ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $S_{eries} \ A$

I. MATHEMATICA

338

ON BASIC GROUPS FOR THE SET OF FUNCTIONS OVER A FINITE DOMAIN

BY

ARTO SALOMAA

HELSINKI 1963 SUOMALAINEN TIEDEAKATEMIA

.

https://doi.org/10.5186/aasfm.1964.338

Communicated 13 September 1963 by P. J. Myrberg and K. INKERI

KESKUSKIRJAPAINO HELSINKI 1963

.

On basic groups for the set of functions over a finite domain

1. Results. Let \mathfrak{S}_n be the set of functions whose variables, finite in number, range over a fixed finite set

$$N=\{1\ ,\ 2\ ,\ \ldots\ ,\ n\}$$
 , $n\geqq 2$

and whose values are elements of N. If $\mathfrak{F} \subset \mathfrak{G}_n$ we denote by $\overline{\mathfrak{F}}$ the closure of \mathfrak{F} under composition. \mathfrak{F} is said to be *complete* if $\overline{\mathfrak{F}} = \mathfrak{G}_n^{-1}$)

Every complete set contains a function satisfying Slupecki conditions, i.e. depending essentially on at least two variables and assuming all nvalues. We say that a subset \mathfrak{F} of \mathfrak{E}_n is a basic set for \mathfrak{E}_n if \mathfrak{F} is not complete but the addition to \mathfrak{F} of any function satisfying Slupecki conditions yields a complete set. If a basic set is a group with respect to composition it is termed a basic group for \mathfrak{E}_n .

It is shown in [1, pp. 72-76] that all 1-place functions belonging to \mathfrak{E}_n form a basic set \mathfrak{F}_1 for \mathfrak{E}_n , provided $n \geq 3$. This result has been strengthened to concern various subsets of \mathfrak{F}_1 which are closed under composition. It is shown in [1] that the subset of \mathfrak{F}_1 consisting of all 1-place functions other than permutations is a basic set for \mathfrak{E}_n , provided $n \geq 3$.

On the other hand, it is shown in [2] that the symmetric group of degree n is a basic group for \mathfrak{E}_{n} .²) Furthermore, according to [3], the alternating group of degree n is a basic group for \mathfrak{E}_{n} . (Obviously, the latter result implies the former.) These results are valid for all values of $n \geq 5$. Counter-examples presented in [2] show that they are not valid for n = 2, 3, 4.

In this paper, we shall study the problem whether it is still possible to reduce basic groups, i.e. whether the alternating group can be replaced by a smaller group of degree n, provided $n \ge 5$. In proofs of completeness criteria for subsets of \mathfrak{E}_n , the essential fact concerning groups is the degree of transitivity. Therefore, it is natural to ask whether the alternating group can be replaced by an arbitrary group of degree n with some lower limitation on the degree of transitivity.

¹) For a detailed discussion, cf. [1, pp. 56-58]. Throughout this paper, n means the number of elements in the set N.

 $^{^{2})}$ In fact, a slight modification in the proof of the theorem in [2] will yield this result.

It is clear that an arbitrary doubly transitive group is not basic for \mathfrak{E}_n . Counter-examples are found, for instance, by considering prime values of n and linear groups. A triply transitive group is basic for \mathfrak{E}_n if n is not a power of 2. A quadruply transitive group is always basic for \mathfrak{E}_n (provided the condition $n \geq 5$ is satisfied). These results are due to the following theorem which we shall prove in section 2.

Theorem. Every quadruply transitive group of degree n is a basic group for \mathfrak{E}_n , provided $n \geq 5$. If, in addition, $n \neq 2^r$ then every triply transitive group of degree n is a basic group for \mathfrak{E}_n .

It is a consequence of this theorem that if a quadruply transitive group of degree n is contained in the closure of a function $f \in \mathfrak{S}_n$ (i.e. if f generates a quadruply transitive group) then the unit set of f is complete.¹) The same statement holds true for triply transitive groups of degree n, provided $n \neq 2^r$, $r \geq 3$. It is very likely that the statement holds true for arbitrary triply transitive groups, perhaps even for arbitrary doubly transitive groups if $n \geq 3$.

In section 3, we consider the exceptional cases in our theorem: $n = 2^r$, $r \ge 3$. We construct a triply transitive group of degree 2^r which is not a basic group for \mathfrak{E}_{2^r} . Such a counter-example is provided by the holomorph of an Abelian group of order 2^r and type $(1, 1, \ldots, 1)$.

