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Fundamental Polygons of Fuchsian and Fuchsoid Groups!)

1. Although the theory of Fuchsian and Fuchsoid groups has been con-
sidered for many years, certain aspects concerning the properties of funda-
mental polygons merit renewed examination. Let I' denote a group of
conformal automorphisms of 4 = {|z| < 1} onto itself which is properly
discontinuous (at each point of 4). Let 6@ denote a group of Mobius
transformations acting on the extended plane, mapping A onto itself, and
properly discontinuous at each point of A. If @ is not properly discon-
tinuous at any point of C = {|z| = 1}, O is said to be of the first kind.
Otherwise, @ is said to be of the second kind. Given a group I', the set
of Mobius transformations whose restrictions to 4 are the members of I’
constitutes a group @, which we shall denote by @(I") . Similarly, we shall
denote the set of the restrictions of the members of a group @ to 4, which
constitutes a group I, by I'(©).

An important result of C. L. Siegel [9, 10] states: if a Poincaré funda-
mental polygon of a group I has finite hyperbolic area, then it has a finite
number of sides, none of which is on C'. and O(I') is of the first kind.

It is natural to inquire whether Siegel’s theorem has a partial counter-
part for @ of the second kind. When Siegel’s theorem is reformulated in
terms of metrics of constant negative curvature associated with the quo-
tient map defined by I", a natural counterpart of Siegel’s theorem for @
of the second kind is valid. It is one of our objects to establish extensions of
Siegel’s theorem and this result to the case of arbitrary non-euclidean con-
vex fundamental polygons [Th. 4.2, Th. 6.1].

With the aid of these theorems we shall obtain the following theorem.

Theorem 1.1: Hach non-euclidean convex fundamental polygon of a
finitely generated O has a finite number of sides. If some non-euclidean
convex fundamental polygon has a finite number of sides, then O is finitely
generated.

We recall that in the sense of the terminology of [2] a group @ is termed
Fuchsian provided that some Poincaré normal fundamental polygon of @
has a finite number of sides and otherwise is termed Fuchsoid. It is a con-
sequence of part of the arguments leading to Theorem 1.1 that if some

') Work on this paper was carried out during the tenure of National Science
Foundation Grant NSF G 25227.
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non-euclidean convex fundamental polygon of @ , in particular a Poincaré
fundamental polygon, has a finite number of sides, then so does every
non-euclidean convex fundamental polygon of @ [cf. § 7].

Our developments will be based on a free use of Riemann surface theory
and the geometric reasoning employed by Siegel. In particular, we shall
focus attention on the map that carries a point into its orbit with respect
to 6.

In § 12 we shall make a systematic study of the relation between the
parabolic members of an arbitrary @ and the cusps of an associated non-
euclidean convex fundamental polygon. The results are, it is to be noted,
free of finiteness conditions. The work of § 12 is based on our paper [5].

2. It will be convenient to recall some basic facts concerning properly
discontinuous groups of Mébius transformations. Suppose that M is a
group of Mébius transformations. By the orbit of a point z of the extended
plane with respect to M, denoted ¢(z), is meant the set {z(z)|zv € M}.
Given O, a non-empty open subset of the extended plane, we introduce
»(z,0), the number of distinct 7 € M such that () €0 . Clearly,
z—>(z,0) is a lower semi-continuous function in the extended plane.
We say that M is properly discontinuous at a provided that for some O
containing a,

(2.1) supr(z,0) < + ©.

2€0
The set of points at which M is properly discontinuous is open and is
mapped univalently onto itself by each 7 € M. We suppose that the set
in question is not empty. Let 2 denote a component. We introduce

(2.2) F(M, Q) = {¢(:)| 2 € 2}
If we endow F (M , Q) with the weakest topology rendering
(2.3) p:z—gz), €82,

an open mapping, then F(M , Q) becomes a 2-dimensional manifold.
Further, F(M , 2) may be endowed with a conformal structure rendering
@ a conformal map of Q onto F(M , Q). Indeed, F(M , Q) may be
endowed with a Riemann surface structure that renders ¢ conformal in
essentially one way. Given a € 2, the set

{sup»(z, O0)| a € O}

2€0
has a finite minimum, which is, in fact, equal to the number of distinct
members of M having a as a fixed point and also is equal to n(a;¢),
the multiplicity of ¢ at a. Since ¢ is automorphic with respect to M,
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it follows that n(a; @) =n(d;¢@), if b€ @) N L. Thus we see that if
q € F(M , Q), then the multiplicity of ¢ is the same at each point! of
¢ ({q}). We denote the common value by 9(q). The function 0 :q— 9(q),
q € F(M , Q), has the property that the set {9(g) > 1} clusters at no point
of F(M, ). We term 0 the ramification index of ¢ .

A case of particular interest is that where each 7 € M maps A onto
itself. In this case, if the set of points where M is properly discontinuous
is not empty, then either it has two components, 4 and ext 4, or else
it is connected and contains A Uext A . The groups in question are the
O of § 1.

Poincaré’s normal fundamental polygon. Given points a,b €4, we
denote the hyperbolic distance between ¢ and b by [a,bd]. By the
Poincaré normal fundamental polygon, Il(a), of a group O relative to
a €4, nla;p) =1, is meant simply the set of z € 2 satisfying

(2.4) [z,a] <[z, 1(a)], TEO.

(The definition of a Poincaré normal fundamental polygon of a group I
is the same with I" replacing 6.) We shall also say more briefly »Poincaré
polygony. Il(a) has the property that for each b €4, ¢b)NIl(a) # o .
Further, if b €int II(a), then ¢(b) has only the point b in common
with [I1(a). The frontier of I7(a) consists of the closure of the union of
certain non-euclidean straight line arcs ¢ and arcs y(c C). By a side
of Il(a) is meant a maximal ¢ or y contained in fr /7(a) . Further,

Uep ()] = 4.
and for 7(€ ©) not the identity
int [7(a) Nint t[lI(a)] = & .

There is no reason to restrict our attention to Poincaré fundamental
polygons. We may as well consider more general »fundamental domainsy.
We shall say that D(C A) is a non-euclidean convex fundamental domain
of O provided that (1) D is closed relative to 4 and is non-euclidean
convex, (2) @(D) = @(4), (3) the restriction of ¢ to int D is univalent
(or equivalently, int DN z(int D) = @, t(+~ identity) €0). Such a
D will be termed a non-euclidean convex fundamental polygon of @, or
more simply, a fundamental polygon of @ provided that not only are the
previous conditions fulfilled but also: (4) each component of A Nfr D
is piecewise non-euclidean rectilinear, and (5) for each = € 4 there exists

1) ¢7Y(E) denotes the antecedent of a set E with respect to the map ¢ with
domain £ specified by (2.3).
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a neighborhood having points in common with 7D for only a finite set
of 7 €6 . The condition (5) is equivalent to the condition: (6) the restric-
tion of ¢ to D tends to the ideal boundary of ¢(4) as [z]— 1. It is
clear that a Poincaré fundamental polygon is a fundamental polygon in the
present sense. The term »side» will be employed for fundamental domains
in the same way as for Poincaré fundamental polygons.

3. Alemma concerning fundamental polygons for @ of the second kind.
We shall want information concerning the behavior of a fundamental poly-
gon Il of a group 6 in the neighborhood of a frontier point on C at
which @ is properly discontinuous. The facts are quite straightforward
but nevertheless require attention.

Lemma 3.1: Let O be properly discontinuous at (€C. Then

1IN @(l) is a nonempty finite set. Further, either it reduces to an inner point
of an arc of C lying in fr IT, or else it consists of more than one point and
in this latter case for each point of nn (L) one of the following alternatives
occurs: (1) it is an endpoint of an arc y(C C) and an arc f of a circle ortho-
gonal to C,pC A, such that yUupgctrll; (2)itis an endpoint of two
distinct f the union of which lies in fr 11 .

Proof: It will be convenient to treat the equivalent problem where
O is replaced by a group of Mobius transformations mapping {Imz > 0}
onto itself and properly discontinuous at each point of {Imz > 0}. We
shall designate the group in question also by @ . (Of course, the definition
of a fundamental polygon persists.) We take a point ¢ of the real axis
where @ is properly discontinuous and show first that there exists a
neighborhood of ¢ which has points in common with (/) for only a
finite set of 7 € ®. To that end, we introduce o&(> 0) such that ¢(R)
is a proper subset of ¢[{Imz > 0}), where

(3.1) R={z Rez—c/ <70,0<Imz <40}.

