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Fundamental Polygons of Fuchsian and Fuchsoid Groupsl)

l. Although the theory of Fuchsian and Fuchsoid groups has been con-
sidered for many years, certain aspects concerning the properties of funda-
mental polygons merit renewed examination. Let f denote a group of
conformal automorphisms of Å: {lei < t} onto itself which is properly
discontinuous (at each point of /) . Let @ denote a group of Möbius
transformations acting on the extended plane, mapping / onto itself, and
properly discontinuous at each point of A. If @ is not properly discon-
tinuous at any point of C : { lz) : tl, @ is said to be of the fi,rst lci,nd,.

Otherwise, @ is said to be of tlne second ki,nd,. Given a group -I- , the set
of Möbius transformations whose restrictions to / arc the members of l-
constitutes a, group @ , which we shall denote by @(l). Similarly, we shall
denote the set of the restrictions of the members of a group @ to / , which
constitutes a, group f , by f@) .

An important result of C. L. Siegel [9, t0] states: if a poincard, fund,a-
mental polygon of a groupt I has finite hyperbolic area, then it has a finite
number of sides, none of which is on C , and @(f) is of the first kind,.

rt is natural to inquire v'hether siegel's theorem has a partial counter-
part, for @ of the second kind. when siegel's theorem is reformulated in
terms of metrics of constant negative curvature associated with the quo-
tient map defined by J', a natural counterpart of siegel's theorem for @
of the second kind is valid. It is one of our objects to establish extensions of
siegel's theorem and this result to the case of arbitrary non-euclid.ean con-
vex fundamental polygons [Th. 4.2, Th. 6.1].

with the aid of these theorems we shall obtain the following theorem.
Theorem 1.1: Each non-eucl,id,ean conaen fund,amental, polygon of a

finitely generated, @ has a finite number of sid,es. If some non-euclid,ean
conl)en fund,amental polygon has a finite number of sides, then @ is finitety
generated,.

we recall that in the sense of the terminology of l2l a group @ is termed
xuchsian provided that some Poincard normal fundamental polygon of @
has a finite number of sides and otherwise is termed ruchsoid,. rt is a con-
sequence of part of the arguments leading to Theorem l.I that if some

1) Work on this paper vras carried out during the tenure of National Science
Foundation Grant NSF G 25227.
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non-euclidean conyex fundamentat polygon of @ , in particular a Poincard

fundamental polygon, has a finite number of sides, then so does every

non-euclidean convex fundamental polygon of @ [cf. § 7].

our developments will be based on a free use of Riemann surface theory
and the geometric reasoning employed. by Siegel. In particular, we shall

focus attention on the map that, carries a point into its orbit with respect

to@.
In § 12 we shall make a systematic study of the relation between the

parabolic members of an arbitrary @ and the cusps of an associated non-

euclidean convex fundamental polygon. The results are, it, is to be noted,

free of finiteness conditions. The work of § f 2 is based on our paper [5].

2. It will be convenient to recall some basic facts concerning properly
discontinuous groups of Möbius transformations. Suppose that M is a

group of Möbius transformations. By l]ne orbit of a point z of the extended

plane with respect to M, denoted 9(z) , is meant the set fu(z)lt e M\ .

Given O , a non-empty open subset of the extended plane, we introduce
u(z,O), the number of distinct re M such that r@)e O. Clearly,

z-->v(2, O) is a lower semi-continuous function in the extended plane.

We say lhat M i,s proyterly d,isconti,nuous at a provided that, for some O

containing a,

(2.1)
zeO

The set of points at which l7l is properly discontinuous is open and is
mapped univalently onto itself by each r e M. We suppose that the set

in question is not empty. Let Q denote & component. We introduce

(2.2) E(M,A):{q(z)lze0}.
If we endow F(M , O) with the weakest topology rendering

(2.3) giz-->q@), ze Q,

a,n open mapping, then X(M , Q) becomes a 2-dimensional manifold'
Further, E(M , Q) may be endowed with a conformal structure rendering

g a conformal map of O onto I(M, !2) . Indeed, I(M, f)) may be

endowed. with a Riemann surface structure that renders g conformal in
essentially one way. Given a e Q , the set

t:åå,(,,o)laeo\

has a finite minimum, which is, in fact, equal to the number of distinct
members of M having o as a fixed point and also is equal to n(a ; E) ,

the multiplicity of E at, a. Since g is automorphic with respect to M ,
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it follows that n(a ; d : n(b ;q), if ä € V@)11J2. Thus we see that if
q e F(M , A) , then the multiplicity of E is the same at each pointl of
E-'(q\). We denote the common value by A@). The function ä : q--t A(il ,

q e E(M , O), has the property that the set {A@) > 1} clusters at no point
of I(M, .o) . We term ä the rami,fication ind,er of g .

A case of particular interest is that where each z e M maps / onto
itseH. fn this case, if the set of points rrhere M is properly discontinuous
is not empty, then either it has two components, .4 and ext / , or else

it is connected and contains Å U ext A . The groups in question are the
@ of§ I.

Poincar6's normal fundamental polygon. Given points a,be A, we
denote the hyperbolic distance between a and b by la , bl . By the
Poincard normal fund,amental polygon, II(a) , of a group @ relative to
ae Å, n(a;V): l, is meant simply the set of zezl satisfying

(2.4)

(The definition of a Poincard normal fundamental polygon of a group I
is the same with ,l' replacing @.) We shall also sa,y more briefly »»Po'incard

polygon»>. Z(o) has the property that for each beA, V(b)nII@) + a .

n'urther, if b € int II(a), then q(b) has only the point ä in common
wiLh II(a). The frontier of II(a) consists of the closure of the union of
certain non-euclidean straight line arcs o and arcs 7(c C) . By a siile
of II(a) is meant a maximal o or y contained in fr II(a). Further,

U,rrrllf(r,\): /.
and for t$ @) not the identity

int II(a) llint tlll(a)l: a .

There is no reason to restrict our attention to Poincar6 fundamental
polygons. We may as well consider more general »fundamental domains».
We shall say that D(c /) is a nott-euclid,ean conuer fund,amental domain
of @ provided that (1) "D is closed rclaLive lo / and is non-euclidean
conyex, (Z) V@) : g@), (3) the restriction of g to int D is univalent
(o, equivalently, int D O t(inb D) : @, z(l identity) e @). Such a
D will be termed a non-euclid,ea,n conaen fund,amental Ttolygon of @ , or
more simply, a fund,amental, polygon of @ provided that' not onlv are the
previous conditions fulfilied but also: (4) each component of Å ll fr D
is piecewise non-euclidean rectilinear, and (5) for each z e / there exists

') q-t(E) denotes the antecedent of a set, .E with respect to the map g with
domain O specified by (2.3).
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a neighborhood having points in common wibtr zD for only a finite set,

of z € @ . The condition (5) is equivalent to the condition: (6) the restric-
tion of g to D tends to the ideal boundary of E(/) as lzl ---> I. It is
clear that, a Poincard fundamental polygon is a fundamental polygon in the
present sense. The term »side» will be employed for fundamental domains
in the same way as for Poincar6 fundamental polygons.

3. A lemma concerning fundamental polygons for @ of the second kind.
We shall u,'ant information concerning the behavior of a fundamental poly-
gor, II of a group @ in the neighborhood of a frontier point on C at
which @ is properiy discontinuous. The facts are quite straightfor:ward
but nevertheless require attention.

Lemma 3.7: Let O be properly d,iscontinuous at e e C . Then

i n rG) is a nonemytty fi,nite set. Iurther, e'ither it red,uces to an inner Ttoint
of an arc of C lying in fr II , or else'it consists of more than one Ttoint and,

in this lcttter case for each Ttoint of i n r@ one of the fol,l,owing alternat,iues
occurs: (l) it is an endpoint o,f an arc y(c C) anil an arc p of a circle ortho-

gonalto C,§cZ, suchthat yUpcfuII; (2) zf is anenrlltointof two
d,istinct p the union of which lies in ft II .

Proof : It will be convenient to treat the equivalent problem 'where
@ is replaced by a, group of Möbius transformations mapping {Im z > 0}
onto itself and properly discontinuous at each point of {Im z > 0}. lYe
shall designate the group in question also by @ . (Of course, the definition
of a fundamental polygon persists.) We take a point c of the real axis
where @ is properly discontinuous and show first that, there exists a
neighborhood of c which has points in common with r(II) for only a

finite set of te @. To that end, we introduce d(> 0) such that 9(-E)
is a proper subset of q[{Im, > O}) , where

(3. 1)

Every hyperbolic straight line segment, one endpoint of rvhich is at a

euclidean distance less than ä from c and the other is at a euclidean
distance less than ä from c f 6 å, has the property that it lies on a
euclidean circle whose center lies in the intervat (c + 2 ö,c + 4ö) of the
real axis and radius lies strictly betu-een 2 å and 4 ö . A corresponding
statement holds when one of the endpoints is at a euclidean distance less

than d from c and the other is at a euclidean distance less than d from
c-6ö.

