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On basie groups for the set of tunctions over a finite ilomain

l. Results. Let Go be the set of functions whose variables, finite in
number, ra,nge over a fixed finite set

Ir/:{f ,2,...,n},n}_2
.and whose values are elements of .l[. If $ c @, we denote by I the
closure of $ under composition. $ is said to be comgttete if I : G,.r)

Every complete set contains a function satisfying slrytecki, cond,itions,
i.e. depending essentially on at least two variables and assuming all z
values. we say that a subset $ of G" is a basic set for g, if g is not
complete but the addition to S of any function satisfying slupecki con-
ditions yields a complete set. rf a basic set is a group with respect to com-
position it is termed a basic group for §...

rt, is shown in [], pp. 72-76) that all l-place functions belonging to o,
form a basic set 3r for §., provided n 2 B. This result has been
strengthened to concern various subsets of d, which are closed under
composition. rt is shown in [t] that the subset of 8r consisting of all I-place
functions other than permutations is a basic set for @,, provide d n 2 B.

on the other hand, it is shou.n in [2] that the symmetric group of degree
n is a basic group for G,.2) tr'urthermore, according to [3], the alternaiing
group of degree n is a basic group for G,. (Obviously, the latter result
implies the former.) These results are valid for all values of n, 2 5. Counter-
examples presented in [2] show that they are not valid for n : 2. 1, 4.

rn this pa,per, we shall study the problem whether it is still possible to
reduce basic groups, i.e. whether the alternating group can be replaced by a
smaller group of degree n, provided n 2 5. rn proofs of completeness
criteria for subsets of Uo, the essential fact concerning groups is the degree
of transitivity. Therefore, it is natural to ask whether the alternating group
can be replaced by an arbitrary group of degree n wilh some lo.vi,er limita-
tion on the degree of transitivity.

1) For a detailed discussion, cf. [r, pp. 56-59]. Throughout this paper, ', means
the number of elements in the set N.

2) rn fact, a slight modification in the proof of the theorem in [2] rvill yield this
result.
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It is clear that an arbitrary doubty transitive group is not basic for §".
Counter-examples are found, for instance, by considering prime values of z
and linear group3. A triply transitive group is basic for §, if z is not a
power of 2. A quadruply transitive group is always basic for §" (provided

the condition n2 5 is satisfied). These re:ults are due to the following
theorem which we shall prove in section 2.

Theorem. Euery quad,ruTtly transitiue group of d,egree n is a, basic groupt for
§^, proaid,ed, n 2. 5. If , in add,iti,on, n + 2' thert euery tri'pil,y transitiue

group of d,egree n is a basic grouTt for §,".

ft is a ctnsequence of this theorem that if a quaCruply transitive gloup

of degree z is contained in the clo:ure of a function / € G" (i.e. if f gener'

ates a quadruply transitive group) then the unit seb of / is ccmplete.l)

The same statement holds true for triply transitive groups of degree rL,

provided ?L * 2,, r 2 3. It is very tikely that the statement holds true for

arbitrary triply transibive groups, perhaps even for arbitrary doubly

tran:itive groups if n 2 3.

In section 3, we consider the exceptional cases in our theorem: n : 2',

r 2 3. we construct a triply transitive group of degree 2' which is not a

basic group for @r,. such a counter-example is provided by the holomorph

of an Abelian group of order 2' arrd type (1, I ,.'', l)'

2. Proofs. To prove our theorem, we shall first establish several lemmas.

We shall use the terms genus and type (of l-place functions belonging to @")

asdefinedin [3]. Assume tbal Gi, i:1,...,k, &renon-emptysubsetsof

Iy'. Then, for anyfunction f(*r, . . ., nx)€ @o, we denote by f(Gr,''', Gr)

the set of values assumed by / when, for i - I, ' ",k, Lhe variable r;
is restricted to the set Gi.