Every hyperbolic straight line segment, one endpoint of which is at a
euclidean distance less than o0 from ¢ and the other is at a euclidean
distance less than ¢ from ¢+ 6 6. has the property that it lies on a
euclidean circle whose center lies in the interval (¢ + 26,c¢ + 4 9) of the
real axis and radius lies strictly between 26 and 4. A corresponding
statement holds when one of the endpoints is at a euclidean distance less
than 6 from ¢ and the other is at a euclidean distance less than ¢ from
c—60.

We assert that =(/7) has points in common with U(c, d) = {|z — ¢| << 8}
for only a finite set of 7 € @ . In fact, by the choice of 6 each v(/]) must
have points in {Imz > 0} — R. Hence if z(/[)NU(c,d) # =, then
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ENint v(I]) # =z , where E is the intersection of {Im z > 0} and the
frontier of

(3.2) Ri={2Rez—c| <60, 0<Imz<40}.

Since int 7(/I) is convex in the hyperbolic sense, it follows that there is
a hyperbolic straight line segment A C int 7(//) the endpoints of which
are in U(c,d) and K. If there were infinitely many distinet 7 with
the stated property, the endpoints of the 4, on £ would cluster either
at ¢+ 606 or at ¢ — 60. Otherwice some point of {Imz > 0} would
have the property that each of its neighborhoods would contain points
of 7(/I) for infinitely many distinct 7. This is not possible. However,
the endpoints of the A, on £ cannot cluster at ¢ + 6 § . Otherwise for
infinitely many distinct v the endpoints in question would lie in
U(c+ 66,0), and consequently, for infinitely many distinct = the
point of maximum ordinate on the circle containing 4, would belong to
A, and also to the square

(3.3) R,={z]20<Rez—c<<40,20 <Imz<46}.

But then we should be forced to conclude the existence of a point of
{Im z > 0} each neighborhood of which contains points of 7(I7) for in-
finitely many distinet v . This is not possible. Similarly the endpoints
of the A, on X are seen not to cluster at ¢ — 66 . Our assertion follows.

We next choose 0;,,0 < 6, <0, so that ¢ belongs to the closure
of each 7(//) having points in common with U(c, 4;) . To continue, we
note that each int 7(//) is a Jordan region (in the sense of the topology
of the extended plane). Let us consider a subarc « of the frontier of a
7(II), where x € U(c, d;) and ¢ is an endpoint of «. We assert that
some subarc of « having ¢ as an endpoint either is a segment of the real
axis or else is a Jordan arc lying wholly in {Im z > 0} save for the point
¢ . Otherwise there would exist a sequence of subarcs of « lying in
{Im z > 0} save for endpoints that lie on the real axis and tend to c.
But then the closure of the bounded Jordan region, the frontier of which
consists of such a subarc and the segment of the real axis joining its end-
points, contains some o¢(//), o € @ . Hence there would exist arbitrarily
small o¢(/T) in U(c, 6). This is not possible.

If some subarc «; of & with endpoint ¢ lies wholly in {Im z > 0}
save for ¢, we may suppose that «; less ¢ is a hyperbolic half line. In
fact, under this condition for each 7 for which ¢ € fr (1) we introduce
one arc of 7(II) with endpoint ¢ lying wholly in {Imz > 0} N U(c, 9)
save for ¢ if 7(II) contains a segment of the positive real axis having
positive length with endpoint ¢, and otherwise we introduce two arcs of
fr ©(I1) having only ¢ in common and lying wholly in {Im z > 0} N U(c, 9)
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save for ¢. We choose 6,,0 << d, << 6, so that any point of fr 7(/7)
in {Imz>0}NU(,d, lies on one of the chosen arcs associated with
7, 7= such that ¢ € 7({I). We assert that there are no corners of a chosen
arc in U(c, d,) . If there were such a corner, say ¢, then the hyperbolic
convexity of I/ would imply that ¢ would belong to fr =(/) for at least
three distinct 7. (We recall that the angular opening at a corner is less
than x.) It follows that there would exist subarcs of two chosen arcs
with endpoints ¢ and ¢ having in common in some neighborhood of ¢
no points distinct from ¢ . These subarcs cannot meet at a point of
{Im z > 0} distinct from ¢ ; otherwise they would have subarcs having
just their endpoints in common — the endpoints being ¢ and another point

of {Imz> 0} — and consequently, /7 would be a bounded subset of
{Im z > 0} and hence @ would not be of the second kind. It follows that
the subarcs of the first clause of the preceding sentence form a closed Jordan
curve y in U(c, d) and that int 7(ZI) would lie wholly in the bounded
component of the complement of » and hence in R for some 7. The
contradiction is apparent. The supposition of the first sentence of the pre-
sent paragraph is valid.
The Lemma now follows readily.

4. Our next concern will be to reformulate the condition of Siegel in
terms of @(4) and the ramification function o .

We consider an arbitrary Riemann surface F and a function d on
I which takes positive integer values and is such that {d(¢) > 1} clusters
at no point of /. We say that (F',d) satisfies the condition A provided
that either (1) there does not exist a C” conformal metric 4 of constant
Gaussian curvature — 4 on F — {d(q) > 1} subject to the condition
that in terms of a local uniformizer o, ¢(0) = ¢,

(4.1) 2,(t) |¢]! @

possesses a finite positive limit at 0, 4 (f) [d¢| being the local representa-
tion of the metric in terms of o, ¢ € F; or else (2) such 4 exist and the
supremum of the set of 1 -areas of F — {d(¢) > 1} is finite. Actually,
if such a metric A exists, there is a maximal such 4. This fact will become
clear subsequently (Th. 4.3). The 1 in question are real analytic, but use
will not be made of this property.

We turn to the reformulation of Siegel’s condition. Given a group O,
we let F' be ¢(4) and d the restriction of 9 to ¢(4). We have

Theorem 4.1: There exists a maximal A relative to (F,d), say u.
The hyperbolic area of each fundamental polygon is the u-area of
F — {d(q) > 1} . If the condition of Siegel is fulfilled for some fundamental



MavricE Heins, Fundamental polygons of fuchsian and fuchsoid groups 9

polygon, then (F ,d) satisfies the condition A . If (F,d) satisfies the
condition A4 , each fundamental polygon has the same finite hyperbolic area
and its frontier has a finite number of sides, none on {|z| = 1}.

It is to be remarked that as a consequence of Siegel’s hypothesis the
frontier of every fundamental polygon has a finite number of sides. Of
course, it is easy to see directly that every fundamental polygon has the
same hyperbolic area (finite or infinite) for any given O .

To establish Theorem 4.1 we note that the hyperbolic metric
(I — [z |dz| restricted to 4 — {n(z; ¢) > 1} defines via ¢ a metric
u on F —{d(q) > 1} fulfilling the conditions imposed on a metric 1.
Suppose that a competing 1 meeting the imposed conditions is con-
sidered. Let A(z)|dz| and M(z) |dz| denote the representations of A and
u given by the restriction of ¢ to 4 — {n(z;¢)>1}. We have
M) = (1 — |22)1. Further A(z)|dz] is a C” metric of constant
curvature — 4 and ./ admits a continuous extension to 4. It follows
that A << M by a slightly generalized form of Ahlfors’s extension [1] of
the Schwarz lemma (cf. [6] p. 85). Hence 1 < .

Only the last assertion of the theorem calls for attention. It will be
established once the following result is proved.

Theorem 4.2: If a fundamental polygon has a finite hyperbolic area, then
its frontier has a finite number of sides none of which is on {|z| = 1}.
(Siegel’s theorem for fundamental polygons.)

The proof is a very slight variant of Siegel’s [10]. We first consider an
arbitrary non-euclidean convex set E A, where E is closed relative to
A, int B = o, and E has finite hyperbolic area. We assert that 4 N fr £
has only a finite number of components. Otherwise we may assume that
0 €int £ and that there are infinitely many hyperbolic triangles lying in
E each of which has 0 as a vertex and the remaining vertices on {|z| = 1}
and which further have no interior points in common. These triangles may
be taken as the hyperbolic triangles whose vertices are zero and the end-
points of a component of A NfrZ which subtends an angle less than
(say) =/2 at 0. On using the formula for the area of a hyperbolic triangle
in terms of the vertex angles we see that the area of E would have to be
infinite and we obtain a contradiction. Further fr Z does not contain an
arc of {|z] = 1}. Hence fr E consists of the union of the above compo-
nents and a finite set of points on {|z| = 1}.