We assert fhaf rQl has points in common with U(c , ä) : { lz - cl < d}
for only a finite set of r e @ . In fact, by the choice of ä each z(I/) must
havepointsin {Imz>0)-R. Hence if r(II)fiU(c,ö)+@, then
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il ointz?I) * a , where ,O is the intersection of {Im z > 0} and the
frontier of

(3.2)

Since int r(II) is convex in the hyperbolic sense, it follows that there is
a hyperbolic straight line segment )., C int t(II) the endpoints of which
are in U(c , ö) and il. If there were infinitely many distinct z with
the stated property, the endpoints of the )", on ,E would cluster either
at c* 6ä or at c-6ö. Otherwisesomepointof {Imz>0} would
have the property that, each of its neighborhoods would contain points
of t(II) for infinitely many distinct z. This is not possible. However,
the endpoints of the )"" on E cannot cluster at c * 6 d . Otherwise for
infinitely many distinct z the endpoints in question would lie in
U(c I 6 d , ö) , and consequently, for infinitely many distinct t Lhe
point of maximum ordinate on the circle containing 1,. would belong to
1.. and also to the square

(3.3) Rr: {"i 2 ä < Re z - c z-4ö,2ö <-lmz < 4ö}.

But then we should be forced to conclude the existence of a point of
{Im e } 0} each neighborhood of which contains points of t(II) for in-
finitely many distinct r . This is not possible. Similarly the endpoints
of the )., on E are seen not, to cluster at c - 6d . Our assertion follows.

We next choose dr, 0 < d, ( d, so that c belongs to the closure
of each z(I1) having points in common ryith U(c, ör). To continue, we
note that each int r(II) is a Jordan region (in the sense of the topology
of the extended plane). Let us consider a subarc a of the frontier of a
r(11) , where ecU(c,ör) and c is anendpointof a. Weassertthat
some subarc of * having c as &n endpoint either is a segment of the real
axis or else is a Jordan arc lying wholly in {Im z > 0} save for the point
c . Otherwise there would exist a, sequence of subarcs of a lying in
{Im z } 0} save for endpoints that lie on the real axis and tend to c .

But then the closure of the bounded Jordan region, the frontier of which
consists of such a subarc and the segment of the real axis joining its end-
points, contains some o(Z) , o e @ . Hence there would exist arbitrarily
small o(il) in U(c, ö). This is not possible.

If some subarc a, of or with endpoint c lies wholly in {Im z > 0}
save for c , we may suppose that a, less c is a hyperbolic half line. In
fact, under this condition for each z for which c e fr r(II) we introduce
one ara of r(II) with endpoint c lying wholly in {Im z > 0) {1 U(c , ö)

save for c if r(II) contains a segment of the positive real axis having
positive length with endpoint c , and otherwise we introduce two arcs of
fu r(II) having only c in common and lying wholly in {Im z > 0} {1 U(c , ö)
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save for c. We choose är,0<är(d, so that anypoint of fr/II)
in {Imz > 0} nU@, är) lies on one of the chosen arcs associated with
z , z such trhat c e rQI). We assert that there are no corrrers of a chosen
arc in U(c, ör). If there were such a corner, say q, then the hyperbolic
convexity of Z would imply that q would belong to fu r(II) for at least
three distinct t . (We recall that the angular opening at a corner is less

than z .) It follows that there would exist subarcs of two chosen arcs
with endpoints c and q having in common in some neighborhood of q

no points distinct, from q . These subarcs cannot meet at a point, of
{Imz } 0} distinct from q; otherwise they would have subarcs having
just their endpoints in common - the endpoints being g and another point
of {Im z > 0} - and consequently, .E would be a bounded subset of
{Im z } 0} and hence @ would not tre of the second kind. It follows that
the subarcs of the first clause of the preceding sentence form a closed Jordan
currle y in U(c, d) and that int z(11) would lie rvholly in the bounded
component of the complement of y and hence in ,B for some r . The
contradiction is apparent. The supposition of the first sentence of the pre-
sent paragraph is valid.

The Lemma now follows readily.

4. Our next, concern will be to reformulate the condition of Siegei in
terms of q(/) and the ramification function 0 .

We consider an arbitrary Riemann surface .F, and a function d on
l, which takes positive integer values and is such that {d(q) > 1} clusters
at no point of n . We say l}r'at, (X , d) satisfies lhe cond,ition, A provided
that either (l) there does not exist a C" conformal metric 2 of constant
Gaussian curvature - 4 on X - {d,(q) > t) subject to the condition
that in terms of a local uniformizer o , o(0) : q ,

1,(t)irl'-ra(q)l-1(4. 1)

possesses a finite positive limit at 0 , )",(t) ldll being the local representa-
tion of the metric in terms of o , q e I ; or else (2) such i, exist and the
supremum of the set of ,l-areas of I - {d(q) > 1} is finite. Actually,
if such a metric ,1, exists, there is a maximal such ,1, . This fact will become
clear subsequently (Th. a.3). The ,tr in question &re real analytic, but use
will not be made of this property.

We turn to the reformulation of Siegel's condition. Given a group @ ,

we let, X be E(/) and d, the restriction of ä to q(/). We have
Theorem 4.72 There erists a mauimal ). relatiae to (X , d) , saU p .

The hyperboli,c areq, "f each fund,amental, polygon ,i,s the p,-areq, ,f
I - {d(q) > 1} . If the cond,iti,on of Siegel is ful,fil,l,ed, for some fund,amental
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pol,ygon, then (E , d) sati,sfies the cond,itioru A . If (I , d) sati,sfies the

cond,ition A , each fund,amental polygon has the same J\nite hyperbol,i,c area
and, its front'ier has a finite num,ber of sid,es, none on { i, I : t } .

ft is to be remarked that as a consequence of Siegel's hypothesis the
frontier of every fundamental polygon has a finite number of sides. Of
course, it is easy to see directly that every fundamental polygon has the
same hyperbolic area (finite or infinite) for any given @ .

To establish Theorem +-l we note that, the hyperbolic metric
$ - iz)z)-|ld,zl restricted to / - {n("; p); 1} defines via q a mebric
p on -n' - {d(q) > 1} fulfiliing the conditions imposed on a metric .1 .

Suppose that a competing ,t meeting the imposed conditions is con-
sidered. Let, A(z)ldzl and M(z) ld,zl denote the representations of ,tr and
p given by the restriction of p to A - {n(z;q) > 1}. We have
M(z) : (1 - lzl'z)-l . X'urther A(z) ld,zl is a C" metric of constant
curvature - 4 and A admits a continuous extension to Å . It follows
t}oat A I M by a slightly generalized form of Ahlfors's extension [I] of
the Schwarz lemma (cf. [6] p. 85).Hence )" < p.

Only the last assertion of the theorem calls for attention. It will be
established once the following result is proved.

Theorem 4.2: If a fu,nclam,ental ytolygon has a finite hyperbolic q,rea,, then
i,ts frontier has a finite num,ber of sid,es none of which i,s on { ,l : t} .

(Siegel's theorem for fund,amental poly g ons.)
The proof is a very slight variant of Siegel's [10]. We first consider an

arbitrary non-euclide&n convex set E C z1 , rvhere -O is closed relative to
/ , irat E + o , and E has finite hyperbolic area. We assert that A fifu E
has only a finite number of components. Otherwise we may &ssume that
0 € int E and that there are infinitely many hyperbolic triangles lying in
E each of which has 0 as a vertex and the remaining vertices on {lzl : I}
and which further have no interior points in common. These triangles may
be taken as the hyperbolic triangles whose vertices are zeto and the end-
points of a component of Å i fr.E which subtends an angle less than
(say) nl2 at 0 . On using the formula for the area of a hyperbolic triangle
in terms of the vertex angles we see that the area of .4 would have to be
infinite and we obtain a contradiction. X'urther fr E does not contain an
arc of {lzl : 1} . Hence fr.E consists of the union of the above compo-
nents and a finite set of points on {lzl - I}.

We now consider a fundamental polygon I/ having finite hyperboiic
area. Again we ma,y suppose that 0 € int Z. We first note that for a given
component of Å i fu If and e ) 0, at only a finite number of the vertices
on / i frZ is the angle of the non-euclidean sector bounded by the sides
issuing from the vertex and containing II less than xv - e. It suffices
following Siegel to inscribe the hyperbolic triangies with vertices 0 and
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successive endpoints of a side of the component of A fi fr ff in question.
Thereupon it is easy to control the vertex angles with the aid of the formula
for the area of a hyperbolic triangle. Suppose that there are infinitely meny
vertices on a component. Let (z*)f be a sequence of successive vertices
proceeding in one sense along the component. For the hyperbolic triangle
with vertices 0 ,21, ,21"a1 we denote the angle at ?10 by dh , al zn+t
by §r and the angle at, 0 by Tr, For each positive integer n ) we have

n n+l

Z (" - &r,+t - §r,) + (* - *-,, - §*+r) < A + Z y*,

where A;;r" hyperbolic area of n . Hence

åQt-en+t-§)<A+ 2n*§,+r( A+ 3n

We conclude that lim (41,*, * §*) : n . Our assertion follov's, the case
k_>@

where there are only a finite number of vertices on a component of A fi fr II
being obvious.