Lemmas I and 2 are the same as

we omit their Proofs.

lemmas l.I and 1.3 in t3]. Therefore,

each cons,isting of a rnost ,i I elements slLch

, . . ., frx) satisfies SluPeclci

CLre SetS Gi, i- 1 )... rk,
thcr,t f(Gr, .,G) conta'ins

at least i elements.

Lemma 2, The set of functions of type lbr,br,br, " ' ,b,f where

I 4t <n generates eaery function of type lb, * br,br, ' ' ' ,b,)'
Lemma 3. Assume that n 2 4 and, 3 C g, contcLi,ns a triply trqnsitiae

grouf) @ @f d,egree n) a,nd,afunction f(*r,"',nr") sati'sfying Slupeclci

iond,ati,ont. Then S generates afunction of genus 2 and, ctllfunctions of genus l.

') This means that f
because, according to [3],

is a so-calle d, She.ffer Junct'ion. The result is valid for
it is valid for tu : 4.

n> 4
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and oi+ou for i:1,...,k. Wechoosefrom 6 fu permutations
p{r),i:1,...,k, such that p;(l):ai and pt(z):a'r. Tne choice is

possible because 6 is doubly transitive. Then the function

f(pl@),... ,Pr@))

Proof. f. We shallfirst
genus y satisfies 1(y

By lemma 1, there are

(1)

where Gt:
t.

prove that 3
1n.
numbers 0L ,.

f(G,," ' ,G*)-
irl {or}, for i-:-1)...,k.
, k, such that

f(oi,...,a;):f(ur,

generates a function g(n) whose

, 0k such that

TT

By ( 1), there are numbers

.. , r0n)

b".

, b^)

assume the value b" \r,e may

is of genus smaller t}ran n. If it is of genus greater than I we have found a
function g(r) as required.

We, therefore, assume that the function (2) is of genus 1. Hence, I
generates all functions of genus 1, i.e. all constants. Using lemma l, we

choose set,s ä;,'i:1,...,k, such that each Ht consists of two (not
necessarily distinct) elements ä, and bi and f (H, , . . . , Hr) contains at
least three distinct elements b,b' and b". By a suitable renumbering of
the variables, this choice can be made in such a wav that

(2)

(7)

(3) f(br,b2,...,b0) -

and

Consider the I-place function

gr(r):f(r,br,...

which is generated by 8. If gt@) does not
choose g(r) : gt(n). Suppose

(6) st@) - b" .

b,

b'

Then necessarily cL + br, bi. Choose numbers c2 and ct,r,, 'i

such that c2 + bt, b't, cr and cr,i * b,, b', if bi + b; but

Assume that

cz,i- bi if

f (c, , ca,z , , c,,k) - b"
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Let q;(m),i:1,...,h, beconstantsin $ orpermutationsin @, defined
as follows. The function qr@) is a permutation such that Qt(l): cz,

ql2):\ and Sr.3):b'r. Let 2<i<k and br*b',.Then q.,(r)

is a permutation such that ArG) : cr.,, q,(2) : b, and qr(3) : b!. Let
2 < i < lc and b, -- bi. Then q,(r) : b,. By (3), (5) and (7), we may
choose

(8)

Assurne that

Let qr(u) be a permutation in g such that 4'r0) : cr, q{1Z! : c, and
q\(3) : n'r. Bv (5), (6) and (8), we may choose

g(r) : f(qr(r), Qr@), . . ., qr@D .

Thus, in all cases, $ generates a function g(r) whose genus 7 satisfies
l1y1n.

fI. Assume that y > 2. We shall now prove that I generates a
function h(") whose genus y, saiisfies 2 { y, <y. Bv repeating the
argument, we may conclude that I generates a function of genus 2.

Let u be a value assumed by S@) at least twice and let o and ea be
any other distinct values of g(r). Hence, there are distinct numbers zl1,

u, and a, such that

g(ur) : g(u) : u and" 9@) : u .

