .
Definition 2. The complex C is said to be fine with respect to «,

if 'C,, isacyclic for ¢> —1; ie., if Hy('Cy) =0 foreach p€Z
and ¢ << —1.

Henceforth we consider only those coverings with respect to which €
is fine; this is equivalent to condition (2.2) of [3] on page 22. We obtain
thus the canonical homomorphisms

o D o 7 [
(4) ho:Hu(X) = Hu("Z_yy) ——> H_y("Zny) ——> Hu('Cyy) = Ha(s),
where j is a canonical epimorphism (see [3], pp. 22, 29). The equation
(5) Ry = il b

follows immediately from the definitions.

Definition 3. The coverings « and f are said to determine H,(X),
if A7 is an isomorphism onto a( (Ha(x)) (see [1], p. 320).

Definition 4. (cf. [5], p. 214) A net of X is a set N of coverings
of X, directed by the relation <. Foreach n€Z we shall denote
by Hn(N) the inverse limit of the modules H,(x) (x € N) under the
homomorphisms 7% and by af,: Hu(N) — H.(f) the inverse limit of
the homomorphisms 'zfﬁﬁ (x € N). The equations (5) give rise to limit
homomorphisms

(6) tn : Ho(X) — HW(N) (n € Z)
of the homomorphisms 7%, (x € N) satisfying the equations

(7) kﬁzn‘(’;)tn (x€EN,n€Z).
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Examples: 1° Let X be a topological space, 4 asubspaceof X,
M a module and « an open covering of X. If Pc X, let
C*(P) be the augmented complex S(P,P N A) ® M ofsingular chains
of (P,PNA) with coefficients in M and C**(P) the subcomplex
S(P,PNA)® M of C*P) generated by singular simplices s, for
which one can find an element of & which contains the carrier ||s||
of s (see [6], p. 152). Let 7T be the set of those generators of C%*(P)
whose carriers are not in 4. Then C*P) is canonically isomorphic
with a direct sum Z M, of modules M, isomorphic with M. If

seTh
Pc@c X, then the functorial homomorphism C** (P)— C* (Q) is

induced by the inclusion 77 c T¢. Thus 0% (n > — 1) is canoni-
cally isomorphic with a direct sum » C(a*, M,), where & is the
seTX
closed subcomplex of the nerve of « composed of those members of «
which contain |[|s||. Because the complexes «°® are simplices, it
follows that O** is fine with respect to « (cf. [4], p. 706).
We have by definition C*}(P)=M for P +#0 and PNA=0

and C*}(P) = 0 otherwise. Thus ’'C*} is isomorphic with the aug-
mented complex C(X,,A4,, M) of the M -valued chains of the nerve
of x modulo 4. On the other hand it is well known that the inclusion
C**(P) c C*(P) induces a homotopy equivalence of complexes for each
Pc X and for each open covering « of X . These facts will be
used in the last paragraph.

2° As in [3], pp. 10, 14, let M be a covariant functor P(X)— My
such that M(@) =0; let S be a spectrum of X and « a finite
covering of X belongingto S. Then S and M define a complex

C% on X, whose components O3S (n€Z) are the functors Ca(S, Il%)
(see [3], p. 17). We have shown in [3], pp. 28—29, that (° is fine with
respect to « (on page 29, ¢ should be added in front of ¢/, — cf
and — ¢/, in the equations (3.4) and (3.5)).

If B is a finite covering of X, we may use S to construct
a new spectrum which contains f, as follows: Let SN A be the set
(aNp;x€8}. If a>a"(x,a€S) and =* is the corresponding
projection belonging to S, we define a projection # of xNf in
& Np by a(4;N B;) = a2 (4;) N B; (Ai€x, B;€B). Then SN with
these projections is a spectrum which contains £ .