The proof is now completed by noting first that since there are only a
finite number of components of / i fr If , given € > 0 there are only
a finite number of vertices at which the angle is less trlnan n - e . If infini-
tely many vertices were present, there would exist a vertex with associated
angle ar, 3nf4 <a<n, such that each equivalent point of frZ is
either not a vertex or else is a vertex whose associated angle lies strictly
between 3 nl4 and n . On summing the angles associated with the points
of fr II equivalent to the vertex in question, we should obtain a sum of
the form 2 nf n where z is a positive integer, the angle z being associ-
ated with a point, not a vertex, equivalent to the given vertex. If the
number of points of fr Z equivalent to the given vertex is m , then
\nml4l2nlnlnnr and hence 2<mn<8/3. The contradiction is
manifest.

It will be observed by the reader conversant rvith the proof of [10]
that we have introduced a slight modification of the Siegel argument. Here
we show the finiteness of the number of components and then the finiteness
of the number of vertices on the components. The reverse procedure is
followed in [10]. There however one is ied to treat the limiting behavior
of such angles as p" for n-+ + oo . Such considerations are eliminated
by the present reversal of the argument.

A treatment of Siegel's theorem as originally stated for Poincar6 poly-
gons is to be found in lll].

We now turn to the situation of an unrestricted (X , d) and characterize
the (.F , d) satisfying the condition A with the aid of Siegel's theorem.
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The following results are u/ell known from the classical theories of Riemann

surfaces a,nd a,utomorphic grouPs:

Gi,uen (I , d,) . We suppose thq,t F is not conformal,ly equiaal'ent to the

erutend,ed, gtlane or {d(q) > l\ conta,ins at [,eust three poi,nts. There erists a

conformal ma?t V of one of the stund,ard, si,mply connecteil regions - the

e*tend,eil ytlane, the finite plane, A -onto X fulfi,iling the following cond,i'

tions: (l) The restriction of y to

y,-'W-{d(q) >1}l(1.2)

a region @,8e o, such that the restyiction

has constant aalence d(q) on (D .

,f V to a, component ,f ,p-'(*)

If y, and, y, both sati'sfy the stated, cond'itions for a gitten (F , d) , then

they both haae the same d,oma;i,n and, there er,ists a conformal automorphism,

a , of the d,omain such that Vz - gro d .

Each y is automorpthic wi,th resltect to a group of conJormal automorphi,sms

of i,ts d,omain such that for each p e F , ,p-'({p\) i,s an orbi't of the grougt'

If the d,omain of y i,s the ertend,eil, plane, I is conformally equi'aalent

to the extend,ed, gtlane and, {d(q) 2 L} contai,ns preci,selg three m'embers. If the

d,oma'i,n of y is the finite plane, then F 'i,s conformall,y equi'aalent to one of

the fotlowing: ertend,ed, plane, Ji,ni,te plane, punctureiL plane, a torus, and'

{d(q) > l\ contains at most four points.
with the aid of these results and siegel's theorem we are in a position

to establish
Theorem 4.3: A Ttair (I , d,) satisfies the cond,iti,on A i'f anil' only i'f

I is conformal,ly equi,uulent to a compact R'iemann surface less a fi,nite set

of points and, {il(q) 2 r} ds a finite set.

Proof: suppose that (-F,d) satisfies the condiliorn a. we put aside

the trivial case where -F is conformally equivalent to the extended plane

and {d(q) 2 1} has at most two elements. we may further suppose that
the domain of the associated y is A . In this ca§e we see that, the condition

of Siegel is fulfilled. by the fundamental polygons of the group of conformal

automorphisms l- of / Ieaving y invariant. Since rp : 0 o g, where

0 is a univalent conformal map of q(/) o:nto -E (g referring to l-), the

theorem of Siegel leads to the stated conclusion inasmuch as the finiteness

condition on the number of sides of a fundamental po§gon and the fact

that none is on c imply t]har E@) is conformally equivalent to a compact

Riemann surface less a finite set of points and {0(q) ;, 1} is finite. It is

to be emphasized in this connection that the set of points on the frontier

of a fundamental polygon having a finite number of sides at whichthe multi-

plicity of g is two is finite'
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We now proceed in the opposite direction. Here, too, it is sufficient to
consider the case where .F' is not conformally equivalent to the extended
plane or {d(q) > l} contains at least three points. Further, we may restrict
our attention to the case where the domain of rp is A . §or in all cases put
aside there does not exist a metric i satisfying the stated conditions. In
the case to which we &re restricting attention, the metric induced as above
from the hyperbolic metric on / by rp yields p,, Lhe maximal .1 subject
to the stated conditions. If 0 is a uniyalent conformal map of / - {0}
into 7, which tends to a boundary element of .t' as z * 0 , Llnen p,r(z)
satisfies

(4.3)

iz i log t,-,

p"(z)lcl,zl being the representation of p, corresponding to the uniformizer
0. Itfollowsthat ttre p -area of I - {d(il I 1} is finite.

5. Let us now consider a, group @ of the second kind and let us now
take 1 : q(O) and d, : 0 . We shall establish the follorving theorem.

Theorem 5.7: Let II* d,enote the union of a funclaruental polygotu il ,

i,ts irnage with resltect toth,e,inaersion z--->112, and, fuII1Cn9. If
the pair (VG)) ,0) satisfies the cond,ition A , then either C - O contains
at most two Ttoi,nts or otherwise the area of eaclt, II* in the sense of the rnarimal
conformal metr,ic of constant curuature - 4 on I i,s fi,nite. If C - O
contains at most two points or the area cond,it,ion hold,s for some If*. then

@(9) ,0) satisfi,es the cond,i,tion A .

The proof of this theorem may be based on the follol-ing obserr-ations.
First, if C - I contains at most tlro points, there dces not exist a metric
.1 . Second, if C - J2 contains more than trro points. then r,r . the maxi-
mal conformal metric of constant curi-ature - 4 on -Q . induces via q
the maximal ), on C@) - ia(q) > t) satisfr-ingt tire stated conditions
and the area (finite or infinite) of q(-A) - {a(q) } 1} rith respect to the
maximal i is equal to the p -area of each Zx. The second observation
yields the first assertion of the theorem. Togethel the two observations lead
to the second assertion. The details are readily supplied.

6. We now turn to the counterpart of the Siegel theorem for @ of the
second kind formulated in terms of condition .4 .

Theorem 6.72 If @ is a group of the second, ki,nd, such that @@) ,0))
satisfdes cond,ition A , then each associatecl fund,amental polygon has a fini,te
number of sid,es.
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We put aside the trivial case where @ reduces to the identity a,nd as
a first step in the proof we consider the behavior of E on the components
of OO C. h is easytoseethateither E isunivalentonsuchacomponent
or or else a is mapped onto itself by some member of @ distinct from the
identity and that in the latter case 9(a) is a regular analytic closed Jordan
curve. In the former case E@) tend,s to the id,eal bounclary of V@) cts z
tends al,ong a to e,ither of its end,poi,nts.Infact, if this were not so, there would
exist a sequence (z*)f of points of a tending to an endpoint of cr and
suchthat (V@))? tendedtoapoint qe E(O OC) . Butthen q:q(w),
we|, where 0 i. a component arc of AnC. Let r>0 be so

small that g is univalent on tl1* *1- c O . For /r suffieiently Iarge
q@)e EIU(w,r)1 . Wefixsucha k, say l, andlet z€@ besuchthat
/z) e U(w,r). We have r-tlu-@. J)n dl c cy . Hence qV t* Jl n plc q(a) .

For fr sufficiently large ,^ e ,-'lt\* , r) n il and at the same time
E@)e qlU(w,r)n|). Hence q would not be uniyalent on d.. Our
hypothesis is contradicted. The assertion follows.

Thanks to Theorem 4.3 we may consider E(O) as G - {o, , . . . ,en)
where G is a compact Riemann surface and the a4 ä,ta distinct points
ol G, nl}. We now show that flo er" belongsto q@n@. V\re may
suppose n ) l, the case where n - 0 being trivial. To that end, we
consider a closed Jordan disk D(c G) containing ai in its interior,
at{ D, k + j, and sueh that g: is not ramified over any point of inL D .

Suppose that for sorne componeut r of -Q O C lve ha.i'e E@) c int, D .