Choose from 6 a permutation p(r) such that p(u) : u.r, yt(u) : u., arrd
p(a) : W Then the function

h(r): sps@)

is of genus 7, *'here 2 { y, <y.
We have, thus, shorrn that $ generates a functiott hr(r) of genus 2.

Let hr(d,r):hr@z): d, dtf dr, and hr(d"): d', tl' .?d. To complete the
proof of lemma 3, $.e choose from 6 a permutation q(r) such that q(d):dr
and q(d,') : el,r. Then hrqhr(*) : d. Thus, $ generates the constant d,.

Because $ contains a transiti've group, \\:e may conclude that $ generates
all constants. Hence, lemma 3 follou-s.

Lemma 4. Assume that n 2 31) and' $ c §" contai,ns a triply transitiae
group @ (of d,egree n), afunction f(rr,...,nn) satisfying Blupeckicon-
d,i,tions and, a function g(r) of tylte ln - l, ll. Then $ is comTtlete.

1) For the proof of our theorem, it obviously
A sharper formulation is girzen to some of the
unaltered. On the other hand., lemmas 4 and 5

criteria for subsets of §n, n > 3.

suffices to consider the cases n > 1.

Iemmas because their proofs remain
may be considered as completeness
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Proof . Obviously, any function of type ln - 1,1] may be expressed in
the form p$pz@) where pr(r) and pr(r) are permutations belonging to @.

fn fact, pz may be chosen from any transitive subgroup of G and gt,

may be chosen from any doubly transitive subgroup of @. Thus, I
generates all functions of type [z - 1,1].

We shall now make the following hypothesis of induction: $ generates

all functions of type

ln,-i,1). ,1]
1.' t'efmS

(e)

(10)

where | < i < n - 2. We shall prove that this implies that $ generates

all functions of type

ln - (i + 1) , 1 ) .. . , 1]

aTTffi*
We choose numbers b, arrd b'r, i : 1, . . ., k, asinthe proof oflemma

3 such that the equations (3) - (5) hold, for some distinct numbers å, Ö'

atd b".

Lef h@) be an arbitrary function of type (10). We have to show that
h@) e $.

The function h(re) assumes i -l 2 distinct values. Let a, be the value
assumed by h(r) n - (i,f 1) times and let [/ consist of all numbers gr

such that h(U): ar. Hence, the cardinality of [/ (denoted by card(U))
is at least 2. Finally, Iet the other values assumed by h(u) be a, , . . . , &i+z

andlet u, be numberssuchthat h(u,):a,, for v:2,...,i+2.
We choose from 6 a permutation p(r) such that p(b') : a1, p(b) : a,

and p(b"): d(g and denote

(r1)

Clearlv, f ,(*,
possible to choose

,f, appliecl to the

fr,(*r, . . ., frr,) - p(f(*r, . . ., fr*))

I
&k

.

eto-'

yields the value &t,,+3, for any p- I ) .. . , i
We now consider auxiliary functions h,i(r),

the followirg table:

1.

i- I ,

. , nr") satisfies Slupecki conditions. Therefore, it is

lrtn row vector of the matrix

li r

ii 
*,

l.:

li"'-'

, k, defined by
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lrr(r) hr(m) Itn@)

ne(I
f,-l[2

fr-u,3
fr - u4

I

b1

b1
I

b1
I

cx1

b2

bz
I

b2
I

d.2

t' bt'

'b*
,rf

'bn I
d.1,

i- I
d,1

i-l
d,2

i-1
ct1,

ft follows from our inductive assumption concerning functions of type (9)
and lemma 2 lhat every function assuming some value at least n - i
times is generated by 8. Because the functions å;(r) satisfy this con-

d.ition, rre may conclude thab h{r) e §, fo, i:1,...,k.
It is a consequence of (11) and the choice of the functions h;(r) that

h(r) : fr(hr(r), . . ., hr@)) .