2. Proofs. To prove our theorem, we shall first establish several lemmas. We shall use the terms genus and type (of 1-place functions belonging to \mathfrak{E}_n) as defined in [3]. Assume that G_i , $i = 1, \ldots, k$, are non-empty subsets of N. Then, for any function $f(x_1, \ldots, x_k) \in \mathfrak{E}_n$, we denote by $f(G_1, \ldots, G_k)$ the set of values assumed by f when, for $i = 1, \ldots, k$, the variable x_i is restricted to the set G_i .

Lemmas 1 and 2 are the same as lemmas 1.1 and 1.3 in [3]. Therefore, we omit their proofs.

Lemma 1. Assume that $n \ge 3$ and $f(x_1, \ldots, x_k)$ satisfies Słupecki conditions. Then for any $j, 3 \le j \le n$, there are sets $G_i, i = 1, \ldots, k$, each consisting of a most j - 1 elements such that $f(G_1, \ldots, G_k)$ contains at least j elements.

Lemma 2. The set of functions of type $[b_1, b_2, b_3, \ldots, b_i]$ where 1 < t < n generates every function of type $[b_1 + b_2, b_3, \ldots, b_i]$.

Lemma 3. Assume that $n \ge 4$ and $\mathfrak{F} \subset \mathfrak{E}_n$ contains a triply transitive group \mathfrak{G} (of degree n) and a function $f(x_1, \ldots, x_k)$ satisfying Slupecki conditions. Then \mathfrak{F} generates a function of genus 2 and all functions of genus 1.

4

¹) This means that f is a so-called *Sheffer function*. The result is valid for $n \ge 4$ because, according to [3], it is valid for n = 4.

Proof. I. We shall first prove that \mathfrak{F} generates a function g(x) whose genus γ satisfies $1 < \gamma < n$.

By lemma 1, there are numbers a_1, \ldots, a_k such that

(1)
$$f(G_1,\ldots,G_k)=N$$

where $G_i = N - \{a_i\}$, for $i = 1, \ldots, k$. By (1), there are numbers $a'_i, i = 1, \ldots, k$, such that

$$f(a'_1,\ldots,a'_k) = f(a_1,\ldots,a_k)$$

and $a'_i \neq a_i$, for i = 1, ..., k. We choose from \mathfrak{G} k permutations $p_i(x), i = 1, ..., k$, such that $p_i(1) = a_i$ and $p_i(2) = a'_i$. The choice is possible because \mathfrak{G} is doubly transitive. Then the function

(2)
$$f(p_1(x),\ldots,p_k(x))$$

is of genus smaller than n. If it is of genus greater than 1 we have found a function g(x) as required.

We, therefore, assume that the function (2) is of genus 1. Hence, \mathfrak{F} generates all functions of genus 1, i.e. all constants. Using lemma 1, we choose sets H_i , $i = 1, \ldots, k$, such that each H_i consists of two (not necessarily distinct) elements b_i and b'_i and $f(H_1, \ldots, H_k)$ contains at least three distinct elements b, b' and b''. By a suitable renumbering of the variables, this choice can be made in such a way that

(3)
$$f(b_1, b_2, \ldots, b_k) = b$$

(4)
$$f(b'_1, b_2, \ldots, b_k) = b'$$

and

(5)
$$f(b'_1, b'_2, \ldots, b'_k) = b''$$
.

Consider the 1-place function

$$g_1(x) = f(x, b_2, \ldots, b_k)$$

which is generated by \mathfrak{F} . If $g_1(x)$ does not assume the value b'' we may choose $g(x) = g_1(x)$. Suppose

(6)
$$g_1(c_1) = b''$$
.

Then necessarily $c_1 \neq b_1, b'_1$. Choose numbers c_2 and $c_{3,i}, i = 2, \ldots, k$, such that $c_2 \neq b_1, b'_1, c_1$ and $c_{3,i} \neq b_i, b'_i$ if $b_i \neq b'_i$ but $c_{3,i} = b_i$ if $b_i = b'_i$. The choice is possible because $n \geq 4$.

Assume that

(7)
$$f(c_2, c_{3,2}, \ldots, c_{3,k}) = b''.$$

Let $q_i(x)$, $i = 1, \ldots, k$, be constants in \mathfrak{F} or permutations in \mathfrak{G} , defined as follows. The function $q_1(x)$ is a permutation such that $q_1(1) = c_2$, $q_1(2) = b_1$ and $q_1(3) = b'_1$. Let $2 \leq i \leq k$ and $b_i \neq b'_i$. Then $q_i(x)$ is a permutation such that $q_i(1) = c_{3,i}, q_i(2) = b_i$ and $q_i(3) = b'_i$. Let $2 \leq i \leq k$ and $b_i = b'_i$. Then $q_i(x) = b_i$. By (3), (5) and (7), we may choose

$$g(x) = f(q_1(x), \ldots, q_k(x))$$
.