Then in this case qI, i. a Jordan curve in int D . The component d

of int D - q(") the closure of rvhich lies in int D does not contain points
of g(Q O C) , for otherv.ise the connectedness of g@) or of E({lzl > t})
would be violated. If ai € ä , then the restriction of q to a component
of E-1(d) would be univalent. The component in question would have
to be either / or {lzl > 1} and @ would reduce to the identitv. This is
impossible. Hence a7 € ö and consequently ai € g1O n C1 .

Our task is reduced to considering the case where for no cr is it true that
,p(d) C int D . Onl5, a finite set of q(a) have points in common with
int, D . Otherwise there .w-ould be an infinite set E of points on fr D
each point of which belongs respectively to a distinct q(a) . LeL E@) e fu D
denote a cluster point. We obtain a contradiction r.r,-hen lre consider V@o) ,
where *o is the component a,rc containing c. For g(:ro) lr,ould contain
infinitely many points of E . However distinct y(x) arc disjoint. If ai
belonged to gltl n C1, then oi would be an endpoint of some q(a) .

Further, there would exist a closed Jordan disk Dr(c i:nb D) such that
lDrn q(Q n C)l U {a;} consisted of the union of a finite number of Jordan
arcs having only ai in common, the endpoints of each arc being o7 and
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a point of fr D, and the remaining points lying in int, Dr. There would
have to be at least two such arcs, otherwise some point of E(/) and some

point of E({lzl > t}) could be connected by an arc not intersecting
g@ n C) . Consider a component, K , of int D, Iess these arcs. We

suppose, as we may, that K c gU). It follows from considerations con-

cerning the boundary behavior of conformal maps of Jordan regions and
the Schwarz reflexion principle that fu K, contains a free arc (c C)

whichcontainsapoint ce C- J2, where K1 isacomponent,of E-t(K).
ft is to be noted that the restriction of q t'o 1(, is univalent. We conclude

lhat E would have to be properly discontinuous at c . But this is not

possible. Consequently, ctjeE@ n C) . (We shall see that this result
remains valid for arbitrary @ of ttre second kind. The present discussion

of the special case under consideration is given solely to prevent unduly
burdening the exposition of the first part of this paper.)

It norv follows that each q(*) is a closed, Jord,an curue. Further the d,i,s'

tinct q(a.) are finite in number. Hence, a fund,amental polygon has only a

fini,te number of sid,es on C , as ma,y be seen b;r appeal to Lemma 3'I.
Each lies in Q .

We recall that we have put aside the trivial case where @ reduces to
the identity. We note that thanks to the non-euclidean convexity of a
fundamental polygon the hgrerbolic straight line having the same end-

points as a side of 11 Iying in C is contained. in II . This hyperbolic line
Iies in int II, or else int 11 is the bounded region the frontier of rrhich
consists of the above side of C and the hyperbolic straight line. Nothing
remains to be shown in the latter case. There are just two sides.

In the former c&se we proceed as follows. Every hyperbolic line so asso-

ciated with a side of If on C lies in int Z. We obtain a set 11r by
removing from If each of the bounded regions the frontiers of u'hich con-

sist of a side of lf on C and the hyperbolic straight line joining the end-

points of the side. Each such region is contained in int 11. The set llt
is a non-empty non-euclidean convex polygon. The term »side» applied to
I/, is to have the same meaning relative to If, as that' given before for a
side of fI . Tt.e term »hyperbolic area» is nou to be taken in the sense of the

hyqterboli,c metric i,n Å. For each point ceIIrnOnC u'e introduce
a non-euclidean triangle T(c) c If, , of rvhich the vertices are c and inner
points of the two sides of II, rvhich have c as an endpoint. We let II,
denote 11, less the union of the T(c) . If is easy to see that

(6,1) vWSne@nC): t.
Let p denote the conformal metric of constant curvature - 4 induced
on E@) - (a(q) > 1) from the hyperbolic metric on / by E . From
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(6.1) we cönclude that the p -area of g(int Zr) is finite. Consequently, the
hyperbolic area of 11, is finite and hence so is the hyperbolic area of ffr.

The argument of Siegel [9] may now be transcribed. The present proof
parallels that of Theorem 4.2. We first show l};;at Å ll fr II, has only a

finite number of components. We restrict our attention, &s we may, to the
case where there is more than one. We choose b € int If, arad, consider the
non-euclidean triangles the vertices of which consist of å and the endpoints
of a component of A fl fu II, . Distinct such triangles corresponding to
components intercepting a non-euclidean angle less than n al b do not
have any interior points in common. X'urther the union of all the so restricted
triangles lies in I/, . On using the fact that the area of a non-euclidean
triangle is z less the sum of the vertex angles, we conclude that / fl fu II,
has only a finite number of components since the sum of the areas of the
triangles is finite and the sum of the vertex angles at ä does not exceed
2 n . It is now easily seen that C O fr Z, has only a finite number of points;
otherwise the area would be infinite.

If a component of / fi fu 11, contains infinitely ma,ny sides, then as

is readily seen by the reasoning of Siegel the angles formed by successive

sides tend to z as their vertices tend to an endpoint of the component.
It suffices to consider the non-euclidean triangles with vertices ä and the
end points of a side and repeat the area argument. Hence if fr Zr had
infinitely ma,ny sides, the vertex angles would exceed 3nl4 for all but a
finite number of vertices. We are led to the same contradiction as in Theo-
rem 4.2. Hence fr 11, has a finite number of sides and, a fortiori, so does

fiII.

7. Thanks to Theorem 4.2, Theorem 5.1 and Theorem 6.1, it is possible

to give the proof which was referred in § 1 to the present section. We obtain
a second proof, ofcourse, via Theorem 1.I to be established in § 10.

We note that if @ is of the first kind, then a fundamental polygon has

no sides on C and it is classical that if such a polygon has only a finite
number of sides, its hyperbolic area is finite. The theorem of Siegel as given
by Theorem 4.2 applies. If @ is of the second kind and 11 is a fundamental
polygon with a finite number of sides, we proceed as follows. If O - O
has at most two members, Theorem 5.1 is applicable and shows that con-
dition ,4 holds. On examining I/* in the remaining case we see that its
area in the sense of the maximal C" conformal metric of constant curva-
ture - 4 on g is finite. It suffices to note that the sides of II on C

also lie in J2 and that the area of a hyperbolic triangle in / in the sense

of this metric, being dominated by the area in the hyperbolic sense, is finite
so that contributions from neighborhoods of cusps are harmless. The con-
dition -4 is fulfilled and Theorem 6.1 applies.
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8. The pairs (q(A), är) , where ä, is the restriction to V@) of O ,

for @ with (E@),0) or (p(A), D) satisfying condition A :rrray be charac-
terized conformallyas the following theorem shows. Its proof, which depends
in part on the classical results concerning branehed coverings of the extended
plane, is readily supplied at this point and will be omitted.

Theorem 8.1: Let there be g,iuen a pair (F , d,) . A necessary and, suffi-
cient cond,i,tion that there er,i,st a @ of the fi,rst lci,nd such that (L) there erists
aun'iaal,entconformal,mqp V of ,p(/) onto F satisfying d,"y:a,Q)
@(/) , 0) satisfies cond,,i,tion A i,s that F be conformally equi,ualent to a, com-
pact Riernann surface G l,ess a finite set of points, that {d(q) > t} be finite,
and, thq,t

f tt w@)l-') > (x * m) ,
qeF

(8.1)

where y i,s the Eul,er characteristi,c of G(X : 2 S - 2, g : genus of G)
and, m ,i,s the number of bound,ary elements of I . A necessary and, sufficient
aond,ition that there erist a @ of the second, kind, such that (l) there enists a
conformal ru,ap ,p of E@) onto X satisfying cl o y : 8r, (2) @@) , O)

sati,sfdes cond,i,tion A i,s that F be a hyperbolic Riemann surface haaing
fini,te toltological characterist,ics and, that {d(q) > t} be fini,te.

We remark:if (E@),0r) satisfies condition A, then @ is of the first
kind. This obseryation follows from Theorem 4.8 and the fact Lhat q(/)
is hyperbolic for @ of the second kind.

L It is possible to replace the sufficient condition of Theorem 4.8 b;-
alessstringentoneinthecasewhere F:C@) and d:0, @ being
given. Here (2 is the component containing / of the setof points atu-hich
@ is properly discontinuous. We have

Theorem 9.7: If q@) has fi,ni,te topol,ogical churacteristics (gettus and
number of Kerdkjartö boundary elements) anrl {a(S) > I} is firite, then
(E(A),A) satisfies conclition, A.