Thus, we have shown that all functions of type (I0) are generated by 8.
We conclude, by induction, that all functions of t54pe

(t2) 12,1 ,

n-2 terms

are generated by 8. By lemma 2, the set of functions of type (12) generates
the subset of 0, consisting of all l-place functions other than permutations.
By the criterion mentioned in section 1, we may conclude that $ is com-
plete.

Lemma 5. Assume that n 2 3 and $ c §" cotttcr,ins a triply trqnsitiae
group @ (of d,egree n), a function f(r,, ..., trr) scuisfging Slu,pecki con-

d,iti,ons cmil a function S@) of tygte ln - a, af where ct = \ . Th"n g ,;,,

complete.

Proof. If n:3 or n:4 theassumptionsof lemmas4andSare
equivalent. Therefore, we assume that n 2 5. We shall show that I
generates a function of type ln - L, I]. This implies, by lemma 4, thal $
is complete.

By the h5rpothesis, n - a * o. We assume that the notation is chosen
in such a way that n - ct > cL. If a: 1 the proof is completed. We,
therefore, &ssume lhat a ) 2. We shall show that $ generates a function
gr(r) of type ln - at, ar) where I { ar l a. By repeating the argument,
we conclude that $ generates a function oftype ln - l, ll.

fr - U; t,)ut4
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T-eb EL and E, be disjoint subsets of Iy' such that card(Er) : n - a,
cafi(Er): a 2 2 and g(r) assumes a constant value both in .8, and
in Er. Because $ contains a doubly transitive group it generates every
function assuming a constant value both in E, arrd in Er.

We choose from @ a permutation p(*) mapping some elemenl of E,
into itself and some other element, of E, into Er. Consider the sets

VL: Etf'\?(Et), Vz: EziP(Er),
( 13)

Vs,: Ezn P@r) , V+: Eri p(Dr) .

The union of the sets (13)equals N. On the other hand, by the choice of the
permutation p,

( l4)

Furthermore, I { card(Vr). The sets (13) are not of the same cardinality.
For if card (7r) : card (Vr) atd card (23) : card (7n) we obtain

card (21) : $ card (Er) > $ card (Er) : card (Zs) .

Let b, and bi,i : I, . . .,k, be the same numbers as in the proof of
lemma 3. Thus, equations (3) - (5) hold, for some distinct numbers b, ö'
and b". Choose arbitrary elements ui € Vi, i : l, 2, 3, and a permutation
p'@) e @ such that p'(b) : ar,p'(b') : az arrd ?'(b"): ar.

The following auxiliary functions hi(r) arc generated by $:
hlU): {b}, ht(82): {b") , i: | ,...,k.

(Some of the functions h;(r) may be constants which are generated by $,
according to lemma 3.) Let

g(r) : p'(f(hr(r), hrp-'(r), . . ., hrp-,(r))) .

It follows from the definitions of the functions involved that
(15) d(*): ur, for r e Vi, i: I ,2,3.
Furthermore, A@) assumes a constant yaltte u', for re Vn.

Suppose 1)'eV4. Then g2(r) isafunctionof genus3andtype ltr,tz,tsf
where at least one of the numbers l, say fr, satisfies I ( l, ( a. This is
due to (14) and the fact that u'eyruyzuVB. Let the values assumed
by 0'@) be u1, u, and z, where z, is assumed. at least twice and z,
exactly ts times. Choose numbers ul, u?, and u! such that d'(u!) :
d'@i) : u, and s'(u") : ur. Furthermore, choose a permutation pr(r) € 6
mapping the ordered triple (zr, uz,u') into the ordered triple (zl, u?,,u!),
Then we may choose

gr(r) : g'prd'@) .