If B has arefinement y in S, then C° is fine with respect to f. In
fact, without changing the complex C° on X, we may substitute for S the
spectrum  S(f) = {x >y ;x €S} UpB, where n¥:y —p is fixed arbitra-
rily and 7% : x — f is the composed projection #"’7* | x*"belonging to S .
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Remark: If X is a topological space, then the spectra in the examples
A — D of [3], p. 15, are rather uninteresting from the homological view-
point, because Cn(U(X), M|P) = Cu(F(X) , M|P) =0 for »>0 and
for each P c X. Instead the grating spectrum X of X yields
non-trivial homology theories (cf. [5], p. 279).

We take this opportunity to note that remark 2° in [3], p. 32, can be
corrected by transferring it into cohomological form. The theorem of
Floyd then follows by Pontryagin duality.

§2. n-refinements

4. Let « and B be two coveringsof X, and N anetof X.
Definition 5. (cf. [1], p. 320) The covering « is said to be a (strong)
n-refinement of p if there exists a projection 7 :x — f such that

Im (H, (i%° " “49) : H, (Ai) = Ha (2 (42) ) = 0

(Im (Hy (i) : H, (5) — Hi (2 (5)) ) = 0)

for each A;€x (foreach scx and k<<n -+ 1). We shall then write
aln>p (x|[n>p).

Definition 6. The net N is said to be semi-lc, if there exists an
element of N which has an mn-refinement in N; N is said to

be lc, if every element of N has a strong = -refinement in N,
0 -1 i

Lemma 1. If ajn—2>... | n—2>x|n—1>a (x€N;i1=
n —1 n —1
—1,0,...,n), then A*_, is injective and Im (A7) = Im (=} °) .
i i i—1
Proof. Let m:x—> (i =0,...,n) be the projections defining the
n,—1
relations |7 — 2> and |7 — 1 > above and 7z the composite projection
01 n
a7 ...n. For each k€Z we have the commutative diagram
H, (X)
\
\
\
k \ —x
he \h,t
¢ n,—1 y

n T (k) -1

H(A) s Hi(n),
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which is identical with the commutative diagram

n —1
H;, (”Z—l*) = H; (”Z—l*)

/ \
/
/ \\
¥ y
n —1
H (IO*—I) H( Cyv)

@

of the corresponding double complexes C, = Co(—1<i<n). In
virtue of the assumption the image of the canonical homomorphism

k k—1
(8) Hy s (Ok) > H, oy ("Cy)
k
induced by the homomorphism s, , is zero for each k=0,...,n.

Setting k= n in (8) we see as in [3] p. 31, that

//n ? ’ A
o) Ker (H_,("Z,_,) — H,_,(C,_)) C

n n—1

Ker (H("Z, 1) —> H_,("Z,_,4)) .

Theorem 1 and Corollary 1 of [3], pp. 25, 26, then imply the assertion.
Corollary 1. If o™ |n —1>....|n —1>a%n > &1, then a**?
and &""' determine H,(X) for each p<n - 1.
Theorem 1. If a net N of X is lc,_, and semi-lc,, then the
homomorphism ¢, : H,(X) — H,(N) is bijective for each p<m-1.
Proof: In virtue of Corollary 1, ky is an isomorphism onto
7y (Hp(N)) for each sufficiently fine element x of N. If B>«
(P €N), the relations (5) imply that

s Al (Hp(N)) — 7 (H,(N))
is bijective. Because H,(N) is the inverse limit of the modules

7y (Hp(N)) under the homomorphisms nﬁf‘), the theorem follows from
the equations (7).
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§3. Relative homology

5. In this section we shall indicate briefly how the ideas above can be
transferred to relative homology. We shall suppose that C(%" ?): O(P) —
C(Q) defines C(P) as a subcomplex of C(Q) forall Pc Qc X . Let
A be a fixed subset of X . Setting H.(X,A4)= H, (C(X)/cA4)) for
each n € Z, we obtain the exact homology sequence S, of (':

Sc:e.. Ho(Ad) — Hy(X) —> HyX , A) > H,_(A)— ...