Suppose that @ is of the first kind. It suffices to shos- that q(A) is
parabolic for then each of its boundary conponents is necessarily isolated,
planar and pointlike.rf v(4 rvere hvperbolic. there *-ould exist a univalent
conformal mep y) ol EQ1) onto a region of a compact Riemann surface
the frontier of which consists of a finite nurnber of components, vrhere each
either is a regular analytic Jordan cllrye or reduces to a point and at least
one does not reduce to a point. Since y o g restricted to q 1{A@) : l}
is a covering of V{A@) - l}, it follorvs on considering a component of the
antecedent of a simply-connected Jordan region @ C V " EU), where
fr «; contains an arc lying in fu tp o E(/) , that, for some yl , lrtl : I ,

and r>0, gog 4nd hence g would be univalent in u(r1 ,r)fil.
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This would force O to be of the second kind. The contradiction is
manifest.

Since g(1) is parabolic and hence the boundary components are iso-
lated, planar and pointlike, the associated maximal C" conformal metric
pr of constant curvature - 4 (such a metric always exists for @ of the
first kind) is such that the p,-area, of q(/) - {A@ 2 1} is finite.

Suppose now that @ is of the second kind. We restrict our attention
to the case where C - I contains more than two points and consequently
is perfect - the situation where C - Q contains at most trvo points is
immediate. We now let y denote a conformal universal covering of J2

with domain / . Since J-, the group of conformal automorphisms leaving
rp invariant, is such thai @V) is of the first' kind, C - 0 being totally
disconnected, @(fL) is also of the first kind, 'lvhere It is the group of
conformal automorphisms of / leaving E o rp invariant. Let gr denote
the orbit map associated 'with d and let .Fr : ErV). We have

(9.1) Eolp:9oEr,
where 0 is a univalent conformal map of .Ft onto V@) . It is to be noted
here that if Eltp(zr)l: Cllp@)1, then tp(zz): olrt,k)1, o e @, and also

ooy:,.!)o r , r e lr, so that zr: q(21), rre fr. It follows from
the first part of the proof that -F, is conformally equivalent to a compact
Riemann surface less a finite set of points. The theorem follows.

10. Finitely generated @ . \\'e shov.
Theorem 70.12 A group @ is fi,ni,tely generated, if and only if the asso'

ciated, (q(O),O) satisfies conclition A. Here Q isthe component containing
/ of the set of ltoints at which @ i,s properly d,iscontinuous.r

Before turning to the proof we remark that Theorem 10.1 taken u.ith
the theorem of Siegel for fundamental polygons and Theorern 6.1 5rields
Theorem 1.1. It is to be observed that ifthere exists a fundamental polygon
lvith a finite number of sides, then condition A is fulfilled.

The »if» part of Theorem 10.1 is readilS, disposed of. Suppose that con-
dition A isfulfilledby @@),A).Wefix aeA,n(a;E):1, and
introduce a finite generating set of path classes Kr, . . . , K* for the funda-
mental group, flr , of EU) - {A@) > 1} based at q(a) . A homomorphism
of II, onto J- is defined b5r assigning to each I{ e IIt the element u e I
such that for each path € K the lifting u.ith respect to q having initial
point a has terminal point zr(a) . Hence I is finitely generated.

1 Added January 24, 1964: I
this theorem is essentially known
He has obtained the corresponding

have been inform.ed by Professor Ahlfors that
but that hitherto no proof has been publishecl.
result for Klein gronps.
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To establish the »only if» part, we first show that g@) has finite topo-
logical characteristics and thaf {ir(q) 2 I} is finite, where ä, is the re-
striction of ä to E@) . In the case of @ of the second kind it follows that
E(O) has finite topological characteristics and that {a(q) 2 I} is finite.
The proof of the theorem under consideration is completed by appeal to
Theorem 9.1.

The verification of the finiteness properties of q(/) and ä, will be based
on the following lemma, a proof of which may be given with the aid of the
monodromy theorem. The details of the proof will be omitted.

Lemma l0.lz Let f d,enote a conformal rnap of A into a Riemanrl sur-

face H and, let g d,enote a conformal map of a Riemann surface G onto H .

Buppose thut the fol,l,ou;i,ng cond,itions are ful,filled,: (l) There erists a d,iscrete

set E c H such that the restrict'ion of g to g-L(H - D) is a coaering of
E-8. (2)Ioreach ae E thereetistsapositiueinteger v(a)tl such
that for euery suffi,cientl,y small olten d,i,sk ö conta,ining a the restriction of
g to a component of S-'@) has aal,ence u(a) on ö . (3) Wheneuer f@) e E ,

n(z ; f) is a multi,gtl,e of alf (z)l . Then there er'ists a conformal map of A

i,nto G, say V, suchthat f :go1p.
X'or the remainder of the present section we shall understand by V

themap z--->E@), zeA.
We put aside the trivial case where @ reduces to the identit;r. Let

dt , . .. , a, denote a finite set of distinct elements of @ , each distinct
from the identity, which generate @ considered as a semigroup. We &ssume,
ås we may, that 0 is not a fixed point of any z(€ @) distinct from the
identity. Let

Suppose that I : q(/) has infinite genus. Let R denote a relatively
compact region of .F' containing Ii the frontier of ri.hich is also fr (ext "rB)

and consists of a finite number of mutuallv disjoint closed Jordan curyes.
There is a component, §, of ext fi r.vhich is of infinite gerlus. \Ye define
a 2-sheeted covering, g, of F by introducing a non-separating closed
Jordan curve, T , in O and joining tv'o copies of .d' slit along y in the
standard manner. Let G denote the domain of g . Applying Lemma 10.1,
weobtain E:g oyr, where rp isaconformalmapof / ont'o G. That
G : ,p(/) is a consequence of the fact t'hat g and hence, rp do not have
any asymptotic points (in I' or G respectively). Consequently, it follows
from the definition of g lhat q-'(R) has more than one component. Since
o(1 1....dn generate @ asa semigroup,foreach re@ thereexistsa
path in / joining 0 to z(0) whose image with respect to E lies in 1l .

fL

j:1
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Indeed, if
formed" by

(10. 1)

r - ei(t) . e,(*) and m > I , it suffices to consider the path
joining the followirg arcs in succession:

0-,,ril0) , er(r,tO"U4O ) , xi(tyo,i1zy LO",*lOlt ,

eiltyxipy ' xt(*-r)tO",("rO] '

The notation »>ab»» denotes a straight line segment as usual. We conclude

lhat E-t(R) is connected. The contradiction is manifest and we conclude

that the genus of q(/) is fi,ni,te.
Each of the remaining parts of the verification may be carried out along

similar lines. We consider the boundary components of g@) in the sense

of Ker6kjärt6. Suppose that there are infinitely manv. We take -rB so that,

each component of ext A is planar. At least one of these components, say

§ , is neither simply-connected nor doubly-connected. We obtain a 2-sheeted

covering, g , of 7 having the property that g-r(R) is not connected as

follows. We suppose tlnat I is embedded in a compact Riemann surface,

.t', , having the same genus as 7 , and define a 2-sheeted conformal map,
gr, with image 1, as follows. We introduce a Jordan arc, Tr , where

7, lies in the component of I, - E containing § and joins points of
distinct components of ,[', - L We thereupon join two copies of ?, - y,
along y, in the standard manner and obtain a map of valence two with
image Fr, which is ramified over the endpoints of yt. The desired
covering, g , of I is obtained as the rest'riction of gr to gt-'(I) . It is

to be noted that gr-t(I) is connected as a, consequence of the choice of
g, . Further, as in the preceding paragra,ph, g-'(R) has two components.

The remainder of the argument continues as above and we conclude that
.E' has a finite number of Kar6kjärt6 boundary elements.

X'initeness of {är(q) > 1} . We assume, &s we now ma,y, that -F' is a
region of a compact Riemann surface .F, , where E, - ? consists of the
union of a finite family of mutually disjoint sets that reduce to points or
are homeomorphs of closed disks. Suppose that {ar(q) > 1} is infinite.
We choose R so that each component of ?r, - E is the homeomorph
of a disk which contains preciseiy one component of X, - I ' tr'or some

component, O , of I - R, we have 7t(q) > I at infinitel;, many points
of § . Let' a(€ O) be such that 1r(a) > I , Iet O, denote the component
of Ir-.8 containing §, andlet b€§r-§. Let y denoteaJordan
arc in G, with endpoints a and å . We introduce är(a) copies of F1 - y ,

taken in cyclic order, and join them along 7 . rrelding a preferred edge of
each copy to the other edge of the successor copy. We obtain a conformal
map, gr, of constant valence 0r(o) , having image 1, , ramified over a

and ö but nowhere else, the multiplicity of g, at the antecedents of o



2A Ann. Acad. Scient. Fennicre A. I. 337

and ä being är(a). Restricting h to g{r@) we obtain the desired g .

The remainder of the above argument may now be paraphrased. Our asser-
tion follows.