Assume that

(8)
$$f(c_2, c_{3,2}, \ldots, c_{3,k}) \neq b''$$
.

Let $q'_1(x)$ be a permutation in \mathfrak{G} such that $q'_1(1) = c_2, q'_1(2) = c_1$ and $q'_1(3) = b'_1$. By (5), (6) and (8), we may choose

$$g(x) = f(q_1(x), q_2(x), \ldots, q_k(x))$$
.

Thus, in all cases, \mathfrak{F} generates a function g(x) whose genus γ satisfies $1 < \gamma < n$.

II. Assume that $\gamma > 2$. We shall now prove that \mathfrak{F} generates a function h(x) whose genus γ_1 satisfies $2 \leq \gamma_1 < \gamma$. By repeating the argument, we may conclude that \mathfrak{F} generates a function of genus 2.

Let u be a value assumed by g(x) at least twice and let v and w be any other distinct values of g(x). Hence, there are distinct numbers u_1 , u_2 and v_1 such that

$$g(u_1) = g(u_2) = u$$
 and $g(v_1) = v$.

Choose from \mathfrak{G} a permutation p(x) such that $p(u) = u_1$, $p(w) = u_2$ and $p(v) = v_1$. Then the function

$$h(x) = gpg(x)$$

is of genus γ_1 where $2 \leq \gamma_1 < \gamma$.

We have, thus, shown that \mathfrak{F} generates a function $h_1(x)$ of genus 2. Let $h_1(d_1) = h_1(d_2) = d$, $d_1 \neq d_2$, and $h_1(d_3) = d'$, $d' \neq d$. To complete the proof of lemma 3, we choose from \mathfrak{G} a permutation q(x) such that $q(d)=d_1$ and $q(d') = d_2$. Then $h_1qh_1(x) = d$. Thus, \mathfrak{F} generates the constant d. Because \mathfrak{F} contains a transitive group, we may conclude that \mathfrak{F} generates all constants. Hence, lemma 3 follows.

Lemma 4. Assume that $n \geq 3^1$ and $\mathfrak{F} \subset \mathfrak{E}_n$ contains a triply transitive group \mathfrak{G} (of degree n), a function $f(x_1, \ldots, x_k)$ satisfying Slupecki conditions and a function g(x) of type [n-1, 1]. Then \mathfrak{F} is complete.

¹) For the proof of our theorem, it obviously suffices to consider the cases n > 4. A sharper formulation is given to some of the lemmas because their proofs remain unaltered. On the other hand, lemmas 4 and 5 may be considered as completeness criteria for subsets of \mathfrak{G}_n , $n \geq 3$.

Proof. Obviously, any function of type [n-1,1] may be expressed in the form $p_1gp_2(x)$ where $p_1(x)$ and $p_2(x)$ are permutations belonging to \mathfrak{G} . In fact, p_2 may be chosen from any transitive subgroup of \mathfrak{G} and p_1 may be chosen from any doubly transitive subgroup of \mathfrak{G} . Thus, \mathfrak{F} generates all functions of type [n-1,1].

We shall now make the following hypothesis of induction: \mathfrak{F} generates all functions of type

(9)
$$[n-i, \underbrace{1, \ldots, 1}_{i \text{ terms}}]$$

where $1 \leq i < n-2$. We shall prove that this implies that \mathfrak{F} generates all functions of type

(10)
$$[n - (i+1), \underbrace{1, \ldots, 1}_{i+1 \text{ terms}}].$$

We choose numbers b_i and b'_i , i = 1, ..., k, as in the proof of lemma 3 such that the equations (3) - (5) hold, for some distinct numbers b, b' and b''.

Let h(x) be an arbitrary function of type (10). We have to show that $h(x) \in \overline{\mathfrak{F}}$.

The function h(x) assumes i + 2 distinct values. Let α_1 be the value assumed by h(x) n - (i + 1) times and let U consist of all numbers y such that $h(y) = \alpha_1$. Hence, the cardinality of U (denoted by card(U)) is at least 2. Finally, let the other values assumed by h(x) be $\alpha_2, \ldots, \alpha_{i+2}$ and let u_r be numbers such that $h(u_r) = \alpha_r$, for $r = 2, \ldots, i + 2$.

We choose from (§ a permutation p(x) such that $p(b') = \alpha_1$, $p(b) = \alpha_2$ and $p(b'') = \alpha_3$ and denote

(11)
$$f_1(x_1, \ldots, x_k) = p(f(x_1, \ldots, x_k)).$$

Clearly, $f_1(x_1, \ldots, x_k)$ satisfies Słupecki conditions. Therefore, it is possible to choose numbers α_{ν}^{μ} , $\mu = 1, \ldots, i-1, \nu = 1, \ldots, k$, such that f_1 applied to the μ^{th} row vector of the matrix

$$\begin{array}{c} \alpha_1^1 \dots \alpha_k^1 \\ \vdots \\ \alpha_1^{i-1} \dots \alpha_k^{i-1} \end{array}$$

yields the value α_{u+3} , for any $\mu = 1, \ldots, i-1$.