A covering & = (x;,a,) of (X,A4)is a covering «; of X and a
subfamily «, of «;, whose members cover A4 (cf. [6], p- 151). If
p = (1. PBy) is another covering of (X ,A4), then a projection =*:
x—f is a projection «; —f; such that a*¥(x,) CB,. The covering
is then said to be a refinement of A (in symbols « > f).

%) ag N 4
Henceforth we shall write O, and Ha(x,) for C, and H,(x, N A)
a9 &1
respectively. Then C, may be identified with a subcomplex of C, .

ay a9
Writing  Hu(x) = Ha('Cy—y/'Cy_,) for each n €Z we obtain the exact
homology sequences S, and S, below. The projection z* induces a
homomorphism #z%¥ of S, into Sy, which is represented by the commu-
tative diagram

o _%H”(O‘Z)_)H"(Q‘l)ﬁH"(o‘)_)Hn 1(0‘2)6
i i
! | | |
Y ¥ ¥
Sy o= Ha(By) — Hu(fy) — Ha(f) — H,_,(B,) —
o ag

The complexes 'C,, and O*., are by assumption acyclic for ¢ > — 1.

o2

a a1
Denoting by O, the quotient complex 0,/C,, it follows that

o a1 a2
'Cyq = 'Cyy/'Cyq is acyclic for ¢ > — 1. We obtain in this way the
homomorphisms A% : S, — S, such that

(10) b = 2 .

A net of (X ,4) is a set N of coverings of (X, A4) directed by
the relation <. The coverings &, and x,N A (x € N) are the elements
of the nets N, and N, of X and A respectively. Let H,(N) be the
inverse limit of the modules Ha(x) (x € N) induced by the projections.
In general the limit sequence

Syt oo—> Ha(Ny) — Ho(Ny) — Ha(N) — H, |(N,) — . . .
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of the sequences S, (x € N) is not exact. If nf:Sy— S, is the limit
homomorphism of the homomorphisms ¥ (x€N ,x>f), the equa-
tions (10) give rise the a homomorphism {5 : Sc— Sy such that

(11) hE = ag ts
for each x €N .

6. If N, and N, are lc,_, and semi-lcn , there exists for each suffici-
ently fine 6 € N a sequence > ff >y > 6 of elements of N, where
a,NA and g,NA, g,NA and y,N A as well as yoNA and 6,N A4
determine H,(A) for each p <n +1 and «, and p,,f; and y; as
well as p, and 9§, determine Ho(X) for each p <n + 1. Consider the
following part of the composite homomorphism  z%’ 7§’ a2 hE

a b c d
e H ) HX) o B A )
i g |
v ¥ \
—> Hp(xy) —> Hp(xq) —> Hp(“) — Hp—l(f‘e) >
| | B, i
l v v v
—> Hy(f) — H, (1) > Hp(p) —>H, 1(fy) —
v
a v m v
—> Hy(y,) —> Hp(y,) — H}»‘(V) - Hp—l(!‘}’z) >
! | | |
v v v v
- Hp(oz) - Hp(él) ——> H,(9) - Hp—l(é‘z) T T

where p <n + 1 and H,(4), Hy(X) and H, ,(A) are identified canoni-
cally with a common submodule of the modules of the corresponding
vertical rows. The letters @ to m are symbols of homomorphisms already
defined above.

We show first, that khg is injective. If a € Hy(X , 4) and (khg) (x)
— 0, it follows that c(z) = 0. There exists a y € Hy(X) such that
b(y) = «. Then m(y) = 0. There exists a z € H,(y,) such that a(z) =y .
Then [(z) € Hy(A), (al) () =y and (bal) () =2 =0. Thus Hy(X , 4)
may be identified with a common submodule of H,(x), Hy(f) and Hp(y).
We will show that a(fj(Hy(x)) = Hp(X , A). If x € Hy(x), then (ie) (2)
€ H, ,(4) and (die) (¥) = 0. There exists a y € H,(X , 4) such that
e(y) = (ie) (x); ie. c(h(x) —y)=0. There exists a 2z € Hp(B,) such
that f(z) = h(x) —y. Then j(z) € Hy(X) and (mg)(2) + y = (kh) (x)
€EH,L (X ,A).
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We have thus shown that « and y determine H,(X ,A) for each
p <m 4+ 1. Then a similar proof as in Theorem 1 yields
Theorem 2. If N, and N, are lc,_, and semi-lc,, then the homo-
morphism
tp: Hy(X , A) — H,(N)

of t5 1is bijective for each p <n + 1.