1I. In the situation of Siegei's theorem where @ are considered for
which a fundamental polygon 11 has finite hyperbolic area, @ is of the
first kind and the presence of a point of tI on C is equivalent to the
existence of a parabolic member of @ (cf. ll0l, p. a5). In the case of @

of the second kind for which the associated (q(A), ä) satisfy condition .4

the facts are palpably different. Here the wellknown phenomenon of an
adventitious cusp may occur at a point of () O C . h suffices to consider
@ generated by the transformations o and z, where

(11.1)

-H<r

Ai
2lcH11,

7 

-;
(r L.1-- -iIc/&lL

€:enit\, l: - (1 + e)zl!- e)2. In this example,thePoincar6pol.y-*gon
I1(0) has adventitious cusps at l and - 1. Nevertheless, there is a perfect
correlation between conjugate classes of maximal cyclic subgroups generated
by parabolic transformations of a completely arbitrary @ and finite cycles
of cusps of the associated fundamental polygons. As far as I am aw-are,

this question has not been hitherto treated in full generality. In studying
it we shall make use of the results of our pa,per l5], in which is developed
the relation between conjugate classes of maximal cyclic subgroups of para-
bolic transformations and the isolated pointlike planar boundary elements
of g@) having deletedneighborhoods free of {a(q) > 1}. Horvever, before
we turn to this question, it v'ill be convenient to in'i,estigate the isolated
planar boundary elements of q@) having a deleted neighborhood free of
{a(q) > l}, A denoting as above the component containing A of the
set of points at 'r,r,hich @ is properlv discontinuous. Such isolated planar
boundary elements u'ill be termed aclmitted. \Ye first establish the follorving
result which subsumes the special case (having finite topological charac-
teristics and finite {A@) > 1}) treated ad hoc in § 6.

Theorem l7.l: If @ i,s of the secotzd kind, then eaery ad,mi,tted, isolated,

pl,anar bound,arg el,ement of V@) is poi,ntl,ike and, has a d,el,eted, neighborhood
contain'i,ng no po,ints of g@ n C).

Proof : The case where C - O has at most two members is included in
the developments of § 6. It may be treated directly.

In the remaining case C - O is a perfect, totally disconnected set and
we introduce g , a conformal universal covering of O with domain /
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rvhere
A and

(11.4)
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and group of conformal automorphisms fo . We let %: g o rp and let
J-, denote the group of conformal automorphisms of / which leave g,
invariant. X'or each o e l, there exists a unique r. e@ such that

(11.2) lpoo:roog.
We consider an admitted isolated planar boundary element of E@) .

With it we associate a univalent conformal map a of a plane annulus

{t < irl ( r(( + oo)} irrro q(Q) such that a(z) tends to the boundary
elementinquestionwhen lzl tendsto r andalso ä[a(z)]: 1, I l lzl <r.
Suppose that r < + @ . It follows from the covering properties of gr
that

having the property that

limo" a_>rog , lA(")i - I

Hence r,l'e conclude by bhe Schwarz reflexion principle, the univalence of
*(e') on {0 < Re z < log r; llm z .--n), and (11.3) that g, is univalent
on / n {)z - e'"1< g} for some real 0 and positive p . This implies
thaf @Q) is of the second kind and hence that @(i-o) is of the second
kind. Since C - O is totaliS, disconnected, O(fi is of the first kind.
The assumption that r I I co is untenable. It follows that the admitted
isolated planar boundary element under consideration is pointlike.

We next show that, e ruay be so chosen that its image does not intersect

E(O n C) . To that end we make use of the following theorem which we
have essentially established elsewhere [5]. It will also be used in Theorem
11.3.

Theorem 77.2: Gi,uen a group @ , there'is a one-to-o%e nxa,p onto the set

of ad,mitted, pointlilce i,sol,ated, planar bound,arg elem.ents ol EU) from the

set of conjugate classes

K(P)-{0P?-tl 0e@),(11.5)

where P is a marimal cyclic subgrouyt generated, by a parabolic member ol @ ,

suclt, that the restri,ction of V to each suffi,ciently sm,all d,isk bozcnded, by an
oricycle tangent to C at the fi,xed, point qf y (t' identity) € P i,s a conformal
uniaersal, couering of an arbitrarily smal,l, d,eleted, neighborhood, of the isoluted,

planar boundary el,ement of VV) corresTtond'ing to K(P) .

In order to apply Theorem 11.2 we shall want to make use of thefact
that, qr(w) : gr@) only if w is a member of the orbit of z vnLh respect
Lo l, (cf. § 9). We conclude that, there exists a univalent conformal map
of q(A) onto the quotient surface associated. with J-1 such that the rami-
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fication indices associated with
spondi*g points.

fL and @ respectively agree at corre-

Consequently, we may associate by virtue of Theorem It.2 with an
admitted isolated planar boundary element, of q(A) a parabolic element
o € l, such that the restriction of g, to a sufficiently small disk bounded
by an oricycle tangent to C at the fixed point of o is a conformal universal
covering of some arbitrarily small deleted neighborhood of the isolated
planar boundary element under consideration. We proceed by investigating
T

Suppose that ro is hyperbolic. Considering (11.2) with o replaced
by integral powers of o we conclude that y possesses two asymptotic
paths terminating at the fixed point of o along which rp tends to two
distinct asymptotic values. The theorem of Lindelöf-Gross-Iversen is contra-
dicted. Suppose lhal r, is elliptic or the identity. Since zo has a finite
order, (11.2) implies that '.po on : y for some positive integer z. But
then Theorem ll.2 yields the conclusion that the complement of J2 with
respect to the extended plane possesses &n isolated point. We have a contra-
diction, the complement of O being perfect. We conclude that rd i,s

Ttarabol,ic.
We introduce a disk D(c /) the frontier of which is an oricycle tangent

to C at the fixed point of o such that the restriction of g, to D is a
conformal universal covering of Er(D) for which the group of Decktrans-
formationen consists of the o" (n integer) restrictedto D . It follows that
the restriction of tp t'o D is a conformal universal covering of rp(D) and
that its group of Decktransformationen is a subgroup of the group of the
preceding sentence. Hence precisely one of the alternatives holds: (I) p
is univalent or D , (z)',p(D) is a simply-connected region G less one of
its points. Suppose that the latter alternative occurs. Then G c Q , C - Q
being perfect. By the covering properties of rp , r/ is univalent on each
component of y-L(G) and hence on D . The alternative (2) is to be rejected.

The proof of Theorem ll.l is now readily completed. We may suppose

that D is so chosen that the restriction of y to D n / is univalent.
Thanks to (11.2) as well as to the facts that z, is parabolic and C - O
contains more than two elements we conclude that the restriction of rp

to D t\l admits a continuous univalent extension to D . We infer with
the aid of (f1.2) that every D has the property that y(D) contains a disk
D, containedin Å orcontainedin {]zl > l}, thecircumferenceof which
is tangent to C at the fixed point of r". Noting f}iat pr(D)) q(Dr),
we &re led to the conclusion that the admitted isolated planar boundary
element of g@) possesses a deleted neighborhood consisting of a subregion
of E(/) (resp.9({lrl > t})) conformally equivalent to a punctured disk.
The second assertion of Theorem 11.1 follows.
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fn order to establish the complete relation between the admitted iso-
lated planar boundary elements of g(Q) on the one hand and the admitted
pointlike isolated planar boundary elements of E@) and of q({lzl > t})
on the other hand, we examine the homomorphism o--'>ro further. We have
Lemma ll.lz Giaen @ of the second, kind,, C - O being perfect if t$ @|

i,s parabol'ic, then tltere erists o(e 1l:r) parabol,i,c such that (l) z: r" anil
(2) for euery d,islc D(c /) the c'ircumference of which i,s tangent to C at the

fineil poi,nt of o there eri,sts a d,islt Dr(c /) the circumference of which is
tangent to C at the fired, poi,nt of r such that tp(D) ) D, . A correspond,ing

resul,t holils when t»Dr(C /)» i,s replaceil by »»Drc { izi > l}.»
Proof : Let G denote a component' of y-L(/). Now ? maps G uni-

valently onto / and zoy(z):yoor(z), ze G, where o, is aconformal
automorphism of G. Since roy):lpo6z, ore Ir, we infer that
ot@)--yoor(z), ye /Jo, ze G. Hence with 6:Tooz we see that

(11.6)

To see that o is parabolic we proceed as follows. Let rp* denote the
inverse of the restriction of y to G . We consider an oricycle K(c A|
tangent to C aL the fixed point, C , of z and note that rp*(z) tends to
a limit as a tends to ( along &n &rc of K . This is easily concluded on
noting t}cLat y may be represented as the composition of (1) a conformal
universal covering with domain / of the complement of a set, consisting
ofthree points of C - J2 eaeh distinct from 6 and (2) an analytic function
mapping / into itself. (An alternative proof may be based on the fact
lhat y is actually of bounded type as a consequence of the theorem of
Myrberg-Royden [8] and a theorem of R. Nevanlinna [7, p. 213] together
with the Riesz-Nevanlinna theorem [7, p. 209].) As a consequence of the
Phragm6n-Lindetöf maximum principle [6, p. 76], y)ft, the restriction
of ?* to the bounded region whose frontier is If , admits a univalent
continuous extension to the bounded closed disk the frontier of which is
.K. Since K ismappedontoitself by r , weinferthat lim o"(0) :limtltx,

lnl+oo t
and hence that o is parabolic.