We now consider a fundamental polygon II having finite hyperbolic
area. Again we may suppose that 0 € int /7. We first note that for a given
component of A Nfr Il and ¢> 0, at only a finite number of the vertices
on A NfrlIl is the angle of the non-euclidean sector bounded by the sides
issuing from the vertex and containing /I less than z — ¢. It suffices
following Siegel to inscribe the hyperbolic triangles with vertices 0 and
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successive endpoints of a side of the component of A N fr I7 in question.
Thereupon it is easy to control the vertex angles with the aid of the formula
for the area of a hyperbolic triangle. Suppose that there are infinitely many
vertices on a component. Let (z,){° be a sequence of successive vertices
proceeding in one sense along the component. For the hyperbolic triangle
with vertices 0,2,,%,,; we denote the angle at 2z, by «,, at z.,
by B, and the angle at 0 by y,. For each positive integer n, we have

n n4+1

Z (@ — oty — Bi) + (7 — — But1) §A+k;17k,

k=1

where A is the hyperbolic area of I7. Hence

n

Z(n_—“k-}-l‘—/gk)SA+27T+/3,,+1<A+3TE.

k=1

We conclude that lim (x,,, + f,) =z . Our assertion follows, the case
k—>oc0

where there are only a finite number of vertices on a component of A N fr I7

being obvious.

The proof is now completed by noting first that since there are only a
finite number of components of A4 Nfr 7, given &> 0 there are only
a finite number of vertices at which the angle is less than 7 — & . If infini-
tely many vertices were present, there would exist a vertex with associated
angle o, 3xn/4 <w <z, such that each equivalent point of fr I is
either not a vertex or else is a vertex whose associated angle lies strictly
between 3 z/4 and z. On summing the angles associated with the points
of frII equivalent to the vertex in question, we should obtain a sum of
the form 2z/n where n is a positive integer, the angle = being associ-
ated with a point, not a vertex, equivalent to the given vertex. If the
number of points of fr I/ equivalent to the given vertex is m, then
3am[4 < 2m/n <am and hence 2 < mn < 8/3. The contradiction is
manifest.

It will be observed by the reader conversant with the proof of [10]
that we have introduced a slight modification of the Siegel argument. Here
we show the finiteness of the number of components and then the finiteness
of the number of vertices on the components. The reverse procedure is
followed in [10]. There however one is led to treat the limiting behavior
of such angles as f, for n— + o . Such considerations are eliminated
by the present reversal of the argument.

A treatment of Siegel’s theorem as originally stated for Poincaré poly-
gons is to be found in [11].

We now turn to the situation of an unrestricted (¥ , d) and characterize
the (F,d) satisfying the condition A4 with the aid of Siegel’s theorem.
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The following results are well known from the classical theories of Riemann
surfaces and automorphic groups:

Given (F,d). We suppose that F is not conformally equivalent to the
extended plane or {d(q) > 1} contains at least three points. There exists a
conformal map vy of one of the standard simply connected regions — the
extended plane, the finite plane, A -onto F  fulfilling the following condi-
tions: (1) The restriction of v to

(4.2) y F — {d(q) > 1}]

is a covering of the region F — {d(q) > 1}. (2) If d(q) > 1, there exisls
a region o ,q €w , such that the restriction of y to a component of v Yw)
has constant valence d(q) on w .

If v, and v, both satisfy the stated conditions for a given (F', d), then
they both have the same domain and there exists a conformal automorphism,
« , of the domain such that w, = pi0x .

Each v is automorphic with respect to a group of conformal automorphisms
of its domain such that for each p € F, y~'({p}) is an orbit of the group.

If the domain of v is the extended plane, F is conformally equivalent
to the extended plane and {d(q) > 1} contains precisely three members. If the
domain of v is the finite plane, then F is conformally equivalent to one of
the following: extended plane, finite plane, punctured plane, a torus, and
{d(q) > 1} contains at most four points.

With the aid of these results and Siegel’s theorem we are in a position
to establish

Theorem 4.3: A pair (F,d) satisfies the condition A if and only if
F is conformally equivalent to a compact Riemann surface less a finite set
of points and {d(q) > 1} s a finite set.

Proof: Suppose that (F ,d) satisfies the condition 4 . We put aside
the trivial case where F is conformally equivalent to the extended plane
and {d(¢) > 1} has at most two elements. We may further suppose that
the domain of the associated y is 4 . In this case we see that the condition
of Siegel is fulfilled by the fundamental polygons of the group of conformal
automorphisms I" of A leaving v invariant. Since y = 6o @, where
0 is a univalent conformal map of ¢(4) onto F (¢ referring to I'), the
theorem of Siegel leads to the stated conclusion inasmuch as the finiteness
condition on the number of sides of a fundamental polygon and the fact
that none is on C imply that ¢(4) is conformally equivalent to a compact
Riemann surface less a finite set of points and {d(¢) > 1} is finite. It is
to be emphasized in this connection that the set of points on the frontier
of a fundamental polygon having a finite number of sides at which the multi-
plicity of ¢ is two is finite.
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We now proceed in the opposite direction. Here, too, it is sufficient to
consider the case where F is not conformally equivalent to the extended
plane or {d(q) > 1} contains at least three points. Further, we may restrict
our attention to the case where the domain of ¢ is A . For in all cases put
aside there does not exist a metric 1 satisfying the stated conditions. In
the case to which we are restricting attention, the metric induced as above
from the hyperbolic metric on 4 by y yields x, the maximal 2 subject
to the stated conditions. If 6 is a univalent conformal map of A — {0}
into F which tends to a boundary element of F as z-—0, then y,(2)
satisfies

1
lz] log T:‘
‘&
1,(2)|dz] being the representation of u corresponding to the uniformizer
0 . It follows that the u -area of F — {d(q) > 1} is finite.

5. Let us now consider a group @ of the second kind and let us now
take F = ¢(Q) and d = 0. We shall establish the following theorem.

Theorem 5.1: Let II* denote the union of a fundamental polygon II,
its 1mage with respect to the inversion z—1/Z, and fr[INCN Q. If
the pair (p(2),0) satisfies the condition A , then either C — Q contains
at most two points or otherwise the area of each II* in the sense of the maximal
conformal metric of constant curvature — 4 on Q s finite. If C — Q
contains at most two points or the area condition holds for some I[T*, then
(p(£2) , 0) satisfies the condition A .

The proof of this theorem may be based on the following observations.
First, if ¢ — ©Q contains at most two points, there does not exist a metric
A. Second, if ¢ — © contains more than two points, then ., the maxi-
mal conformal metric of constant curvature — 4 on Q. induces via ¢
the maximal 1 on ¢(02) — {d(¢g) > 1} satisfving the stated conditions
and the area (finite or infinite) of ¢(£2) — {2(g) > 1} with respect to the
maximal 1 is equal to the u -area of each //*. The second observation
yields the first assertion of the theorem. Together the two observations lead
to the second assertion. The details are readily supplied.

6. We now turn to the counterpart of the Siegel theorem for @ of the
second kind formulated in terms of condition A4 .

Theorem 6.1: If O is a group of the second kind such that (p(2),9))
satisfies condition A , then each associated fundamental polygon has a finite
number of sides.
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We put aside the trivial case where @ reduces to the identity and as
a first step in the proof we consider the behavior of ¢ on the components
of 2N C. It is easy to see that either ¢ is univalent on such a component
« orelse x is mapped onto itself by some member of @ distinct from the
identity and that in the latter case ¢(x) is a regular analytic closed Jordan
curve. In the former case ¢(z) tends to the ideal boundary of ¢(Q) as z
tends along « to either of its endpoints. In fact, if this were not so, there would
exist a sequence (z,)7° of points of x tending to an endpoint of x and
such that (¢(z,))7° tended to a point ¢ € (2 N C). But then ¢ = ¢(w),
w€f, where f is a component arc of QNC. Let r> 0 be so

small that ¢ is univalent on U(w,r)c 2. For k sufficiently large
¢(z,) € plU(w,r)]. We fixsucha £k, say [, and let 7 €@ be such that
7(z)) € U(w,r). Wehave 1 U(w,r)N 3] C x. Hence qﬁzc? )N PIC ().
For k sufficiently large =z, ¢ UG, r) N f] and at the same time
o) €EplU(w,r)N F]. Hence ¢ would not be univalent on «. Our
hypothesis is contradicted. The assertion follows.

Thanks to Theorem 4.3 we may consider ¢(2) as G —{a,,...,aq,
where G is a compact Riemann surface and the . are distinct points

of ¢, n>0. We now show that no a. belongs to ¢(2NC). We may
suppose n > 1, the case where n = 0 being trivial. To that end, we
consider a closed Jordan disk D(C ) containing a; in its interior,
ar €D, k #j, and such that ¢ is not ramified over any point of int D .

Suppose that for some component » of 2N C wehave ¢(x) Cint D .