Clearly g,(r) is of type ln - ts, tsl where I ! t, I a.
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Thus, we ma,y assume that u':uEe Vq,. The equations (15) may be

written in the form

( 16) g(r)=-'Ui, for freYi, i:1,2,3,1

(18)

We say that a quadruple (er, Cr,|s, öa) is a permiss'ible set of representatiues

for the numbers o; if there is a permutation in @ mapping ai into Cr
,i, : l, 2,3, 4. Assume that the elements of some permissible set of repre-

sentatives are contained in exactly three sets Vi and let p'(r) be the
corresponding permutation. Then the function gprs@) is of type Ltr,tz,h7
where | { t, I a. Proceeding as above. v'e obtain a function gr(r) as

required. We may, therefore, assume that there is no permissible set of
representatives'rvhose elements are contained in exactl;r three sets 7;.

We shall now make use of the fact establiEhed above that the sets (13)

are not of the same cardinality. If a(i) is a permutation of the numbers

l, 2, 3, 4 such that

card (2,14) ) card (V,,) ) card (7*rrr) 2 card (Y,ot)

then necessarily

(17) card (tr'4,,) ) card (V,tnt) .

Furthermore, by (14),

Let Vo$\: {rltrl ,. ..,o§*ol). Consider the number§ o; in the equations

(16). Choose from @ p permutations qt(r), i: I,..., §, such that

Qr@og) : ua(21 , Qr(aop]) : uLtrl , 81(uo1z') : aa(z) '

Then, for all i,qr(uo@))e I/o@) because, otherwise. u-e rvould obtaiu a
permissible set of representatives whose elements are coutained in exactly
three sets Vi.

By (17), this implies that, for some p, and r. lt. = r',

Qr@os,1): q,(ao@): aflo € I'o(r).

W'e have, thus, constructed the following tx'o permissible sets of repre-

sentatives which differ by one element only

(19) (oo1z1 , affgy t uu(t) ,u§61) ; (o*1r1 , u'q(Ll , aolq , a§g1) '

We now choose from 6 a permutation q'(r) such that

q'(u|ol) - ao(z) , q'(akrrl) - ao(t'), q'(ao$)) : uo(l)

Consider the values

(20) q' (a o(r\) and q' (o§g)

Ann. Acad. Scient. Ilennicte
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Because the sets (19) are permissible and q' obviously maps a permissible
set into a permissible set, the values (20) are both contained in the set 7o,r,.
Otherwise, we would obtain a permissible set, of representatives whose
elements are contained in exactly three sets V i.

We may now choose

gr@) : ll'1,0@) .

'The function 0r@) assumes the value aorrr, for r €Iro121, and the value
aa(r)t otherwise. By (18), it is of t5rye ln - ar,arf where I aa, 1a.
This completes the proof of lemma 5.

Proof of the theorem. We assume first that n 2 5. n + 2' and @ is a
triply transitive group of degree z. Let f (r, , . . . , n*) be an arbitrary
function satisfying Slupecki conditions. To show that @ is basic for G,,
we prove that the set $ consisting of 6 and / is complete.

By lemma 3, $ generates a function g(r) of genus 2. This implies, by
lemma 5, that $ is complete, provided S@) is not of type

(21) lbn,Lnl.

We assume bha| g(r) is of type (21) and that E, and E, are disjoint sub-
sets of -l[ such that card (,Or) : card (Er) : än and g(r) assumes a
constant value both in -8, and in Er. We shall now proceed as in the proof
of lemma 5.

We form the sets Vi,i:1,2.3.4, and obtain a function g-(r) satis-
fying the equations (16). (Otheririse, we lr,ould obtain a function of genus 2

and not of tgre (21) lvhich would complete the proof.) n'urthermore, we may
a,ssume that the sets V, are of the same cardinality because, otherwise,
we could use the inequality (17) as in the proof of lemma 5. Thus, the set .l/
is divided into subsets as follows:

Ä'
I

lE,
i t,, I ,,,

W'e now form a nerv partition of .l[ into Z-sets by choosing from 6 a
permutation p(r) which ma,ps some element of V1 into itself and some
other elemenl of V, into Z, and denoting

v!: ErnF@),vl: D2n F@),v!: DzoF@;,vi: EtnF@2).