The remaining points of the lemma &re now easily established. The
exterior case is similarly treated, »/» being replaced in the first two sen-

tences of the proof by »{ lzl ; t}» .

We now establish
Theorem 71.3: Let there be gi,aen @ of the second, ki,nd'. Let G d,enote the

R'i,emann surface obtained, by ad,joini,ng to q(Q) the ad'mi,tted, isolated, pl,anar
bound,ary elements anil let G, a,nd, G, d,enote the Eiemann surfaces obtai,neil,

by ailjoini,ng to EU) and, E({lzl > t}) respectiael,y their ad'mitted, poi,ntl,ike

isolateil, planar bound,ary elements. Then the iil,enti,ty magt of E(/) U E({ lz I > t })
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ad,mi,ts a uni,que ertension os a conformal, map of GtU G, i,nto G . This
ertension maps the set

GLU Gz - lv(/) U q({\rl > 1})l

onto G - E@).
Proof : If. C - Q reduces to at most two elements, the theorem is

readily established by direct elementary examination. We put this case

aside and continue assuming that' C - J? has more than two elements.

Given p e Gr. - EU) , let, y be a generating parabolic transformation of
P wlnerc p corresponds to K(P) in the sense of Theorem 11.2. Let
o'(€ l-r) be chosen to satisfy the conditions stated in the first, sentence of
Lemma ll.1 relative to y. It follows from (2) of Lemma 11.I that the
identity map of q(A) i:nLo 9(O) possesses as a limit at P , the boundary
element of E@) corresponding to the admitted pointlike isolated planar
boundary element of the quotient Riemann surface relative to J-, associated

with o (by virtue of the map carrying the orbit of a point z relative to
I, into Et@D. The proof of the existence and univalence of the extension
of the identity map is now readily established. The unicity is, of course,

trivial. The onto propert;z is seen to follow from the sentence preceding the
last of the proof of Theorem 11.1.

As a consequence of Theorem I1.3 it will be seen that in the study of
the relation connecting admitted isolated planar boundary elements of

9(O) and the behavior of a fundamental polygon it suffices to control the
situation for q(/). 12. Our next concern will be with cusps of a funda-
mental polygon and their relation to the parabolic transformations of @ .

Before proceeding further, it is desirable to agree upon some formal defini-
tions.

By a cusTt of a fundamental polygon Z is meant an ordered pair
(yr,yr) of distinct sides of 11 lying in A arrd ha'i-ing a common endpoint,

6 , on C such that the order at an interior point of 1/ is oue for a periodic
parametric representation, Z, of the closed Jordan curr-e fi' 11 , where

Z issochosenthatpointsof 7, precedeandpointsof 7, follow ( locally
for parameter values in a sufficiently small neighborhood of an antecedent

of C . (To be specific, Z is a continuous map of the real line onto fr "If
with period one which is univalent on {0 <, < l}.) We term ( the
vertex of the cusp. An ordered pair (ftr , kr) of cusps of I/ will be termed
allowable provided that there exists t$ @), mapping some subarc of
the second component of k, one of the endpoints of which is the vertex
of fu, onto a subarc of corresponding kind. of the first component of fr,

and mapping the vertex of lc, onto the vertex of ltr. There is at most

one such r . Given kr, t}rLerc is at most one k, such that (k, , kr) is

allowable. Given a, cusp lc , t'ltere exists a unique maximal sequence (k")i
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of cusps ko,-@<1, <0<m1la, suchthat ko:lc andthat
for each finite j, I <j < j +l{m, the ordered pair (lq,\a) is
allowable. By a peri,od,i,c cusp sequence is meant a, sequence of the above
type such that for some positive integer p we have kn+p: k^. We
define cusp sequences (k,) arrd (h'") to be equ'i,t;al,ent provided that the set
of cusps of each is the same. It need hardly be remarked that a bona fide
equivalence relation is so defined and that if ki^: k-*, , nx arld v irrte-
gers, then lt'^: k,*, for all n for which fri is defined and the two
sequences are equivalent. We now have the prerequisite terminology for
the following theorem.
Theorem 12.7: Giaen @ , let a fund,amental polygon II be fired, and, let
cusps be taken to nxeen cusps of II . There etists a uniaal,ent map of the ud,-

mi,tted, poi,ntli,lce isolated, planar bound,ary elements of V@) onto tlte set of
equ'iual,ence cl,asses of peri,od,i,c cusp sequences which 'is such that E@) tend,s to

a giuen ad,mitted, poi,ntlike i,sol,ated, planar bounilary element when z tend,s

within If tu a uerten of q, cusp of a peri,od,i,c cusp sequence belongi,ng to the

equ'iual,ence cl,ass onto which the g'iuen bound,ary el,ement of E@) is mapped,.

There is but one suck map. There is a unique un'iualent map from the set of
peri,od,ic cusp sequences onto the set of K(P) such that the uerter of each cuspt

of a period,ic cusp seqLcence is o, fired, point of the elements of a groupt in the

image class.

Proof : We consider the extension G, of q(/) introduced in Theorem
ll.3 (however @ is now unrestricted) and introduce a uniformizer 0

with domain A such that 0(0) is a given point p e Gt - E@) and
0@)e EQ) and 0[0(z)]: 1, 0 11zl 11. Let D:0({0 <)z <rl2}).
Weinvestigatethesubset of /i frZ mappedby E irtto D.

We first show that if X is & component of / i fr II , q(K) o. D_

Suppose, on the contrary, that there exists a, component Ko, E(Ko) c D ,

We are assured lhat E@) tends to p as z tends along Ko to one or the
other of its endpoints. Two alternatives present themselves. The first is
that the restriction of q to Ko is univalent. But then the closed Jordan

"o"rr" frIfo; v'ould separate q(int il), which is connected. The second
alternative is that the restriction of q to Ko is not univalent. In this case

there would exist a closed subarc of Ko , say T , such that E@) is a closed

Jordan curve since by the choice of 0 at eachpoint of Ko the multiplicity
of g is one. This circumstance is excluded by the reason used in the case

of the first alternative. We conclude thaf q(K) cl D for each component
K of lfifrII.

We next consider the set of K for which E6) n D + a . For each
such K , q6) intersects 0({lzl : ll2}) . Since some neighborhood of
a point of E@) contains points of E(K) for only a finite set of 1{ , the set
of K for which q6)nD + a isfinite.
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For agiven 1( suchthat V6)nD + a, Let' y denotethesmallest
connected subset, of l( containing the points of K mapped by g into
efld : I/2)). A component of E-|1O1O ff either lies in 7 or else is one

of the components of K - 7 . Since each y is compact, there is a neigh-
borhood of p having no points in common with any V0) . If a component
of K-7 isacomponent of qt(D)OK, then E(z) tendslo p as z

tends on such a component to its endpoint on C . We term such a compo-
nent an x -component.

* -components exist. For if this were not the c&se, some deleted neigh-
borhood of p would lie in E (int' il), and consequently the inverse of the
restriction of E to int I/ v'ould possess a limit at p which lies in irrt II .

This is not possible.

The reasoning used in showing tinat q(K) ci D when g is not unir,'alent
on K may be applied to show that g is unir.'alent on an r -component.

Suppose that there are given o( -components of V-l(D) n I{j . j : I,2,
which have intersecting images rvith respect to g. A renewed application
of the reasoning just referred to yields the resuit that the g -images of these
e -components have in common a subarc one of the endpoints of which is
p . It suffices to note that otherwise there v'ould exist a closed Jordan curve
in D formed by taking subarcs of the images with respecL to q of the
a -components which would be disjoint but have the same endpoints and
thereupon introducing the closure of their union.

