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Cerrigendum (25 January 1964

The second sentence in the first paragraph of scetion 9 should read as follows:
We say that S is a nopinal family if each sequence of homeomorphisms in £,
which are bounded at a pair of points in [, contains a subsequence which con-
verges uniformly on cach compact subset of L.
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The Carathéodory convergence theorem for quasiconformal mappings
in space *

1. Introduction. The main purpose of this paper is to give an analogue
of Carathéodory’s theorem, on the convergence of conformal mappings of
variable domains, for quasiconformal mappings in space. The results we
obtain are what one would expect to be true for quasiconformal mappings.
However, the proof differs in several respects from the usual arguments
for Carathéodory’s theorem. Moreover the space form of th's theorem
has several important applications. For example, one of the more interest-
ing problems in space is to determine whether or not a given domain D
is quasiconformally equivalent to the unit sphere. Theorem 3 shows that
if D has a finite boundary point and is the kernel of a convergent
sequence of domains, each of which can be mapped K-quasiconformally
onto the unit sphere, then D can also be mapped K-quasiconformally
onto the unit sphere. In a quite different direction, one can use Theorem
3 to show that the space of domains D, which are quasiconformally
equivalent to the unit sphere, is a complete metric spacel). Here the
distance between two domains D and D’ is defined as

d(D,D") = inf (log K) ,

where the infimum is taken over all K for which there exists a K-quasi-
conformal mapping of D onto D’. Finally in a recent paper [1], P. P.
Belinskii has announced an interesting strengthened form of Liouville’s
theorem on the conformal mappings in space, the proof of which is appar-
ently based on a result very similar to Theorem 3.

In the final section of this paper, we give a space analogue of a theorem
due to Lindel6f on the boundary behaviour of conformal mappings.

* This paper supplies proofs of some hitherto unpublished results which were
first announced in a survey lecture, given at the Colloquium on Mathematical Analysis
in Helsinki, 24 August 1962. This lecture has already been published under the title
»Quasiconformal mappings in space». See [6].

This research was supported by a grant from the National Science Foundation,
Contract NSF-G-18913.

1) A proof will appear shortly in a joint paper by J. Viisild and the present author.
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2. Quasiconformal mappings. Suppose that D and D’ are finite
domains in Euclidean 3-space and that y(x) is a homeomorphism of D
onto D' . Wesay that y(z) isa K-quasiconformal mapping, 1 = K < «,
if the inequality

1
(1) X,modR < mod R" = K mod R
holds for all bounded rings R with closure R c D, where R’ is the
image of R under y(x). A quasiconformal mapping is one which is K-
quasiconformal for some K . Here a finite domain R is said to be a ring
if its complement with respect to the extended or M&bius space consists
of two components C, and C; . the conformal capacity of R is defined as

I'R) = inf/ [VuPdo,

R

where the infimum is taken over all functions # = u(x) which are contin-
uously differentiable in R with boundary values 0 on (|, and 1 on
C,, and the modulus of R is given by

4:7.[ 1/2
mod R = (7(-}5) .

See [4], [5], and [8]. An essentially equivalent class of mappings has also
been studied by J. Véisdld in [11] and [12].

If y(x) is a continuously differentiable homeomorphism of D onto
D’ and if y(x) maps each infinitesimal sphere in D onto an infinitesimal
ellipsoid so that the ratio of the major to minor axes never exceeds A ,
then y(x) is a K-quasiconformal mapping by the above definition. Hence
the class of K-quasiconformal mappings considered here includes those
mappings which are K-quasiconformal according to the classical definition.

Now suppose that y(x) is a K-quasiconformal mapping of D onto
D’ . Then we see from (1) that the inverse mapping a(y) is a A-quasicon-
formal mapping of D’ onto D . It is also obvious that the restriction of
y(x) to any subdomain A of D is again a A-quasiconformal mapping.
We require two additional properties of quasiconformal mappings. The
first of these is the following closure property [5].

Lemma 1. Suppose that {ya(x)} is a sequence of K-quasiconformal
mappings of D, that

lim ya(z) = y(x)

n— o
uniformly on each compact subset of D , and that y(x) is a homeomorphism.
Then y(x) is a K-quasiconformal mapping.
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The second of these properties is given by the following distortion theo-
rem [5].

Lemma 2. For cach K, 1 = K < oo, there exists a distortion func-
tion  O(t) = Ok(t) which is continuous and increasing in 0 =<t < 1 with
©(0) = 0 and which has the following property. If y(x) is a K-quasicon-
Jormal mapping of D onto D' and if P € D, then

Y@ —yP) ( QP

@ oly(P). OD) =
for all Q with |Q—P| << o(P, 3D).