Again, we may conclude that the sets V! are of the same cardinality.
Furthermore, we may a,ssume that the following equations hold:

tl

I

l

.E,
ir
ir

', r', 1 vn
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(22) card(2, n Izl) : card(2, nVL): catd(Vnn Zi) : caÅ(VnnVl)
: card Vrn VL): card VrnVil: card (V3nVl)
: c&rd Vs n Vil - f card (Y r) : I card (.8',)

:$card(N):tn.
For if the equations (22) do not hold we may argue as follows. Assume that,
for instance,

( 23)

(24)

Let Vtn V!: {6r, . . . , ar}. We choose from g permutations nr(r),
i: l, ..,7, such that nt@r):6,,nr(ur) equals some fixed element in
V4nVl and z,(or) equals some fixed element in l'nn I'i. If,for some i,
nr@a)GVtnVL we obtain a function of genus 2 and not of type (2I). If.
for all i, n,(un)e VL1VL we obtain, by (23), two permissible sets of
representatives differing by one element only. Then we ma,y argue as in the
proof of lemma 5.

Equations (22) express the fact that .l[ is divided into subsets as follows:

^

- 
!-, , -- -Etilil

I Vr I I'n i Vz i t'u
i

i ,-l i r-ä i ,'i t v'n i ,-l i ,'å i I'å r'ä

We continue the process by forming a new partition of try' into sets V?,

'i : I, 2,3, 4. ff u,e do not obtain a function of genus 2 and of some type
other than (21) rve obtain equations corresponding to (22). The common

cardinality of the sets involvea 
"Orun fi r.

By repeating the argument for nelv partitions of ^T. rve conclude that
we either obtain a function ofgenus 2 and not oftype (21) or n : 2'. Thus,
the part of our theorem concerning triply transitive groups follov's.

Assume thal n ) 5 and G is a quadruply transitive group of degree

n. Lel $ be as above. The completeness of $ follows because we may
choose from 6 a permutation mapping the numbers au i : 1,2,3, 4,

into exactly three of the sets Yr. We, thus, obtain a permissible set of
representatives whose elements are contained in exactly three sets V i.

Therefore, we have established our theorem. We note, finally, that the
main difficulties in the proof are due to the fact that no analogues of
Iemma 1.2 in [3] are available.
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3. Special cases. We shall now show that the condition n * 2' in the
statement of our theorem is essential. If n : 2' (r 2 2) there is a triply
transitive group of degree n which is not a basic group for G,. In what
follows, we shall discuss the case n : 8 in detail.

LeL 6. be the holomorph of an Abelian group of order 8 and type
(I, l, I), expressed in the usual way as a permutation group of degree 8.

6s is generated by the two permutations (1376528) and (17)(a6). It is of
order 1344 and consists of 384 7-cycles, 224permtfiations of cyclic structure
3x3, 224 permutations of cyclic structure 6x2, 252 permutations of cyclic
structure 4x4, 49 permutations of cyclic structure 2x2x2x2, 42 per-
mutations of cyclic structure 2 x 2, 168 permutations of cyclic structure 4 X 2

and the identity. The group 6, can also be characterized by the following
six defining relations:

13

x7 - 1 , Y2 - I , (YXr)u - I , (YX)u : I ,

(Y XsY XzY X)' : I , Y X'(Y X)zY X+Y X|Y X6Y X5 - I .

Obviou.cly, the holomorph of an Abelian group of order 2r

(1, 1 ,. , l) (i.e. the holomorph of a so-called generali,zed Kle'in
triply transitive. In particular, 68 is triply transitive.

Hor.veyer, G8 is not a basic group for 08. Consider the
function f (*, y) which satisfies Slupecki conditions:

and type
group) is

following

f(z* - L, A) : A,f\r,y) : I - y .

Then the set $ consisting of 6s and f(r, y) is not complete.
To prove this, we quote some terminology and notations, from section 2.