If a, is a given o( -componerft, g@r) contains points arbitrarilv near
p arnd hence points not in ary E(y) . Since a point of E@r) is accounted
for at least at two distinct points on A i fu II , it fo1low-s that there exists
a second a -component, &2, distinct from dt, such that f (rr) and
q(ar) have in common a subarc with endpoinb p . We are led to the follorv-
ing conclusion of fundamental importance for the further der-elopments:

?here erists a,n open Jord,an d,isk Dr, p e Dtc D , such that

q1/ n f, n1 i D, consi,sts of a fini,te set of Jorclan arcs thctt hctue one end,poi,nt

on fr D, and the other at p , that two d,isti,nct arcs hctz^e only p in common,

and that each arc 'i,s a subarc of the q -'image of some x -cornponent,

The antecedent of a component of D, less the arcs in question with
respect to the restriction of q to int 11 is a Jordan region the frontier of
which contains subarcs of trvo distinct i( -components whose closures have
in common exactly one point on C . These subarcs lie on s'id,es of Z which
are the components of a cusp, the possibility of & corner of fu II on these

subarcs being ercl,ud,ed. X'urther trryo dist'inct components of D, - q(/ n fr fI)
which abut on one of the component arcs of E(A nfu il) fl D, lead to
two cusps (obtained in the manner just described) which are the components
of an allowable ordered pair of cusps. It may now be concluded that a
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cusp so a,ssociated with a component of DL - V@ n fr II) is ko for some

periodic cusp sequence, (k,)f§, having the property that q(z) tends to
p when z tends to the vertex of k, (n arbitrary integer) in II. If a

second periodic cusp sequence, @)!=, also has this property, it must
be equivalent to (k,)1§ . This may be seen as follows. We first note that
the ima,ge with respect to q of a sufficiently small subarc of a component
of il, having the vertex of h^ as an endpoint is a subarc with endpoint
p of a component of E(/ ll fr II) I Dr. If the images with respect Lo E

of small subarcs of the components of k:* having the vertex of fui as

endpoint, have a point (+ p) in common, then CU n fu II) i D, has

one component and k::k*, all n. If, however, theY are disjoint, they

lie on the frontier of a component of D, - qU n fu n) and k'n: k*,
some ?/, and the »period» exceeds one. We conclude readily the second

and third sentences of Theorem 12.1 with the sole reservation that the map

in question has not yet been shown to be »onto». The univalence is, of course,

obvious.
»Onto». Given the periodic cusp sequence (k")l§ , Iet l denote the

smallest positive integer such that kn+, -- k* . We fix an integer m, andlet

(12.1) r - TrtT;t .7,' ,

where fi is the member of @ mapping points of the second component
of lt^*.,-1 near the vertex of k*',-, into points of the first component

of k^*, near the vertex of k^*,. \Ve see that' t I identity and that (,
the vertex of k-, is a fixed point of r . Hence z is either hyperbolic
or parabolic. The former possibility will now be excluded.

Suppose z hyperbolic and let 4 denote the other fixed point of z.
'The non-euclidean straight line with endpoints ö and q canr;ol contain
points of II arbitrarily near e . Otherwise, there would exist an orbit
having infinitety many members in 11 . To continue, we note that the
bounded region, a , the frontier of which consists of the sides of the cusp

k^ together with their endpoints and the non-euclidean straight line
(resp. ray, segment) joining the endpoints different from the vertex has

no points in common with the non-euclidean straight line joining ö and

4 . Since z is taken to be hyperbolic, every neighborhood ofa given point
of the non-euclidean straight line with endpoints 4 and 4 intersects
{(at) for infinitely many integers zl. This is impossible, for a sufficiently
small neighborhood of a point, of / intersects o(Z) , and a fortiori o(co) ,

for only a finite set of o e @ . We conclude that r is parabolic.
There exists a circular disk /, c Å the circumference of which is tangent

lo C at the fixed point of z such that if two points of A, are in the same

orbit with respect to @ , they are in the same orbit with respect to the
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group P , generated by z . Since the image of /, with respect to the orbit
map associated with P is conformally equivalent to a punctured disk,
it follows t'hat, g(/r) is also conformally equivalent to a punctured disk
and is a deleted neighborhood of a point of G, - E@). It is easily verified
that (ft")i§ stands in the stated relation to this point.

(It is clear that the »empty» case: G, - VV) : .ö , is cared for by the
above argument.)

The final sentence of the theorem is now readily established with the aid
of Theorem I1.2 and the fact that the vertex of each cusp of a periodic
cusp sequence is the fixed point of a parabolic member of @ .

Several supplementary remarks are in order. First, when @ of the second.

kind is considered, the totality of admitted isolated planar boundary ele-

ments of E(Q) is accounted for by the periodic cusp sequences and the
corresponding entities that arise from considering the reflexion of Z v'ith
respect to C .

Second, we note that in the case rvhere @ is Fuchsiatl, a cusp the vertex
of which lies on C - A is a term of a periodic cusp sequence. For a trans-
formation z( I identity) of @ r,r,hich maps a component of a cusp into a

side of 11 carries the vertex of the cusp into a point of C - !2 which is,

asapoint of C-Q, t'he vertexof acusp of II . Ourassertionfollows
from the finitary properties of IL

X'inally, we make a remark concerning the nature of the image with
respect to g of a component side of a cusp that is a term of a periodic cusp

sequence. Suppose t'hat y is a sufficiently small *tg" of a side of a cusp

with one endpoint the vertex. We shall show that E0) is a regular analyti,c

Jord,an arc on G, . This may be concluded from the observation that the
restriction of q Lo a sufficiently small disk /r(c /) the circumference of
which is tangent to C at a fixed point ( of a parabolic transformation of
@ may be represented as @ o y , where g is a conformal universal co-

vering of. Å - {0} which maps the maximal open arcs of the hyperbolic
straight lines which lie in /, and have I as an endpoint onto the open
radii of / and @ is a univalent conformal map of / into G, .

The following question appears to be fairl5r recondite: In the case of
Poincard polygons irhat is the dependence of the vertices of the cusps of
the periodic cusp sequence on the base point a? Since the vertices constitute
a countable set, namely the set of the fixed points of the parabolic trans-
formations of @ , the problem of the dependence of the periodic cusp

sequences associated with a given point of G, - E(/) on a is presumably
complicated, especially in the Fuchsoid case.

13. We have just seen that in the case of a Fuchsian group a vertex of
a cusp of 11 which lies on C - A is necessarily the fixed point of some
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parabolic member of the group. The situation cha,nges radically in the case

of a X'uchsoid group as the following examples show.
Let us introduce the hyperbolic straight lines )q" with endpoints

k-t h

exp (ni, 1r-tl and exp (ni I Z-i'1, k a positive integer. Let )"-, denote

the hyperbolic straight line with endpoints I and d and let i, denote the
hyperbolic straight line with endpoints o and - I . Let za denote the
elliptic Möbius transformation preserving A which is of period two and
has as a fixed point the point of ,16 equidistant in the euclidean sense from
the endpoints of .1r. The group generated by the zr is a @ and the
associated 11(0) has as frontier the closure of the union of the ir . It is

readily verified that no cusp of Z(0) is a term of a periodic cusp sequence.

The group so formed is of the first kind. The associated cusp sequence is

univalent and infinite on one side. A group of the second kind having
similar properties is obtained when ,1r is replaced by the hgrerbolic straight

rine having endpoints ""n(+'t' ,-,)and exp (t *r-,),r: r,2,. ..,
and only such k are considered. Examples of groups of either kind where

cusp sequences that are univalent and infinite on both sides are present
are now readily constructed.

14. The following theorem appears as an easy consequence of Siegel's

theorem together with Theorem 11.2. (The second part of the conclusion

is perhaps known, granted @ Fuchsian.)
Theorem 14.72 Let there be g'iaen, a group @ and, @, a subgroult of @ -

Sugtpose that @, 'is a ?uchsiqn group of the first lci,nd,. Then @ 'is also a
Iuchsi,an group of the first lci,nd, and there erists a positiue integer m such

that z* e @, for eaery t e @ .

Proof : Since @, is a X'uchsian group of the first kind, the hyperbolic
area of I1(o) (belonging to @r) is finite. The Poincard polygon based at
a for @ being contained in I1(a) has finite hyperbolic area. Consequently,
we conclude by Siegel's theorem that @ is X'uchsian.

Now let g, denote the quotient map associated with @r, Er@) being
the orbit of z with respect to @r. We have: g:1p o gr, where rp is a
conformal map of Er(/) onto q(A) . The situation is familiar when 9r(/ )

is compact, rp being a map of constant valence of gr@) onto E(A) and
the polygons for the two groups being compact. Suppose then that E1(/)
is not compact. In this case it is conformally equivalent to a compact B,ie-

mann surface less a finite set of points. Recalling Theorem I1.2 we see that
acircular disk /r(c A) llne circumferenceof whichistangentto C atthe
fixed point of a parabolic transformation o € @r and which has sufficiently
small radius has the property that et(/t) and V@) are arbitrarily
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small deleted neighborhoods of boundary elements of qr(A) and V(/)
respectively. It follows fhaf y(p) tends to the ideal boundary of E@)
when p tends to the ideal boundary of. qr(/). We conclude that the valence
of g is finite and constant.

Let q$E(/)) be suchthat A@):1, let V@): q, and let l denote
the constant, value of the valence of ,p . Given 'r e @ , there exist integers.

Ft and fi2, Llpr<-pray+I such that qlrr'(z)f:qrl'rp,(z)l .

Hence ,u'-u'l7u'(z)f :oltw'(z)f , oe@r. We conclude that o:attz ttt,
and the theorem follows. Actually slightly more has been established since
foreach z e@ weare assuredthatforsome positive integer F, I I p I v,
rP e@r.

The same argument also shows that if 11 ,...,r,e@, then there
exist pr,p2,l1p, 1ltz{y, suchthat

fi,t^ e @, .
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