Then in this case ¢(x) is a Jordan curve in int D. The component &

of int D — ¢(x) the closure of which lies in int 2 does not contain points
of (2NC), for otherwise the connectedness of ¢(4) or of ¢({lz] > 1})
would be violated. If a; € 60, then the restriction of ¢ to a component
of ¢71(6) would be univalent. The component in question would have
to be either 4 or {|z/ > 1} and @ would reduce to the identity. This is
impossible. Hence «; € 6 and consequently «; € (2N C).

Our task is reduced to considering the case where for no « is it true that
g(x)Cint D. Only a finite set of ¢(x) have points in common with
int D . Otherwise there would be an infinite set E of points on fr D
each point of which belongs respectively to a distinet ¢(x). Let ¢(c) € fr D
denote a cluster point. We obtain a contradiction when we consider ¢(x,),
where «, is the component arc containing ¢. For ¢(r,) would contain
infinitely many points of £ . However distinet ¢(x) are disjoint. If a;
belonged to ¢(2NC), then @ would be an endpoint of some ¢(x).
Further, there would exist a closed Jordan disk D,(C int D) such that
[D; N (2N C)JU{a;} consisted of the union of a finite number of Jordan
arcs having only «; in common, the endpoints of each arc being «; and
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a point of fr D; and the remaining points lying in int D, . There would
have to be at least two such arcs, otherwise some point of ¢(4) and some
point of ¢({|z| > 1}) could be connected by an arc not intersecting
(2N 0). Consider a component, K, of int D; less these arcs. We
suppose, as we may, that K C ¢(4). It follows from considerations con-
cerning the boundary behavior of conformal maps of Jordan regions and
the Schwarz reflexion principle that fr K, contains a free arc (C C)
which contains a point ¢ € ' — 2, where K, is a component of ¢~(K).
It is to be noted that the restriction of ¢ to K, is univalent. We conclude
that @ would have to be properly discontinuous at ¢ . But this is not

possible. Consequently, a; € (2 N C). (We shall see that this result
remains valid for arbitrary @ of the second kind. The present discussion
of the special case under consideration is given solely to prevent unduly
burdening the exposition of the first part of this paper.)

It now follows that each ¢(x) is a closed Jordan curve. Further the dis-
tinct @(x) are finite in number. Hence, a fundamental polygon has only a
finite number of sides on C, as may be seen by appeal to Lemma 3.1.
Each lies in 2.

We recall that we have put aside the trivial case where @ reduces to
the identity. We note that thanks to the non-euclidean convexity of a
fundamental polygon the hyperbolic straight line having the same end-
points as a side of 7 lying in C' is contained in /7. This hyperbolic line
lies in int I7, or else int /7 is the bounded region the frontier of which
consists of the above side of C' and the hyperbolic straight line. Nothing
remains to be shown in the latter case. There are just two sides.

In the former case we proceed as follows. Every hyperbolic line so asso-
ciated with a side of I7 on C lies in int IT. We obtain a set II; by
removing from I/ each of the bounded regions the frontiers of which con-
sist of a side of I7 on C and the hyperbolic straight line joining the end-
points of the side. Each such region is contained in int /7. The set II;
is a non-empty non-euclidean convex polygon. The term »side» applied to
I1; is to have the same meaning relative to I7; as that given before for a
side of IT. The term »hyperbolic area» is now to be taken in the sense of the
hyperbolic metric in A . For each point ¢ € 171 N QN C we introduce
a non-euclidean triangle 7'(c) € /7, , of which the vertices are ¢ and inner
points of the two sides of 77, which have ¢ as an endpoint. We let 77,
denote I, less the union of the 7'(c) . It is easy to see that

(6.1) eIL)N (2N C) = = .

Let u denote the conformal metric of constant curvature — 4 induced
on ¢(A4) — (@(¢) > 1} from the hyperbolic metric on 4 by ¢ . From



MavuricE Heixs, Fundamental polygons of fuchsian and fuchsoid groups 15

(6.1) we conclude that the u -area of g(int IT,) is finite. Consequently, the
hyperbolic area of I1, is finite and hence so is the hyperbolic area of I7; .

The argument of Siegel [9] may now be transcribed. The present proof
parallels that of Theorem 4.2. We first show that A N fr I7; has only a
finite number of components. We restrict our attention, as we may, to the
case where there is more than one. We choose b € int II; and consider the
non-euclidean triangles the vertices of which consist of b and the endpoints
of a component of A Nfr[l,. Distinct such triangles corresponding to
components intercepting a non-euclidean angle less than =« at b do not
have any interior points in common. Further the union of all the so restricted
triangles lies in /7, . On using the fact that the area of a non-euclidean
triangle is 7 less the sum of the vertex angles, we conclude that 4 N fr IT;
has only a finite number of components since the sum of the areas of the
triangles is finite and the sum of the vertex angles at & does not exceed
2 . Itis now easily seen that C N fr /1, has only a finite number of points;
otherwise the area would be infinite.

If a component of A N fr /7, contains infinitely many sides, then as
is readily seen by the reasoning of Siegel the angles formed by successive
sides tend to m as their vertices tend to an endpoint of the component.
It suffices to consider the non-euclidean triangles with vertices b and the
end points of a side and repeat the area argument. Hence if fr II; had
infinitely many sides, the vertex angles would exceed 3xz/4 for all but a
finite number of vertices. We are led to the same contradiction as in Theo-
rem 4.2. Hence fr /I; has a finite number of sides and, a fortiori, so does
fr 1.

7. Thanks to Theorem 4.2, Theorem 5.1 and Theorem 6.1, it is possible
to give the proof which was referred in § 1 to the present section. We obtain
a second proof, of course, via Theorem 1.1 to be established in § 10.

We note that if @ is of the first kind, then a fundamental polygon has
no sides on C and it is classical that if such a polygon has only a finite
number of sides, its hyperbolic area is finite. The theorem of Siegel as given
by Theorem 4.2 applies. If @ is of the second kind and /7 is a fundamental
polygon with a finite number of sides, we proceed as follows. If C — Q
has at most two members, Theorem 5.1 is applicable and shows that con-
dition 4 holds. On examining //* in the remaining case we see that its
area in the sense of the maximal C” conformal metric of constant curva-
ture — 4 on £ is finite. It suffices to note that the sides of I7 on C
also lie in Q and that the area of a hyperbolic triangle in A in the sense
of this metric, being dominated by the area in the hyperbolic sense, is finite
so that contributions from neighborhoods of cusps are harmless. The con-
dition A is fulfilled and Theorem 6.1 applies.
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8. The pairs (¢(4),0;), where 9; is the restriction to ¢(4) of 2,
for @ with (¢(4),0) or (p(R),0) satisfying condition 4 may be charac-
terized conformally as the following theorem shows. Its proof, which depends
in part on the classical results concerning branched coverings of the extended
plane, is readily supplied at this point and will be omitted.

Theorem 8.1: Let there be given a pair (F,d). A necessary and suffi-
cient condition that there exist a O of the first kind such that (1) there exists
a wnivalent conformal map v of ¢(A) onto F satisfying doy =0, (2)
(¢p(A) , 0) satisfies condition A isthat F be conformally equivalent to a com-
pact Riemann surface G less a finite set of points, that {d(q) > 1} be finite,
and that

(8.1) DAL= > — (1 +m),

qEF

where y is the Euler characteristic of G(y =2¢g — 2,9 = genus of @)
and m 1is the number of boundary elements of F . A necessary and sufficient
condition that there exist « O of the second kind such that (1) there exists a
conformal map vy of ¢(A) onto F satisfying doy =a,, (2) (¢(2),d)
satisfies condition A is that F be a hyperbolic Riemann surface having
Jinite topological characteristics and that {d(q) > 1} be finite.

We remark: if (¢(4), 0;) satisfies condition A4, then O is of the first
kind. This observation follows from Theorem 4.3 and the fact that (4)
is hyperbolic for @ of the second kind.

9. It is possible to replace the sufficient condition of Theorem 4.3 by
a less stringent one in the case where F = ¢(2) and d =a. O heing
given. Here 2 is the component containing 4 of the set of points at which
O is properly discontinuous. We have

Theorem 9.1: If ¢(Q) has finite topological characteristics (genus and
number of Kerékjdarté boundary elements) and {d(q) > 1} is finite, then
(¢(L2),0) satisfies condition A.