§4. Local connectedness in paracompact spaces

7. Let X be a paracompact space.
Definition 7. (cf. [6], p. 153) The space X is said to be semi- I, if
each 2 € X has a neighbourhood U(x) such that

(12) Im (H, Y@ %)) =0.

We call X lc, if there exists for each « € X, and for each neighbourhood
U(x) of x, a neighbourhood V(z) in U(x) such that

(13) Im (H, (57® V&) ) =0

for each bk <<n -+ 1.

We denote by Cov(X) the set of open and proper coverings of X .
The module Ha(Cov(X)) is denoted by HaX)n€Z). If A is a
paracompact subspace of X, then Cov(X , 4) shall be the set of open
and proper coverings of (X ,4) and I;,,(X ,A4) (n €Z) the module
H.(Cov (X , 4)) .

Lemma 2. If X is (semi-)lc,, then Cov(X) is (semi-) lcn.

Proof. If X is semi-lc,, we choose for each z€X an open
neighbourhood U(x) satisfying (12). Then every open and proper refine-
ment of (U(x)),ex is an n-refinement of the covering {X} of X .

If X is len and «€Cov(X), let & €Cov(X) be a star refine-
ment of «. Kach x€X has an open neighbourhood U(x), which
belongs to «', and an open neighbourhood V(x) in U(x) satis-
fying (13). Then every open and proper refinement of (V(z)).cx is a strong
n-refinement of « (cf. [1], p. 320).

Theorem 1 and Lemma 2 imply

Theorem 3. If X is lc, ; and semi-lc., then the canonical homo-
morphism
tp : Hy(X) — Hp(X)
is bijective for each p <n 4+ 1.

If C(P) is a subcomplex of C(Q) for each Pc @ c X, then
Theorem 2 and Lemma 2 imply
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Theorem 4. If X and A4 are lc, ; and semi-lc., then the canonical
homomorphism

tp: Hy(X , 4) — Hy(X , 4)
is bijective for p <n 4 1.

8. Singular homology: Let C* and C*! (x € Cov(X)) be the singu-
lar complexes of the example 1°, pp. 4,5. In virtue of the homotopy equi-
valence

(14) H.(CYP))~ H,(C*(P)) (PcX,n€Z),
0% and C* have the same homology functors H, (n € Z). Moreover it
is easy to see that

(15) oty = 0y

p-9

for p>—1. If x> p€Cov(X), we obtain the commutative dia-
gram

and the limit homomorphism
tn: Ho(X) — Ho(X)

of the homomorphisms %% (x € Cov(X)) for each n € Z. In virtue of the
homotopy equivalences (14) and the equations (15) above Lemma 1 is valid
here, and we obtain Theorem 3 for the complex C*.

If PcQc X, then C°P) and C*9(P) are subcomplexes of C?(Q)
and C*%(Q) respectively. In a similar manner Theorem 4 is then obtained
for the complex (7.

Definition 8. (see [6], p.153) Let M be the ring Z and C the complex
0? . Then X is semi-g-lc, if it is semi-le, , and Il if itis le, (p,q € Z).

Lemma 8. If X issemi-n-le, and Ic", A4 € X closed and Ic;™", then
X is semi-le, and lc,_; with respect to C* for any module I .

Proof: We shall prove first that X is semi-lc, and lc,_, with respect
to C? for any module M . Let p be an integer, smaller than n + 1,
and U a neighbourhood of z € X . If p = n, we assume that U = X .
Denoting by Hy (P, M ,S) the module H(C°P)) (q€Z,PcX) we
obtain by assumption neighbourhoods W € V' c U of x such that
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(16) Im(H, " ") :H, (W ,Z,8)—~H, (V,Z,8) =0

and
Im(HP(iV, U) : HP(V ’ Z ’ S) _>HP(U ’ Z ’ S)) =0.