We now consider auxiliary functions $h_i(x)$, i = 1, ..., k, defined by the following table:

Α.	I.	338

	$h_1(x)$	$h_2(x)$	• • •	$h_k(x)$
m G II	<i>k</i> ′	h		h
$x \in U$ $x = u_2$	b_1	b_2 b_2		b_k b_k
$x = u_3$	$b_1^{\tilde{i}}$	b_2^{\prime}		b'_k
$x = u_4$	α_1^1	α_2^1		α_k^1
•				
•	<i>i</i> _1	<i>i</i> _1		; 1
$x = u_{i+2}$	α_1^{i-1}	α_2^{i-1}		α_k^{l-1}

It follows from our inductive assumption concerning functions of type (9) and lemma 2 that every function assuming some value at least n-i times is generated by \mathfrak{F} . Because the functions $h_i(x)$ satisfy this condition, we may conclude that $h_i(x) \in \mathfrak{F}$, for $i = 1, \ldots, k$.

It is a consequence of (11) and the choice of the functions $h_i(x)$ that

$$h(x) = f_1(h_1(x) , \ldots , h_k(x))$$
.

Thus, we have shown that all functions of type (10) are generated by \mathfrak{F} .

We conclude, by induction, that all functions of type

(12) $[2, \underbrace{1, \ldots, 1}_{n-2 \text{ terms}}]$

are generated by \mathfrak{F} . By lemma 2, the set of functions of type (12) generates the subset of \mathfrak{G}_n consisting of all 1-place functions other than permutations. By the criterion mentioned in section 1, we may conclude that \mathfrak{F} is complete.

Lemma 5. Assume that $n \ge 3$ and $\mathfrak{F} \subset \mathfrak{S}_n$ contains a triply transitive group \mathfrak{G} (of degree n), a function $f(x_1, \ldots, x_k)$ satisfying Slupecki con-

ditions and a function g(x) of type [n-a, a] where $a \neq \frac{n}{2}$. Then \mathfrak{F} is

complete.

Proof. If n = 3 or n = 4 the assumptions of lemmas 4 and 5 are equivalent. Therefore, we assume that $n \ge 5$. We shall show that \mathfrak{F} generates a function of type [n - 1, 1]. This implies, by lemma 4, that \mathfrak{F} is complete.

By the hypothesis, $n - a \neq a$. We assume that the notation is chosen in such a way that n - a > a. If a = 1 the proof is completed. We, therefore, assume that $a \ge 2$. We shall show that \mathfrak{F} generates a function $g_1(x)$ of type $[n - a_1, a_1]$ where $1 \le a_1 < a$. By repeating the argument, we conclude that \mathfrak{F} generates a function of type [n - 1, 1]. Let E_1 and E_2 be disjoint subsets of N such that $\operatorname{card}(E_1) = n - a$, $\operatorname{card}(E_2) = a \ge 2$ and g(x) assumes a constant value both in E_1 and in E_2 . Because \mathfrak{F} contains a doubly transitive group it generates every function assuming a constant value both in E_1 and in E_2 .

We choose from \mathfrak{G} a permutation p(x) mapping some element of E_2 into itself and some other element of E_2 into E_1 . Consider the sets

(13)
$$V_1 = E_1 \cap p(E_1), \quad V_2 = E_2 \cap p(E_1), \\ V_3 = E_2 \cap p(E_2), \quad V_4 = E_1 \cap p(E_2).$$

The union of the sets (13) equals N. On the other hand, by the choice of the permutation p,

(14)
$$1 \leq \operatorname{card}(V_i) < \operatorname{card}(E_2) = a$$
, for $i = 2, 3, 4$.

Furthermore, $1 \leq \text{card}(V_1)$. The sets (13) are not of the same cardinality. For if $\text{card}(V_1) = \text{card}(V_2)$ and $\text{card}(V_3) = \text{card}(V_4)$ we obtain

card
$$(V_1) = \frac{1}{2}$$
 card $(E_1) > \frac{1}{2}$ card $(E_2) =$ card (V_3) .

Let b_i and b'_i , i = 1, ..., k, be the same numbers as in the proof of lemma 3. Thus, equations (3) - (5) hold, for some distinct numbers b, b' and b''. Choose arbitrary elements $v_i \in V_i$, i = 1, 2, 3, and a permutation $p'(x) \in \mathfrak{G}$ such that $p'(b) = v_1$, $p'(b') = v_2$ and $p'(b'') = v_3$.