We let Er: {l; 2, 3, 4), E2 : {5,6, 7, 8}, V1 : {1, 2}, V a: {3, 4},
Yz: {5, 6) and VB: {7, 8}. The following (unordered) quadruples are
,called permissible sets of representatives:

1368, I 458, I 467 ,

2469, 3456, 3478, 5678.

The permutations in 6s always map a permissible set of representatives
into a permissible set. X'urthermore, they preserrre the subset structure (24)
of N.

Let $ C 0, be the set consisting of the following l-place functions:
1) Permutations in @8.

2) Constants.
3) Those functions of type 12, 2, 2,2] whose values form a permissible set

of representatives and which, furthermore, &ssume a constant value in the
sets Y\,V"r,V\ and Vi, for some i:1,...,7, where

L234, 1256, L279,

2359, 2367, 2457,

I 357,
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V!,: {1 ,2},
v?: {1 ,3},
Yl: {t ,1},
V\,: {1,5},
v| -{t,6},
Vl- {I ,7},
Vl,: {I , 8} ,

vl: {3 ,

VZ-{2,
vl: {2,
vt:{2,
vr: {4 ,

v9-{3,
VZ: {4,

4\ , vl: {5 ,6} ,

3), Vl:{5,8},
6), vt:{3,7},

5) , v3: {2 ,8} ,

5), Vl:{2,7),

VL: {7 ,

vl -{6,
v| : {6,
vt: {4 ,

vl -{3,
vf : {4,
v| : {3,

s)

8)

7j

8)

8)

6)

6)

+) Those functions of type [4, 4] rvhich, for some i, assume a constant
valueinoneof thesets V\UV"2, V\UY\ or V\UVL.

The set $r is closed under composition. In classes t)-4) there are,
respectively, 1344, 8, 2352 and 392 functions. Thus, card (38) : 4096.

This number can be computed more directly as follows. $, consists of all
functions which ma,p every permissible set of representatives into a, per-
missible set, a quadruple of type f2,21 or of type [+]. (In what follows,
quadruples of these three forms are called permissibl,e images.) Thus, we may
choose arbitrarily the values h(l), h(2), h(3) of. a function h@) e Sr. They
determine uniquely the value h$). Again, h(5) may be chosen arbitrarily
but then the values h(6), h(7), ä(8) are uniquely determined. Hence.

card ($r) : $4: 4096.

Our functio\ f (r, y) forms a closure in the set $r, i.e. if gr(r). Sz@) e 8e
then also f(gr(*), Sz(c)) € 8a. To prove this, it suffices to shou- that if
(ir,iz,'i,s,i,n) ar,d (jr, jr, jr, jn) arc two permissible images then also

(f(rr, ir), f(ir, ir), f(ir, ir), f(iu, io))

is a permissible image. This can be readily verified by considering the matrix
of f(r, y).

Thus, $ generates no l-place functions other than the functions in $r.
This proves that $ is not complete. Clearly, instead of the function f (*, y),
we may choose any function rvhich satisfies Slupecki conditions and forms a
closure in the set 3..

Consider the general casel) z : lt,v > 3. Let 02, be the holomorph
of an Abelia,n group of order 2' and type (1, I , . . . , 1). The order of this
triply transitive group @2" eeuals

z',(z',- 1)(2'- 2)(2', - 2'). . .(z', - z',-')

1) -W'e 
have regarded the case ,z : 8 as the first exceptional case. In fact, also the

caae m : 4 r:rlrly be considered as exceptional, the exceptional group being the holo-
morph of the four-group (which equals the symmetric group of degree 4). Our theorem
is not, valid for tt, : 3 because lemma 3 is not valid in this case.
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Define a function V@, g) € g2' as follows:

q(2r - l,A): Y , EQr,A):2" -f | - Y .

The function q(r,A) forms a closure in a set $r, consisting of 2'('+r)

l-place functions. This implies that, the set I consisting of 62' and
q(r, A) is not complete. Hence, the group 62' is not a basic group for Gr".
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