Here 0D and 0D’ denote the boundaries of D and D’ taken with
respect to the Mobius space, and o(P . 0D) and o(y(P), dD’) denote
the distances from P to 9D and from y(P) to 9D’, respectively.
Hence, for example, o(F, D) = oo whenever D is the finite space and
(2) then implies that D’ is also the finite space. The distortion function
O(t) depends only on K and #, not on D or the mapping y(r). It
can be expressed in terms of the moduli of the space analogues of the
Grotzsch and Teichmiiller rings.

3. Hquicontinuity. We begin by establishing some equicontinuity pro-
perties for sequences of quasiconformal mappings.

Lemma 3. Suppose that {ya(x)} is a sequence of K-quasiconformal
mappings of D which are uniformly bounded on each compact subset of D .
Then the y.(x) are equicontinuous on each compact subset of D .

Proof. Let K be a compact subset of D, choose Py€ D—E , and
let /1 be the domain consisting of D minus the point P,. By hypothesis
there exists a finite constant 4 = A(¥ , P,) such that

for P€ K and all n. Hence

for P €E and all n, where A, is the image of A under y,(r). Since
F is compact

(4) oP,04) =Z a > 0

for P €K . Now fix P €FE and choose @ so that Q—P < a. Then
Lemma 2 applied to the restriction of y.(x) to A vields

a(@Q) — ya(P)| <Q—P )
Q 2

) (0w(P), o) = N\ o a)

and combining (3), (4) and (5) we obtain
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0—P|
(@) — ya(P) = A @(‘Ja~).

Since lim O(f) = 0, this implies the desired equicontinuity of .
t— 0+

Lemma 4. Suppose that {y.(x)} is a sequence of K-quasiconformal
mappings of D onto D, , that

sup |y,(Py)| <

n

for some fixed point Py € D, and that

sup (0, 8D)) < .

where O denotes the origin. Then the ya(x) are uniformly bounded and
equicontinuous on each compact subset of D .

Proof. Fix a so that 0 <a < 1. Then if we choose P €D and @
so that |Q—P| < a o(P, 3D), Lemma 2 implies that

Q) — yu(P) = Oa) oy, (P) . 3D,)
for all n . Since

oW (P), 9D;) = |y (P)| + (0. 3D,),
we thus obtain
(6) (@) = A |yu(P)| + B,
where 4 and B are constants,

(7) A4 =14 6(), B = O(a)sup o(0, 3D)) < = .
In particular we conclude that each point P €D has a neighborhcod
U = U(P) c D such that (6) holds for ail el .

Next if we choose Q € D and P so that P—@Q < 3« o(Q . D).
then it is easy to show that Q—P < ao(P.dD). Hence we see that
each point @ € D has a neighborhood 17 = T'(¢) € D such that (6)
holds for all P €V .

Now let G denote the set of points P € D for which
(8) sup |\ y.(P) = C(P) < =x.

If P€G andif U is the neighborhood described above, then (6) implies
that
sup [ya(Q)| = Asup ya(P) + B < ©
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for all Q€U . Hence UcC G and G is open. Similarly if @ € DG
and if V is the neighborhood described above, the same argument shows
that V € D—G and hence that D—@ is open. Since D is connected
and P, € (¢, we conclude that (8) holds for all P €D .

Finally suppose that £ is a compact subset of D . Then the neighbor-
hoods U(P) described above cover K as P ranges through E, and we
can choose P, ,...,P, so that

m

It then follows from (6) that

(6
9.(@) = Amax (C(Py),....C/P,)+B < ©

for @ € E, and hence the y.(x) are uniformly bounded on £ . The
equicontinuity is now a consequence of Lemma 3.

Lemma 5. Suppose that {y.(x)} is a sequence of K-quasiconformal
mappings of D and that

sup y.(Py) < o, sup 'y, (Py) < «

for a pavr of distinct fixed points Py, P, € D . Then the y.(x) are uniformly
bounded and equicontinuous on each compact subset of D .

Proof. Let A denote D minus the point P;, and let A, denote the
image of A under y,(x). Then y,(P,) € 04, and hence

sup o(0, o41)) = sup y.(P) < .
Lemma 4 now implies the desired conclusions on each compact subset
of A . Interchanging the roles of Py and P, then vields these results on
each compact subset of D .

4. Hurwitz property. We next apply Lemmas 2 and 5 to obtain space
analogues for Hurwitz’s theorem on the limit functions of normal families
of analytic functions.