Suppose that @ is of the first kind. It suffices to show that ¢(4) is
parabolic for then each of its boundary components is necessarily isolated,
planar and pointlike. If ¢ (1) were hyperbolic. there would exist a univalent
conformal map o of ¢(d) onto a region of a compact Riemann surface
the frontier of which consists of a finite number of components, where each
either is a regular analytic Jordan curve or reduces to a point and at least
one does not reduce to a point. Since yo ¢ restricted to ¢ {d(g) = 1}
is a covering of {d(¢q) = 1}, it follows on considering a component of the
antecedent of a simply-connected Jordan region o Cwyo¢(4), where
frw contains an arc lying in fryo ¢(d), that for some %, |y =1,
and >0, pog and hence ¢ would be univalent in U(y,r)N4.
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This would force @ to be of the second kind. The contradiction is
manifest.

Since ¢(4) is parabolic and hence the boundary components are iso-
lated, planar and pointlike, the associated maximal C” conformal metric
u of constant curvature — 4 (such a metric always exists for @ of the
first kind) is such that the wu -area of ¢(A4) — {d(¢g) > 1} is finite.

Suppose now that @ is of the second kind. We restrict our attention
to the case where C — 2 contains more than two points and consequently
is perfect — the situation where C' — £ contains at most two points is
immediate. We now let u denote a conformal universal covering of 02
with domain 4 . Since I, the group of conformal automorphisms leaving
v invariant, is such that ©(I") is of the first kind, (' — £ being totally
disconnected, O(I}) is also of the first kind, where [} is the group of
conformal automorphisms of /A leaving ¢ oy invariant. Let ¢; denote
the orbit map associated with [} and let F; = ¢(4). We have

(9.1) poy="0oq,

where 0 is a univalent conformal map of F, onto ¢(). 1tis to be noted
here that if ¢[y(z)] = ¢[w(z,)], then w(z,) = oly(z)], 0 €6, and also
coy=mwort, T€I, so that z, = 71(%), 7, €I;. It follows from
the first part of the proof that F, is conformally equivalent to a compact
Riemann surface less a finite set of points. The theorem follows.

10. Finitely generated @ . We show

Theorem 10.1: A group O is finitely generated if and only if the asso-
clated (p(2),0) satisfies condition A. Here Q is the component containing
A of the set of points at which © 1is properly discontinuous.!

Before turning to the proof we remark that Theorem 10.1 taken with
the theorem of Siegel for fundamental polygons and Theorem 6.1 yields
Theorem 1.1. It is to be observed that if there exists a fundamental polygon
with a finite number of sides, then condition A4 is fulfilled.

The »f» part of Theorem 10.1 is readily disposed of. Suppose that con-
dition A is fulfilled by (¢(2),0). We fix a €4, n(a;¢)=1, and
introduce a finite generating set of path classes K, , ..., K, for the funda-
mental group, I7;, of ¢(d) — {d(¢) > 1} based at ¢(«¢). A homomorphism
of 17, onto I is defined by assigning to each K € I/, the element 7, € I’
such that for each path € K the lifting with respect to ¢ having initial
point @ has terminal point 7.(a) . Hence I is finitely generated.

1 Added January 24, 1964: I have been informed by Professor Ahlfors that
this theorem is essentially known but that hitherto no proof has been published.
He has obtained the corresponding result for Klein gronps.
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To establish the »only if» part, we first show that ¢(4) has finite topo-
logical characteristics and that {0,(¢) > 1} is finite, where 0, is the re-
striction of @ to @(4). In the case of @ of the second kind it follows that
@(2) has finite topological characteristics and that {d(¢) > 1} is finite.
The proof of the theorem under consideration is completed by appeal to
Theorem 9.1.

The verification of the finiteness properties of ¢(4) and 0; will be based
on the following lemma, a proof of which may be given with the aid of the
monodromy theorem. The details of the proof will be omitted.

Lemma 10.1: Let f denote a conformal map of A into a Riemann sur-
Jace H and let g denote a conformal map of a Riemann surface G onto H .
Suppose that the following conditions are fulfilled: (1) There exists a discrete
set B C H such that the restriction of g to g~(H — E) is a covering of
H — FE. (2) For each a € E there exists a positive integer v(a) > 1 such
that for every sufficiently small open disk 0 containing a the restriction of
g to a component of ¢g71(0) has valence v(a) on 6. (3) Whenever f(z) € E ,
n(z; f) s a multiple of v[f(2)]. Then there exists a conformal map of A
nto G, say vy, suchthat f=goy.

For the remainder of the present section we shall understand by ¢
the map z—¢(z), z€4.

We put aside the trivial case where @ reduces to the identity. Let
Xy ,...,x, denote a finite set of distinct elements of @, each distinct
from the identity, which generate @ considered as a semigroup. We assume,
as we may, that 0 is not a fixed point of any 7(€ @) distinct from the
identity. Let

K :‘LnJ g0 0 <t < 1)

Suppose that F = ¢(4) has infinite genus. Let R denote a relatively
compact region of F containing K the frontier of which is also fr (ext R)
and consists of a finite number of mutually disjoint closed Jordan curves.
There is a component, €, of ext R which is of infinite genus. We define
a 2-sheeted covering, ¢, of F by introducing a non-separating closed
Jordan curve, y, in € and joining two copies of F slit along y in the
standard manner. Let ¢ denote the domain of ¢ . Applying Lemma 10.1,
we obtain @ = goyp, where y is a conformal map of 4 onto G . That
G = yp(4) is a consequence of the fact that ¢ and hence, p do not have
any asymptotic points (in # or @ respectively). Consequently, it follows
from the definition of g that ¢—'(R) has more than one component. Since
&1,...,x, generate @ as a semigroup, for each 7 €@ there exists a
path in A joining 0 to 7(0) whose image with respect to ¢ lies in K .
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Indeed, if 7= o). .. %m and m > 1, it suffices to consider the path
formed by joining the following arcs in succession:

Oo‘i(l)(o) > 9‘;(1)[09‘.'(2)(0)] :9‘1'(1)'?‘,'(2)[0“,'(3))0)] I

XX+ - - 9‘i(m—1)[00‘1'(,")(0)] .

(10.1)

The notation »ab» denotes a straight line segment as usual. We conclude
that ¢~1(R) is connected. The contradiction is manifest and we conclude
that the genus of @(4) is finite.

Each of the remaining parts of the verification may be carried out along
similar lines. We consider the boundary components of ¢(4) in the sense
of Kerékjarto. Suppose that there are infinitely many. We take R so that
each component of ext R is planar. At least one of these components, say
€ , is neither simply-connected nor doubly-connected. We obtain a 2-sheeted
covering, g, of F having the property that g-!(R) is not connected as
follows. We suppose that F is embedded in a compact Riemann surface,
F,, having the same genus as F , and define a 2-sheeted conformal map,
g,, with image F; as follows. We introduce a Jordan arc, y,, where
y, lies in the component of F, — R containing € and joins points of
distinet components of F; — F . We thereupon join two copies of F; — y;
along y, in the standard manner and obtain a map of valence two with
image F,, which is ramified over the endpoints of ;. The desired
covering, g, of F is obtained as the restriction of g, to ¢,7(#). It is
to be noted that g¢,~(F) is connected as a consequence of the choice of
¢, . Further, as in the preceding paragraph, g~'(R) has two components.
The remainder of the argument continues as above and we conclude that
F has a finite number of Karékjarté6 boundary elements.

Finiteness of {9,(¢) > 1}. We assume, as we now may, that F is a
region of a compact Riemann surface F;, where F'; — F consists of the
union of a finite family of mutually disjoint sets that reduce to points or
are homeomorphs of closed disks. Suppose that {9,(g) > 1} is infinite.
We choose R so that each component of F;, — B is the homeomorph
of a disk which contains precisely one component of F, — F . For some
component, €, of F — R, we have 9,(¢) > 1 at infinitely many points
of €. Let a(€C) be such that 9;(a) > 1, let €, denote the component
of F;, — R containing €, and let b €, — €. Let y denote a Jordan
arcin @, with endpoints a and b. We introduce o,(a) copies of F), — y,
taken in cyclic order, and join them along y . welding a preferred edge of
each copy to the other edge of the successor copy. We obtain a conformal
map, g, , of constant valence 9;(a), having image F,, ramified over a
and b but nowhere else, the multiplicity of g; at the antecedents of «a
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and b being o,(a). Restricting ¢; to ¢, (F) we obtain the desired ¢ .
The remainder of the above argument may now be paraphrased. Our asser-
tion follows.