The following auxiliary functions $h_i(x)$ are generated by \mathfrak{F} :

$$h_i(E_1) = \{b_i\}, \ h_i(E_2) = \{b'_i\}, \ i = 1, \dots, k$$

(Some of the functions $h_i(x)$ may be constants which are generated by \mathfrak{F} , according to lemma 3.) Let

$$\bar{g}(x) = p'(f(h_1(x), h_2 p^{-1}(x), \dots, h_k p^{-1}(x)))$$

It follows from the definitions of the functions involved that

(15)
$$\bar{g}(x) = v_i$$
, for $x \in V_i$, $i = 1, 2, 3$.

Furthermore, $\bar{g}(x)$ assumes a constant value v', for $x \in V_4$.

Suppose $v' \notin V_4$. Then $\bar{g}^2(x)$ is a function of genus 3 and type $[t_1, t_2, t_3]$ where at least one of the numbers t, say t_3 , satisfies $1 \leq t_3 < a$. This is due to (14) and the fact that $v' \in V_1 \cup V_2 \cup V_3$. Let the values assumed by $\bar{g}^2(x)$ be u_1, u_2 and u_3 where u_1 is assumed at least twice and u_3 exactly t_3 times. Choose numbers u_1^1, u_1^2 and u_3^1 such that $\bar{g}^2(u_1^1) = \bar{g}^2(u_1^2) = u_1$ and $\bar{g}^2(u_3^1) = u_3$. Furthermore, choose a permutation $p_1(x) \in \mathfrak{G}$ mapping the ordered triple (u_1, u_2, u_3) into the ordered triple (u_1^1, u_1^2, u_3^1) . Then we may choose

$$g_1(x) = \bar{g}^2 p_1 \bar{g}^2(x)$$
 .

Clearly $g_1(x)$ is of type $[n - t_3, t_3]$ where $1 \leq t_3 < a$.

(16)
$$\bar{g}(x) = v_i$$
, for $x \in V_i$, $i = 1, 2, 3, 4$.

We say that a quadruple $(\zeta_1, \zeta_2, \zeta_3, \zeta_4)$ is a permissible set of representatives for the numbers v_i if there is a permutation in \mathfrak{G} mapping v_i into ζ_i , i = 1, 2, 3, 4. Assume that the elements of some permissible set of representatives are contained in exactly three sets V_i and let $p_{\zeta}(x)$ be the corresponding permutation. Then the function $\bar{g}p_{\zeta}\bar{g}(x)$ is of type $[t_1, t_2, t_3]$ where $1 \leq t_3 < a$. Proceeding as above, we obtain a function $g_1(x)$ as required. We may, therefore, assume that there is no permissible set of representatives whose elements are contained in exactly three sets V_i .

We shall now make use of the fact established above that the sets (13) are not of the same cardinality. If $\alpha(i)$ is a permutation of the numbers 1, 2, 3, 4 such that

card
$$(V_{\alpha(1)}) \ge \text{card} (V_{\alpha(2)}) \ge \text{card} (V_{\alpha(3)}) \ge \text{card} (V_{\alpha(4)})$$

then necessarily

(17)
$$\operatorname{card} (V_{\alpha(1)}) > \operatorname{card} (V_{\alpha(4)}).$$

Furthermore, by (14),

(18)
$$1 \leq \operatorname{card} (V_{\alpha(i)}) < \operatorname{card} (E_2) = a$$
, for $i = 2, 3, 4$.

Let $V_{\alpha(1)} = \{v_{\alpha(1)}^1, \ldots, v_{\alpha(1)}^\beta\}$. Consider the numbers v_i in the equations (16). Choose from $\mathfrak{G} \beta$ permutations $q_i(x), i = 1, \ldots, \beta$, such that

$$q_i(v_{\alpha(1)}) = v_{\alpha(2)}, q_i(v_{\alpha(2)}) = v_{\alpha(1)}^i, q_i(v_{\alpha(3)}) = v_{\alpha(3)}.$$

Then, for all $i, q_i(v_{\alpha(4)}) \in V_{\alpha(4)}$ because, otherwise, we would obtain a permissible set of representatives whose elements are contained in exactly three sets V_i .