Lemma 6. Suppose that {y.(x)} s a sequence of K-quasiconformal
mappings of D, that

lim ya(x) = y(x), ylr) < o,
in D, that y,(x) + Q. in D, and that
lim Q. — Q.

Then either yx) = Q" in D or ylx)= in D.
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Proof. Let G be the set of points P € D for which y(P) = ¢". Lemma
5 implies that the y.(x) are equicontinuous on each compact subset of D .
Hence y(x) is continous and ( iz closed in D . Now suppose P €@
and let U be the set of points @ for which [@—P| < ao(P,dD),
where « is some fixed constant, 0 <@ < 1. Then Lemma 2 implies
that

Ya(Q) — yu(P) = Oa) o(y,(P) . D)

for all Q € U, where D, is the image of D under y,(r). Since Q.¢D,,
we see that

oy (P),3D)) = y.(P)—@Q, .

and hence that

(@) — y(P)| = lim 5,(Q) — y.(P) = Oa) lim y,(P) — Q| = 0
for all Q € U. Hence Uc G and G is open. Since D is connected,
we conclude that either G'= @ or that G = D . Thus either y(x) = @’
in D orelse y(xr) =@ in D as desired.

Lemma 7. Suppose that {y.(x)} is a sequence of K-quasiconformal
mappings of D and that

lim ya(a) = y(a). yla)y < oo,

n-—- %

in D . Then y(x) is either a homecmorphism or a constant.

Proof. Lemma 5 implies that the y.(r) are equicontinuous on cach
compact subset of D . Hence y(v) is continuousin D). If y(r) isnot one
to one, we can find a pair of distinct points P .@ € D such that
y(P) = y(@) = @ . Let A be the domain D minus the point ¢ and let
y.(Q) = Q.. Then y,(x) # @, in 4 and

lim Q, = Q.
Since P €.1 and y(P)=Q . Lemma 6 implies that y(v) =@  in A
and hence that y(v) is constant in D . The desired conclusion now follows
from a well known theorem in topology. (See. for example. p. 137 in [10].)

5. Uniformly convergent sequences of homeomorphisms. We consider
next the following result.

Theorem 1. Suppose that { y.(x)} is a sequence of homeomorphisms
of D, onto D), that each compact subset of « domain D is contained in
all but a finite number of D, , that

lim ya(x) = y()

n-—> w0
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uniformly on each compact subset of D, and that y(x) is a homeomorphism
of D onto D". Then each compact subset of D’ is contained in all but a
finite number of D, and

(9) Iim 2.(y) = a(y)
uniformly on each compact subset of D', where x,(y) and x(y) are the
wnverses of ya(x) and y(x) .

Proof. We see that the first assertion in the conclusion of Theorem 1
is contained in the following result.

Lemma 8. Under the hypotheses of Theorem Y. for each compact set
E'c D" we can find a compact set F and an integer n, such that F c D,
and E' C F, for n = n,, where F. isthe image of F under y,(x) .

Proof of Lemma &.1) Let U’ be any open sphere with closure U’ € D’ ,
choose a second open sphere V' such that U’ <V’ and 7' c D', and
lett " and ¥ be the preimages of U’ and T’ under y(x). Then T is
a compact subset of D and there exists an integer n, such that V c D,
for m =mn,. We shall show that there exists an n, = n, such that
U'cV, for n=n,, where V. is the image of 7 under y.(x).

If this were not the case, we could find a subsequence {n;}, n; = n,,
such that T7'— I_",',i ~ O forall j. Let P be the point which y(x) maps
onto the center of U’ and let r > 0 be the radius of U. Then there
exists a j, such that

YD) —y(P) <1
for j = j,, and hence U’ N I',:j = O for j =j,. Since [’ is connected,

we can find a sequence of points {P;} such that
(10) P, e l'Nn aV,jj

J
by choosing a second subsequence and then relabeling, that

for j =j,. Because xnj(Pf) € 0V and 0V is compact, we may assume,

(11) lim xnj(P]f) = P € V.

j—o >

Since the y,,j(x) converge uniformly on 9V, it is easy to see that

J

Jj—> j— = Jj— =

(12) P = y(P) = lim y(xnj(P;)) = lim y,,j(x,,j(P{)) = lim P,'
Now (10) implies that P’ € U’ while (11) and (12) imply that P’ € 37" .
Thus U'NaV’ = @, and this contradicts the way in which 7’ was

chosen.