11. In the situation of Siegel’s theorem where @ are considered for
which a fundamental polygon I7 has finite hyperbolic area, @ is of the

first kind and the presence of a point of I/ on C is equivalent to the
existence of a parabolic member of @ (cf. [10], p. 45). In the case of ©
of the second kind for which the associated (¢(£2), d) satisfy condition A4
the facts are palpably different. Here the wellknown phenomenon of an
adventitious cusp may occur at a point of Q N C . It suffices to consider
O generated by the transformations ¢ and 7, where

o(z) — ¢ ; z — ¢

o(z) +e  Tz4¢e’
(11.1) - i

T(z) — ¢ ; 2 —¢

7(2) ¢ Tz 4+
e=¢", 2= — (1 + /(1 — ¢)%. In this example, the Poincaré polygon
11(0) has adventitious cusps at 1 and — 1. Nevertheless, there is a perfect

correlation between conjugate classes of maximal cyclic subgroups generated
by parabolic transformations of a completely arbitrary @ and finite cycles
of cusps of the associated fundamental polygons. As far as I am aware,
this question has not been hitherto treated in full generality. In studying
it we shall make use of the results of our paper [5], in which is developed
the relation between conjugate classes of maximal cyclic subgroups of para-
bolic transformations and the isolated pointlike planar boundary elements
of @(4) having deleted neighborhoods free of {d(g) > 1} . However, before
we turn to this question, it will be convenient to investigate the isolated
planar boundary elements of ¢(£) having a deleted neighborhood free of
{0(9) > 1}, £ denoting as above the component containing /1 of the
set of points at which @ is properly discontinuous. Such isolated planar
boundary elements will be termed admitted. We first establish the following
result which subsumes the special case (having finite topological charac-
teristics and finite {9(g) > 1}) treated ad hoc in § 6.

Theorem 11.1: If O s of the second kind, then every admatted isolated
planar boundary element of ¢(2) is pointlike and has a deleted neighborhood
containing no points of ¢(£2 N C).

Proof: The case where C — 2 has at most two members is included in
the developments of § 6. It may be treated directly.

In the remaining case C — 2 is a perfect, totally disconnected set and
we introduce u, a conformal universal covering of 2 with domain 4
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and group of conformal automorphisms I,. We let ¢; = @ oy and let
I'y denote the group of conformal automorphisms of A which leave ¢,
invariant. For each o € I there exists a unique 7, € @ such that

(11.2) Yoo =T,09y.

We consider an admitted isolated planar boundary element of ¢(£).
With it we associate a univalent conformal map « of a plane annulus
{1 < |z] <7(< 4+ o)} into ¢(L) such that «(z) tends to the boundary
element in question when [z] tendsto r andalso d[x(z)] = 1,1 < 2| < 7.
Suppose that r << + oo . It follows from the covering properties of ¢,
that

(11.3) a(e®) = g0 A(2) ,

where A4 is an analytic function on {0 < Re z << log r} taking values in
A and having the property that

(114) limRez»logr JA(Z)" =1.

Hence we conclude by the Schwarz reflexion principle, the univalence of
a(er) on {0 < Rez <<logr; Imz| <ax}, and (11.3) that ¢, is univalent

on AN{jz—e°/< o} for some real 6 and positive o. This implies
that ©([)) is of the second kind and hence that ©([}) is of the second
kind. Since € — £ is totaliy disconnected, ©@([/}) is of the first kind.
The assumption that r << + oo is untenable. It follows that the admitted
isolated planar boundary element under consideration is pointlike.

We next show that « may be so chosen that its image does not intersect
(2N C). To that end we make use of the following theorem which we
have essentially established elsewhere [5]. It will also be used in Theorem
11.3.

Theorem 11.2: Given a groun O , ihere is a one-to-one map onto the set
of admitted pointlike isolated planar boundary elements of @(A) from the
set of conjugate classes

(11.5) K(P) = {0P6-1| 6 €O},

where P is a maximal cyclic subgroup generated by a parabolic member of O |
such that the restriction of ¢ to each sufficiently small disk bounded by an
oricycle tangent to C at the fized point of v (£ identity) € P is a conformal
universal covering of an arbitrarily small deleted neighborhood of the isolated
planar boundary element of ¢(A) corresponding to K(P) .

In order to apply Theorem 11.2 we shall want to make use of the fact
that ¢;(w) = ¢(z) only if w is a member of the orbit of z with respect
to I} (cf. § 9). We conclude that there exists a univalent conformal map
of @(£) onto the quotient surface associated with I such that the rami-
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fication indices associated with I7 and @ respectively agree at corre-
sponding points.

Consequently, we may associate by virtue of Theorem 11.2 with an
admitted isolated planar boundary element of ¢({2) a parabolic element
o € I'; such that the restriction of ¢; to a sufficiently small disk bounded
by an oricycle tangent to C' at the fixed point of ¢ is a conformal universal
covering of some arbitrarily small deleted neighborhood of the isolated
planar boundary element under consideration. We proceed by investigating
T, .
Suppose that 7, is hyperbolic. Considering (11.2) with ¢ replaced
by integral powers of o we conclude that u possesses two asymptotic
paths terminating at the fixed point of ¢ along which  tends to two
distinct asymptotic values. The theorem of Lindel6f-Gross-Iversen is contra-
dicted. Suppose that 7, is elliptic or the identity. Since 7, has a finite
order, (11.2) implies that o ¢" =y for some positive integer n . But
then Theorem 11.2 yields the conclusion that the complement of 2 with
respect to the extended plane possesses an isolated point. We have a contra-
diction, the complement of £ being perfect. We conclude that 7, is
parabolic.

We introduce a disk D(C 4) the frontier of which is an oricycle tangent
to C at the fixed point of ¢ such that the restriction of ¢, to D is a
conformal universal covering of ¢,(D) for which the group of Decktrans-
formationen consists of the o™ (n integer) restricted to D . It follows that
the restriction of 9 to D is a conformal universal covering of (D) and
that its group of Decktransformationen is a subgroup of the group of the
preceding sentence. Hence precisely one of the alternatives holds: (1)
is univalent on D, (2)y(D) is a simply-connected region G less one of
its points. Suppose that the latter alternative occurs. Then G c 2. C — 0
being perfect. By the covering properties of v, y is univalent on each
component of »~1(GF) and hence on D . The alternative (2) is to be rejected.

The proof of Theorem 11.1 is now readily completed. We may suppose
that D is so chosen that the restriction of » to D N A is univalent.
Thanks to (11.2) as well as to the facts that 7, is parabolic and C — 2
contains more than two elements we conclude that the restriction of
to DN A admits a continuous univalent extension to D . We infer with
the aid of (11.2) that every D has the property that y(D) contains a disk
D, contained in 4 or contained in {|z| > 1}, the circumference of which
is tangent to C' at the fixed point of 7,. Noting that ¢ (D)2 ¢(D,),
we are led to the conclusion that the admitted isolated planar boundary
element of ¢(£2) possesses a deleted neighborhood consisting of a subregion
of @(4) (vesp. p({|z| > 1})) conformally equivalent to a punctured disk.
The second assertion of Theorem 11.1 follows.
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In order to establish the complete relation between the admitted iso-
lated planar boundary elements of ¢(£2) on the one hand and the admitted
pointlike isolated planar boundary elements of ¢(4) and of ¢({|z] > 1})
on the other hand, we examine the homomorphism o¢-— 17, further. We have
Lemma 11.1: Given O of the second kind, C — 2 being perfect if (€ O)
s parabolic, then there exists o(€ I7) parabolic such that (1) v = 7, and
(2) for every disk D(C A) the circumference of which is tangent to C' at the
fized point of o there exists a disk Dy(C A) the circumference of which is
tangent to C at the fixed point of v such that y(D)D D, . A corresponding
result holds when »D;(C A) is replaced by »D; C {|z] > 1}»

Proof: Let G denote a component of yp~(4). Now u maps G uni-
valently onto A and 7o y(z) = pooy(2), 2 €G, where o, is a conformal
automorphism of @ . Since Toy =1yoo,, 0, €Iy, we infer that
01(2) = yooy(z), y€I,, 2€G. Hence with o =yco, we see that

(11.6) Top = yoo.

To see that o is parabolic we proceed as follows. Let * denote the
inverse of the restriction of » to G . We consider an oricycle K(C 4)
tangent to C at the fixed point, {, of 7z and note that y*(z) tends to
a limit as z tends to { along an arc of K . This is easily concluded on
noting that v may be represented as the composition of (1) a conformal
universal covering with domain A of the complement of a set consisting
of three points of C — Q each distinct from ¢ and (2) an analytic function
mapping 4 into itself. (An alternative proof may be based on the fact
that ¢ is actually of bounded type as a consequence of the theorem of
Myrberg—Royden [8] and a theorem of R. Nevanlinna [7, p. 213] together
with the Riesz—Nevanlinna theorem [7, p. 209].) As a consequence of the
Phragmén — Lindel6f maximum principle [6, p. 76], yi , the restriction
of y* to the bounded region whose frontier is K , admits a univalent
continuous extension to the bounded closed disk the frontier of which is
K . Since K is mapped onto itself by 7, weinfer that lim ¢"(0) = lim yy ,

n|—-> oo 4
and hence that o is parabolic. "

The remaining points of the lemma are now easily established. The
exterior case is similarly treated, »4» being replaced in the first two sen-
tences of the proof by »{|z| > 1} .