Setting H,(i"" %) @ M =a,b= H,(i"7): H(W , M ,S)— H,(V, M, S)
c=H," Y H(V,M,S)—H,(U,M,S) and

d = Tor (H,_,(i"""),M): Tor (H,_(W ,Z, S), M)—Tor (H,_(V,Z,8),M),
we obtain the commutative diagram

0—Hy(W ,Z,8) @ M —H,(W, M, 8) —Tor (H,_,
| b

=

=
N<— N<—- N

,8), M) —0

IS

\4
0—>Hy(V ,Z,8)®M—H,V,M,8) —>Tor (H ,S), M) =0

p—1
d ¢|
y ’
O—)HP(L7 ’ Z)S) ® J['»Hp(lj ’ M ’ S)%TOI‘ (Hp—l(U7 s S) ’ M)‘90 s
with exactrowsand @ =d = 0. Simple diagram chasing yields ¢b = 0,
which proves the assertion.
With U given as above, by assumption we may choose the neigh-
bourhcods W c Vec U of x such that

Im (Hp(i"* V) : Hy(V , M, 8) - H,(U, M ,8)) =0,
and

Im (H

p—1

@0y H, (WNA,M,S)—H, (VNA,M,S)=0.

Writing @ = H,(i""Y) and ¢ = H,_ ("™ ") above, b= H,(i"""):
Hy(CHW)) = H, (W, WNA,M,S)—~H,V,VNA,M,S)= H,(CYV))
and d = H,(i"" V) : H(CH(V)) = H,(V,VNA, M ,8)—~H,U,UNA4, M,8)

= HP(C’A(U)) ,  we obtain the commutative diagram

> Hy (W, M, 8)— H (W, WNA, M, 8)—~H, (WNA, M, 8)—...

' b' c
v '
o= H(V, M, 8) —>HP(V,VﬂA,M,S)—>HP_1(VﬂA,M,S)—>...
a d
.—>HP(U,M,S)——>HP(U,UﬂA,M,S)—>Hp_1(UﬂA,M,S)—>...

with exact rows and @ = ¢ = 0. Diagram chasing yields db = 0, which
completes the proof.
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Theorem 4 then contains a new proof of Theorem 1 of Mardesi¢ in [6].
If A is closed in X, then Theorem 3 and Lemma 3 yield a slight.
generalization of it.

9. In a compact space X the results of section 7 can be applied to
the net Covf(X) of finite open and proper coverings of X and to the
complex OF of example 2° on page 6 above. If X is lc, and
semi-le, with respect to C=, it follows that the canonical homomorphism

v

b Hy(S , M) = Ho(X) — Hy(X) = Hy(S , M)

is bijective for p <m -+ 1. This result may be added to Lemma 10
of [3], p. 18.

Appendix

Corrections to the author’s paper [3]:

= 3imi
|29 | 1,4,5 see p. 5 above i

7 T
page | line for E read t page line for | read
| ¥ f ! i
C13 2 | Hi H" 33 | fig.4 B ‘ Bs
§ 32 ¢ | Ps 35 8 A,B 4,B
| 33 [ @* I 36 | 16 AuB AnB
| | { )

14 29| §6 | 51 31 16 S ]
; R
I 16 Example D. see p. 7 ! 19 for CP(x, C1, CIB, lc\’f"))
5 above i i o.

! ! : read CP(x , CYB , NY))
19 1 [ e l ar, o | 86 8
3 | a | w7 39 2z "Z-1%

| i (n) Vx (n) i i . i 1
for e = ay, (7 )~ a2 s S
read em) = (n(v"))—ln}'n) 43 | 2 | Ar 4,
20 6 | gt | g | 29 4 4
19 | 4l 4l ; 5 | !
| | |
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