By (17), this implies that, for some μ and $v, \mu = v$,

$$q_{\mu}(v_{\alpha(4)}) = q_{\nu}(v_{\alpha(4)}) = v_{\alpha(4)}^* \in V_{\alpha(4)}.$$

We have, thus, constructed the following two permissible sets of representatives which differ by one element only

(19)
$$(v_{\alpha(2)}, v_{\alpha(1)}^{\mu}, v_{\alpha(3)}, v_{\alpha(4)}^{*}); (v_{\alpha(2)}, v_{\alpha(1)}^{\nu}, v_{\alpha(3)}, v_{\alpha(4)}^{*}).$$

We now choose from \mathfrak{G} a permutation q'(x) such that

$$q'(v^{\mu}_{\alpha(1)}) = v_{\alpha(2)}, q'(v^{\nu}_{\alpha(1)}) = v_{\alpha(3)}, q'(v_{\alpha(3)}) = v_{\alpha(1)}.$$

Consider the values

(20)
$$q'(v_{\alpha(2)})$$
 and $q'(v_{\alpha(4)}^*)$.

Because the sets (19) are permissible and q' obviously maps a permissible set into a permissible set, the values (20) are both contained in the set $V_{\alpha(1)}$. Otherwise, we would obtain a permissible set of representatives whose elements are contained in exactly three sets V_i .

We may now choose

$$g_1(x) = \bar{g}q'q_\mu \bar{g}(x)$$
.

The function $g_1(x)$ assumes the value $v_{\alpha(2)}$, for $x \in V_{\alpha(2)}$, and the value $v_{\alpha(1)}$, otherwise. By (18), it is of type $[n - a_1, a_1]$ where $1 \leq a_1 < a$. This completes the proof of lemma 5.

Proof of the theorem. We assume first that $n \ge 5$, $n \ne 2^r$ and \mathfrak{G} is a triply transitive group of degree n. Let $f(x_1, \ldots, x_k)$ be an arbitrary function satisfying Słupecki conditions. To show that \mathfrak{G} is basic for \mathfrak{E}_n , we prove that the set \mathfrak{F} consisting of \mathfrak{G} and f is complete.

By lemma 3, \mathfrak{F} generates a function g(x) of genus 2. This implies, by lemma 5, that \mathfrak{F} is complete, provided g(x) is not of type

$$(21) \qquad \qquad \begin{bmatrix} \frac{1}{2}n \ , \frac{1}{2}n \end{bmatrix}.$$

We assume that g(x) is of type (21) and that E_1 and E_2 are disjoint subsets of N such that card $(E_1) = \text{card}(E_2) = \frac{1}{2}n$ and g(x) assumes a constant value both in E_1 and in E_2 . We shall now proceed as in the proof of lemma 5.

We form the sets V_i , i = 1, 2, 3, 4, and obtain a function $\bar{g}(x)$ satisfying the equations (16). (Otherwise, we would obtain a function of genus 2 and not of type (21) which would complete the proof.) Furthermore, we may assume that the sets V_i are of the same cardinality because, otherwise, we could use the inequality (17) as in the proof of lemma 5. Thus, the set Nis divided into subsets as follows:

N					
	E_1			E_2	
V_1		V_4	V_2		V_3

We now form a new partition of N into V-sets by choosing from \mathfrak{G} a permutation $\overline{p}(x)$ which maps some element of V_1 into itself and some other element of V_1 into V_3 and denoting

$$V_1^1 = E_1 \cap \, \bar{p}(E_1) \; , \; V_2^1 = E_2 \cap \, \bar{p}(E_1) \; , \; V_3^1 = E_2 \cap \, \bar{p}(E_2) \; , \; V_4^1 = E_1 \cap \, \bar{p}(E_2) \; .$$

Again, we may conclude that the sets V_i^1 are of the same cardinality. Furthermore, we may assume that the following equations hold:

$$= \frac{1}{8}$$
 card $(N) = \frac{1}{8} n$.

For if the equations (22) do not hold we may argue as follows. Assume that, for instance,

(23)
$$\operatorname{card} (V_1 \cap V_1^1) > \operatorname{card} (V_1 \cap V_4^1).$$

Let $V_1 \cap V_1^1 = \{\bar{v}_1, \ldots, \bar{v}_n\}$. We choose from \mathfrak{G} permutations $\pi_i(x)$, $i = 1, \ldots, \gamma$, such that $\pi_i(v_1) = \bar{v}_i, \pi_i(v_2)$ equals some fixed element in $V_4 \cap V_1^1$ and $\pi_i(v_3)$ equals some fixed element in $V_4 \cap V_4^1$. If, for some i, $\pi_i(v_4) \notin V_1 \cap V_4^1$ we obtain a function of genus 2 and not of type (21). If, for all $i, \pi_i(v_4) \in V_1 \cap V_4^1$ we obtain, by (23), two permissible sets of representatives differing by one element only. Then we may argue as in the proof of lemma 5.