We now establish
Theorem 11.3: Let there be given O of the second kind. Let G denote the
Riemann surface obtained by adjoining to ¢(L2) the admitted isolated planar
boundary elements and let Gy and G, denote the Riemann surfaces obtained
by adjoining to @A) and @({|z| > 1}) respectively their admitted pointlike
isolated planar boundary elements. Then the identity map of @(A4)U ({|z] > 1})
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admits a unique extension as a conformal map of GyU Gy into G . This
extension maps the set

GLU Gy — [p(d) U g({[z] > 1})]

onto G — ().

Proof: If C — Q reduces to at most two elements, the theorem is
readily established by direct elementary examination. We put this case
aside and continue assuming that C — £ has more than two elements.
Given p € Gy — ¢(4), let y be a generating parabolic transformation of
P where p corresponds to K(P) in the sense of Theorem 11.2. Let
o(€ I'}) be chosen to satisfy the conditions stated in the first sentence of
Lemma 11.1 relative to y . It follows from (2) of Lemma 11.1 that the
identity map of ¢(4) into ¢(£2) possesses as a limit at p, the boundary
element of ¢(£2) corresponding to the admitted pointlike isolated planar
boundary element of the quotient Riemann surface relative to I7 associated
with o (by virtue of the map carrying the orbit of a point z relative to
I, into ¢(2)). The proof of the existence and univalence of the extension
of the identity map is now readily established. The unicity is, of course,
trivial. The onto property is seen to follow from the sentence preceding the
last of the proof of Theorem 11.1.

As a consequence of Theorem 11.3 it will be seen that in the study of
the relation connecting admitted isolated planar boundary elements of
¢(2) and the behavior of a fundamental polygon it suffices to control the
situation for ¢(A4). 12. Our next concern will be with cusps of a funda-
mental polygon and their relation to the parabolic transformations of @ .
Before proceeding further, it is desirable to agree upon some formal defini-
tions.

By a cusp of a fundamental polygon I7 is meant an ordered pair
vy, ) of distinet sides of I7 lying in A and having a common endpoint,
£, on C such that the order at an interior point of /7 is one for a periodic
parametric representation, Z, of the closed Jordan curve fr /7, where
Z is so chosen that points of y; precede and points of y, follow  locally
for parameter values in a sufficiently small neighborhood of an antecedent
of ¢. (To be specific, Z is a continuous map of the real line onto fr /7
with period one which is univalent on {0 <t <1}.) We term { the
vertex of the cusp. An ordered pair (k, , k,) of cusps of II will be termed
allowable provided that there exists 7(€ @), mapping some subarc of
the second component of k; one of the endpoints of which is the vertex
of k, onto a subarc of corresponding kind of the first component of £k,
and mapping the vertex of k, onto the vertex of k,. There is at most
one such 7. Given k,, there is at most one k, such that (k;,k;) is
allowable. Given a cusp k, there exists a unique maximal sequence (k,)
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of cusps kn, — 00 <1 <0<m < 4 oo, such that &k, =k and that
for each finite j, 1 <j <j+ 1 <m, the ordered pair (k;,¥k; ) is
allowable. By a periodic cusp sequence is meant a sequence of the above
type such that for some positive integer p we have k, ,=k,. We
define cusp sequences (k,) and (k.) to be equivalent provided that the set
of cusps of each is the same. It need hardly be remarked that a bona fide
equivalence relation is so defined and that if &, = k,.,, m and » inte-
gers, then k, =k, ., for all n for which k, is defined and the two
sequences are equivalent. We now have the prerequisite terminology for
the following theorem.

Theorem 12.1: Given O, let a fundamental polygon II be fixed and let
cusps be taken to mean cusps of Il . There exists a univalent map of the ad-
mitted pointlike isolated planar boundary elements of @(4) onto the set of
equivalence classes of periodic cusp sequences which is such that ¢(z) tends to
a given admitted pointlike isolated planar boundary element when z tends
within IT to a vertex of a cusp of a periodic cusp sequence belonging to the
equivalence class onto which the given boundary element of @(A4) is mapped.
There is but one such map. There is a unique univalent map from the set of
periodic cusp sequences onto the set of K(P) such that the vertex of each cusp
of a periodic cusp sequence is a fixved point of the elements of a group in the
image class.

Proof: We consider the extension G; of ¢(4) introduced in Theorem
11.3 (however O is now unrestricted) and introduce a uniformizer 0
with domain A such that 6(0) is a given point p € G5 — ¢(4) and
0(z) E@(4) and 0[0(z)] =1, 0 < z] <1. Let D= 0({0 < |z] < 1/2}).
We investigate the subset of 4 N fr /7 mapped by ¢ into D .

We first show that if K is a component of ANfr I/, ¢(K) C';: D.
Suppose, on the contrary, that there exists a component K,, ¢(Ky)) c D .
We are assured that ¢(z) tends to p as z tends along K, to one or the
other of its endpoints. Two alternatives present themselves. The first is
that the restriction of ¢ to K, is univalent. But then the closed Jordan

curve @(K;) would separate ¢(int I7), which is connected. The second
alternative is that the restriction of ¢ to K, is not univalent. In this case
there would exist a closed subarc of K, say 7, such that ¢(y) is a closed
Jordan curve since by the choice of 0 at each point of K, the multiplicity
of ¢ is one. This circumstance is excluded by the reason used in the case
of the first alternative. We conclude that ¢(K)ck D for each component
K of Anfrlil.

We next consider the set of K for which ¢(K)N D = @ . For each
such K, @(K) intersects 0({|z] = 1/2}). Since some neighborhood of
a point of ¢(4) contains points of ¢(K) for only a finite set of K, the set
of K for which ¢(K)N D = & is finite.
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For a given K such that ¢(K)ND % o, let y denote the smallest
connected subset of K containing the points of K mapped by ¢ into
9({ |z| = 1/2}). A component of ¢=1(D) N K either lies in y or else is one
of the components of K — y . Since each y is compact, there is a neigh-
borhood of p» having no points in common with any ¢(y) . If a component
of K —y is a component of ¢ 1(D)N K, then ¢(z) tends to p as =z
tends on such a component to its endpoint on C. We term such a compo-
nent an x -component.

x -components exist. For if this were not the case, some deleted neigh-
borhood of p would lie in ¢ (int I7), and consequently the inverse of the
restriction of ¢ to int /I would possess a limit at p which lies in int /7.
This is not possible.

The reasoning used in showing that ¢(K) CE: D when ¢ is not univalent
on K may be applied to show that ¢ is univalent on an x -component.

Suppose that there are given ~ -components of ¢ HD)NK;. j=1,2.
which have intersecting images with respect to ¢ . A renewed application
of the reasoning just referred to yields the result that the ¢ -images of these
~ -components have in common a subarc one of the endpoints of which is
p . It suffices to note that otherwise there would exist a closed Jordan curve
in D formed by taking subarcs of the images with respect to ¢ of the
~ -components which would be disjoint but have the same endpoints and
thereupon introducing the closure of their union.

If &, is a given ~ -component, ¢(x;) contains points arbitrarily near
p and hence points not in any ¢(y). Since a point of ¢(x;) is accounted
for at least at two distinet points on A N fr /7, it follows that there exists
a second « -component, «,, distinet from «x;, such that ¢(»;) and
@(x,) have in common a subare with endpoint p . We are led to the follow-
ing conclusion of fundamental importance for the further developments:

There exists an open Jordan disk D,, p € D,cC D. such that

(A N fr IT) N D, consists of a finite set of Jordan arcs that have one endpoint
on fr D; and the other at p, that two distinct arcs have only p in common,
and that each arc is a subarc of the ¢ -image of some x -component.

The antecedent of a component of D, less the arcs in question with
respect to the restriction of ¢ to int /7 is a Jordan region the frontier of
which contains subarcs of two distinet ~ -components whose closures have
in common exactly one point on C'. These subares lie on sides of I/ which
are the components of a cusp, the possibility of a corner of fr /7 on these

subarcs being excluded. Further two distinet components of D; — ¢(4 N fr I1)
which abut on one of the component arcs of ¢(4 N frIl)N D, lead to
two cusps (obtained in the manner just described) which are the components
of an allowable ordered pair of cusps. It may now be concluded that a
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cusp so associated with a component of D; — ¢(4 N fr I1) is k, for some
periodic cusp sequence, (k,)*22, having the property that ¢(z) tends to
p when z tends to the vertex of k. (n arbitrary integer) in /7. If a
second periodic cusp sequence, (k,)7S2, also has this property, it must
be equivalent to (k,)152. This may be seen as follows. We first note that
the image with respect to ¢ of a sufficiently small subarc of a component
of k. having the vertex of k, as an endpoint is a subarc with endpoint
p of a component of ¢(4 N fr 1) N D, . If the images with respect to ¢
of small subarcs of the components of k, having the vertex of k, as
endpoint have a point (= p) in common, then ¢(4 N fr/l)N D; has
one component and k, =k,, all n. If, however, they are disjoint, they
lie on the frontier of a component of D, — ¢(4 N fr IT) and k, =k, .
some m and the »period» exceeds one. We conclude readily the second
and third sentences of Theorem 12.1 with the sole reservation that the map
in question has not yet been shown to be »onto». The univalence is, of course,
obvious.

»Onto». Given the periodic cusp sequence (k)22 , let » denote the

—00

smallest positive integer such that k,,, = k, . We fix an integer m and let

(12.1) r="T7'T7 . T,

where 7 is the member of @ mapping points of the second component
of k, ;_; near the vertex of £k, ;_, into points of the first component
of k, .; near the vertex of km;j . We see that t s+ identity and that [,
the vertex of k,, is a fixed point of 7. Hence 7 is either hyperbolic
or parabolic. The former possibility will now be excluded.

Suppose 7 hyperbolic and let # denote the other fixed point of 7.
The non-euclidean straight line with endpoints  and # cannot contain
points of IT arbitrarily near (. Otherwise, there would exist an orbit
having infinitely many members in /7. To continue, we note that the
bounded region,  , the frontier of which consists of the sides of the cusp
k. together with their endpoints and the non-euclidean straight line
(resp. ray, segment) joining the endpoints different from the vertex has
no points in common with the non-euclidean straight line joining ¢ and
7 . Since 7 is taken to be hyperbolic, every neighborhood of a given point
of the non-euclidean straight line with endpoints { and # intersects
7*(w) for infinitely many integers n . This is impossible, for a sufficiently
small neighborhood of a point of A intersects o(/I), and a fortiori o(w),
for only a finite set of ¢ € @ . We conclude that v is parabolic.

There exists a circular disk 4, € 4 the circumference of which is tangent
to O at the fixed point of 7 such that if two points of 4, are in the same
orbit with respect to @, they are in the same orbit with respect to the
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group P, generated by 7. Since the image of 4, with respect to the orbit
map associated with P is conformally equivalent to a punctured disk,
it follows that ¢(A4,) is also conformally equivalent to a punctured disk
and is a deleted neighborhood of a point of Gy — ¢(4) . It is easily verified
that (k,)*S2 stands in the stated relation to this point.

(It is clear that the »empty» case: Gy — @(4) = @ , is cared for by the
above argument.)

The final sentence of the theorem is now readily established with the aid
of Theorem 11.2 and the fact that the vertex of each cusp of a periodic
cusp sequence is the fixed point of a parabolic member of & .

Several supplementary remarks are in order. First, when @ of the second
kind is considered, the totality of admitted isolated planar boundary ele-
ments of ¢(2) is accounted for by the periodic cusp sequences and the
corresponding entities that arise from considering the reflexion of 17 with
respect to C .

Second, we note that in the case where @ is Fuchsian, a cusp the vertex
of which lies on € — Q is a term of a periodic cusp sequence. For a trans-
formation 7(# identity) of © which maps a component of a cusp into a
side of IT carries the vertex of the cusp into a point of ¢' — 2 which is,
as a point of C — Q, the vertex of a cusp of I7. Our assertion follows
from the finitary properties of I7.

Finally, we make a remark concerning the nature of the image with
respect to ¢ of a component side of a cusp that is a term of a periodic cusp
sequence. Suppose that y is a sufficiently small subarc of a side of a cusp

with one endpoint the vertex. We shall show that ¢(y) is a regular analytic
Jordan arc on G, . This may be concluded from the observation that the
restriction of ¢ to a sufficiently small disk A,(C 4) the circumference of
which is tangent to C' at a fixed point ( of a parabolic transformation of
© may be represented as Doy, where p is a conformal universal co-
vering of A — {0} which maps the maximal open arcs of the hyperbolic
straight lines which lie in 4; and have ( as an endpoint onto the open
radii of 4 and @ is a univalent conformal map of 4 into G, .

The following question appears to be fairly recondite: In the case of
Poincaré polygons what is the dependence of the vertices of the cusps of
the periodic cusp sequence on the base point a? Since the vertices constitute
a countable set, namely the set of the fixed points of the parabolic trans-
formations of @, the problem of the dependence of the periodic cusp
sequences associated with a given point of G; — ¢(4) on a is presumably
complicated, especially in the Fuchsoid case.

13. We have just seen that in the case of a Fuchsian group a vertex of
a cusp of /T which lies on C' — £ is necessarily the fixed point of some
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parabolic member of the group. The situation changes radically in the case
of a Fuchsoid group as the following examples show.

Let us introduce the hyperbolic straight lines A, with endpoints
k—1 k

exp (wi Y 277) and exp (i ; 277), k a positive integer. Let A_, denote
0

the hyperbolic straight line with endpoints 1 and ¢ and let 7, denote the
hyperbolic straight line with endpoints ¢ and —1. Let 7. denote the
elliptic Mobius transformation preserving A which is of period two and
has as a fixed point the point of 4. equidistant in the euclidean sense from
the endpoints of . The group generated by the 7 is a 6@ and the
associated I7(0) has as frontier the closure of the union of the Z.. It is
readily verified that no cusp of I7(0) is a term of a periodic cusp sequence.
The group so formed is of the first kind. The associated cusp sequence is
univalent and infinite on one side. A group of the second kind having
similar properties is obtained when 7, is replaced by the hyperbolic straight

. . we k=l (s k.
line having endpoints exp (7 Z 27 |and exp (7 Z 277, k=1,2,...,
0 P/

/

and only such % are considered. Examples of groups of either kind where
cusp sequences that are univalent and infinite on both sides are present
are now readily constructed.

14. The following theorem appears as an easy consequence of Siegel’s
theorem together with Theorem 11.2. (The second part of the conclusion
is perhaps known, granted ©@ Fuchsian.)

Theorem 14.1: Let there be given a group ©@ and O, a subgroup of O .
Suppose that O, is a Fuchsian group of the first kind. Then © is also a
Fuchsian group of the first kind and there exists a positive integer m such
that T € O, for every 1 €0 .

Proof: Since O, is a Fuchsian group of the first kind, the hyperbolic
area of Il(a) (belonging to O,) is finite. The Poincaré polygon based at
a for @ being contained in II(a) has finite hyperbolic area. Consequently,
we conclude by Siegel’s theorem that @ is Fuchsian.

Now let ¢, denote the quotient map associated with ©,, ¢,(z) being
the orbit of z with respect to @;. We have: ¢ = po¢g;, where p isa
conformal map of ¢,(4) onto ¢(4). The situation is familiar when ¢;(4)
is compact, w being a map of constant valence of ¢,(4) onto ¢(4) and
the polygons for the two groups being compact. Suppose then that ¢,(4)
is not compact. In this case it is conformally equivalent to a compact Rie-
mann surface less a finite set of points. Recalling Theorem 11.2 we see that
a circular disk 4,(C 4) the circumference of which is tangent to C' at the
fixed point of a parabolic transformation o € ®; and which has sufficiently
small radius has the property that ¢,(4;) and ¢(4;) are arbitrarily
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small deleted neighborhoods of boundary elements of ¢,(4) and ¢(4)
respectively. It follows that y(p) tends to the ideal boundary of ¢(4)
when p tends to the ideal boundary of ¢,(4). We conclude that the valence
of p is finite and constant.

Let g(€ (4)) be such that 9(g) =1, let ¢(z) = ¢, and let » denote
the constant value of the valence of v . Given t € ®, there exist integers
moand  wy, 1< <py<v+4 1 such that ¢fv(2)] = @[7"(z)] .
Hence 7 *[1"(2)] = o[t (2)], 0 €6O,. We conclude that o= 77,
and the theorem follows. Actually sligchtly more has been established since
for each 7 € O we are assured that for some positive integer u, 1 <pu <vw.
™ €0, .

The same argument also shows that if 7,,..., 1, €0, then there
exist puy, pe, 1 < py < p, <v, such that

]‘Ytle@l.

M1
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