Equations (22) express the fact that N is divided into subsets as follows:

	1	V	
I	² 1	1	E ₂
V_1	V_4	V_2	V ₃
$V_1^1 \qquad V_4^1$	V_1^1 V_4^1	$V_2^1 = V_3^1$	V_2^1 V_3^1

We continue the process by forming a new partition of N into sets V_i^2 , i = 1, 2, 3, 4. If we do not obtain a function of genus 2 and of some type other than (21) we obtain equations corresponding to (22). The common

cardinality of the sets involved equals $\frac{1}{16}n$.

By repeating the argument for new partitions of N, we conclude that we either obtain a function of genus 2 and not of type (21) or $n = 2^r$. Thus, the part of our theorem concerning triply transitive groups follows.

Assume that $n \geq 5$ and \mathfrak{G} is a quadruply transitive group of degree n. Let \mathfrak{F} be as above. The completeness of \mathfrak{F} follows because we may choose from \mathfrak{G} a permutation mapping the numbers v_i , i = 1, 2, 3, 4, into exactly three of the sets V_i . We, thus, obtain a permissible set of representatives whose elements are contained in exactly three sets V_i .

Therefore, we have established our theorem. We note, finally, that the main difficulties in the proof are due to the fact that no analogues of lemma 1.2 in [3] are available.

(24)

3. Special cases. We shall now show that the condition $n \neq 2^r$ in the statement of our theorem is essential. If $n = 2^r$ $(r \ge 2)$ there is a triply transitive group of degree n which is not a basic group for \mathfrak{E}_n . In what follows, we shall discuss the case n = 8 in detail.

Let \mathfrak{G}_8 be the holomorph of an Abelian group of order 8 and type (1, 1, 1), expressed in the usual way as a permutation group of degree 8. \mathfrak{G}_8 is generated by the two permutations (1376528) and (17)(46). It is of order 1344 and consists of 384 7-cycles, 224 permutations of cyclic structure 3×3 , 224 permutations of cyclic structure 6×2 , 252 permutations of cyclic structure 4×4 , 49 permutations of cyclic structure $2 \times 2 \times 2 \times 2$, 42 permutations of cyclic structure 2×2 , 168 permutations of cyclic structure 4×2 and the identity. The group \mathfrak{G}_8 can also be characterized by the following six defining relations:

$$X^7 = 1$$
, $Y^2 = 1$, $(YX^3)^4 = 1$, $(YX)^6 = 1$,
 $(YX^3YX^2YX)^2 = 1$, $YX^3(YX)^2YX^4YX^5YX^6YX^5 = 1$.

Obviously, the holomorph of an Abelian group of order 2^r and type $(1, 1, \ldots, 1)$ (i.e. the holomorph of a so-called *generalized Klein group*) is triply transitive. In particular, \mathfrak{G}_8 is triply transitive.

However, \mathfrak{G}_8 is not a basic group for \mathfrak{E}_8 . Consider the following function f(x, y) which satisfies Słupecki conditions:

$$f(2x - 1, y) = y, f(2x, y) = 9 - y.$$

Then the set \mathfrak{F} consisting of \mathfrak{G}_8 and f(x, y) is not complete.

To prove this, we quote some terminology and notations, from section 2. We let $E_1 = \{1, 2, 3, 4\}$, $E_2 = \{5, 6, 7, 8\}$, $V_1 = \{1, 2\}$, $V_4 = \{3, 4\}$, $V_2 = \{5, 6\}$ and $V_3 = \{7, 8\}$. The following (unordered) quadruples are called permissible sets of representatives:

The permutations in \mathfrak{G}_8 always map a permissible set of representatives into a permissible set. Furthermore, they preserve the subset structure (24) of N.

Let $\mathfrak{F}_8 \subset \mathfrak{E}_8$ be the set consisting of the following 1-place functions: 1) Permutations in \mathfrak{G}_8 .

2) Constants.

3) Those functions of type [2, 2, 2, 2] whose values form a permissible set of representatives and which, furthermore, assume a constant value in the sets V_1^i , V_2^i , V_3^i and V_4^i , for some $i = 1, \ldots, 7$, where

$V_1^1 = \{1 \ , 2\} ,$	$V_2^1 = \{3, 4\},\$	$V_3^1 = \left\{5, 6 ight\},$	$V_4^1 = \{7, 8\};$
$V_1^2 = \{1, 3\},$	$V_2^2 = \{2, 4\},\$	$V_3^2=\{5\ ,\ 7\}$,	$V_4^2 = \{6\;,8\}\;;\;$
$V_1^3 = \{1, 4\},\$	${V}_2^3=\{2\;,3\}$,	$V_3^3=\left\{5 ext{ , 8} ight\},$	$V_4^3 = \{6, 7\};$
$V_1^4 = \{1, 5\},$	$\boldsymbol{V_2^4} = \{2\text{ , }6\}$,	${V}_3^4=\{{f 3}\ {f ,}\ {f 7}\}\ {f ,}$	$V_4^4 = \{4,8\};$
$V_1^5 = \{1\;,6\}\;,$	$V_2^{\mathtt{5}} = \{\mathtt{4} \mathtt{, 7}\} \mathtt{,}$	$V_3^5=\{2\ ,5\}$,	$V_4^5 = \{3\ , 8\} \ ;$
$V_1^6 = \{1,7\},$	${V}_2^6=\left\{3\ ,\ 5 ight\},$	$V_3^6=\{2\;,8\}$,	$V_4^6 = \{4\;,6\};$
$V_1^7 = \{1, 8\},\$	$V_2^7 = \{4\ ,\ 5\},$	$V_3^7 = \{2, 7\},$	$V_4^7 = \{3, 6\}$.

4) Those functions of type [4, 4] which, for some *i*, assume a constant value in one of the sets $V_1^i \cup V_2^i$, $V_1^i \cup V_3^i$ or $V_1^i \cup V_4^i$.

The set \mathfrak{F}_8 is closed under composition. In classes 1)-4) there are, respectively, 1344, 8, 2352 and 392 functions. Thus, card $(\mathfrak{F}_8) = 4096$. This number can be computed more directly as follows. \mathfrak{F}_8 consists of all functions which map every permissible set of representatives into a permissible set, a quadruple of type [2, 2] or of type [4]. (In what follows, quadruples of these three forms are called *permissible images*.) Thus, we may choose arbitrarily the values h(1), h(2), h(3) of a function $h(x) \in \mathfrak{F}_8$. They determine uniquely the value h(4). Again, h(5) may be chosen arbitrarily but then the values h(6), h(7), h(8) are uniquely determined. Hence,

card
$$(\mathfrak{F}_8) = 8^4 = 4096$$
.

Our function f(x, y) forms a closure in the set \mathfrak{F}_8 , i.e. if $g_1(x), g_2(x) \in \mathfrak{F}_8$ then also $f(g_1(x), g_2(x)) \in \mathfrak{F}_8$. To prove this, it suffices to show that if (i_1, i_2, i_3, i_4) and (j_1, j_2, j_3, j_4) are two permissible images then also

$$(f(i_1, j_1), f(i_2, j_2), f(i_3, j_3), f(i_4, j_4))$$

is a permissible image. This can be readily verified by considering the matrix of f(x, y).

Thus, \mathfrak{F} generates no 1-place functions other than the functions in \mathfrak{F}_8 . This proves that \mathfrak{F} is not complete. Clearly, instead of the function f(x, y), we may choose any function which satisfies Słupecki conditions and forms a closure in the set \mathfrak{F}_8 .

Consider the general case¹) $n = 2^r, r \ge 3$. Let \mathfrak{G}_{2^r} be the holomorph of an Abelian group of order 2^r and type $(1, 1, \ldots, 1)$. The order of this triply transitive group \mathfrak{G}_{2^r} equals

$$2^{r}(2^{r}-1)(2^{r}-2)(2^{r}-2^{2})\cdots(2^{r}-2^{r-1})$$
.

¹) We have regarded the case n = 8 as the first exceptional case. In fact, also the case n = 4 may be considered as exceptional, the exceptional group being the holomorph of the four-group (which equals the symmetric group of degree 4). Our theorem is not valid for n = 3 because lemma 3 is not valid in this case.

Define a function $\varphi(x, y) \in \mathfrak{G}_{2^r}$ as follows:

$$\varphi(2x-1, y) = y$$
, $\varphi(2x, y) = 2^r + 1 - y$.

The function $\varphi(x, y)$ forms a closure in a set \mathfrak{F}_{2^r} consisting of $2^{r(r+1)}$ 1-place functions. This implies that the set \mathfrak{F} consisting of \mathfrak{G}_{2^r} and $\varphi(x, y)$ is not complete. Hence, the group \mathfrak{G}_{2^r} is not a basic group for \mathfrak{E}_{2^r} .

References

- [1] Яблонский, С. В.: Функциональные построения в k-значной логике. Тр. Матем. инст. им. В. А. Стеклова, 51 (1958), 5-142.
- [2] SALOMAA, A.: A theorem concerning the composition of functions of several variables ranging over a finite set. J. Symbolic Logic 25 (1960), 203-208.
- [3] -»- Some completeness criteria for sets of functions over a finite domain. I. -Ann. Univ. Turkuensis, Ser. A I 53 (1962).