1) The argument given here is essentially due to Carathéodory [3].
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Now suppose that E’ is a compact subset of D’ . Then we can cover

E’ by a finite number of open spheres U, , ..., U, whose closures lie
in D’. Choose open spheres Vi, ..., V., sothat U, cV; and V;C D’
for i =1,...,m, and let F be the preimage of

= U

1

i

under y(x). Then F is a compact subset of D . and if we apply what
was proved above to each U, it follows we can find an integer n; such
that Fc D, and E c F, for n =n,. This completes the proof of
Lemma 8.

Now to complete the proof of Theorem 1, let E’ be a compact subset
of D’ and choose F and n, asin Lemma 8. Then F c D, and £’ C F,
for n =mn,. We want to show that (9) holds uniformly on E’. If this
were not the case, we could find an ¢ > 0. a subsequence {n;; with
n; = n, , and a sequence of points {P;} in E’ such that
(13) e (P)) — a(P))] = e

’

for all j. Since xnj(PJ) € F and F is compact, we may assume as in the
proof of Lemma 8 that

(14) lim x,,j(PJf) — P €F,

j—> o
and arguing as in (12), we get

P = y(P) = lim P]'-.

J—=>

But x(y) is continuous at P’ € K",

(15) lim x(P)) = «(P') = P,

j—= =
and we see that (14) and (15) contradict (13). thus completing the proof
of Theorem 1.

6. Carathéodory kernels. Suppose that {D,} is a sequence of domains
which contain the origin O . We define the kernel D of the sequence {Dn}
as follows.

(i) If there exists no fixed neighborhood U of the origin which is
contained in all of the D, , then D consists only of the origin.

(i) If there exists a fixed neighborhood U of the origin which is
contained in all of the D, , then D is the domain with the following three
properties.
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(a) O €D.
(16) (b) Each compact set B C D lies in all but a finite number of D, .
(¢) If A is a domain satisfying (a) and (b), then 4 C D .

In the first case, the kernel D is said to be degenerate. In the second
case, it is not a priori obvious that any such domain D exists. However
we may, for example, set

D = U4,

where the union is taken over the collection of all domains {4} which
satisfy (a) and (b). Since the neighborhocd U satisfies (a) and (b) this
collection is not empty. Then D is clearly a domain which satisfies (a)
and (c), and it is easy to verify that D also has the property (b). For an
interesting alternative characterization of D in the second case, see [9].

Finally the D, are said to converge to their kernel D if every subsequence
of domains {Dnj} also has D as its kernel.

7. Convergence theorems. We now apply the results of §§ 3—5 to prove
a pair of convergence theorems for quasiconformal mappings in space.

Theorem 2. Suppose that {y.(x)} is a sequence of K-quasiconformal
mappings of D, onto D, . that each compact subset of a domain D is con-
tained in all but a finite number of D. . and that
(17) lim yn(x) = y(x), Y) < o,
in D . Then the convergence is uniform on each compact subset of D and
y(x) 1is either a constant or a K-quasiconformal mapping of D onto D’ .
In this last case, each compact subset of D' is contvined in all but a finite
number of D) and

lim z(y) = 2(y)

n— «
uniformly on each compact subset of D', where x,(y) and x(y) are the
inverses of yn(x) and y(x), respectively.

Proof. Let A be any domain with compact closure in D . Then
Ac D, for n =n,, and we can apply Lemma 5 to conclude that the
ya(z) are equicontinuous, and hence converge uniformly, by a familiar
argument, on each compact subset of 4. Lemma 7 further implies that
y(x) is either constant in A or a homeomorphism of A . In this last case
we then see from Lemma 1 that y(x) is a K-quasiconformal mapping of 4 .

Now A may be chosen arbitrarily. Hence the convergence in (17) is
uniform on each compact subset of D and y(z) is either constant in D
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or a K-quasiconformal mapping of D onto a domain D’. Finally in this
last case, the remaining conclusions follow from Theorem 1.

We next have the following space form of the Carathéodory convergence
theorem [2].

Theorem 3. Suppose that {D,} is a sequence of domains which contain
the origin, that the D, converge to their kernel D, and that D is a domain
with a finite boundary point. Suppose further that { y.(x)} is a sequence of
K-quasiconformal mappings of D, onto D) and that y,(0) = O . If
(18) lim ya(r) = y(x), Y@) < oo,
in D, then the D, converge to their kernel D' and D' has a finite boundary
point. Conversely if the D, converge to their kernel D' and if D' has a
finite boundary point, then there exists a subsequence {n;} such that
(19) lim g (@) = @), g) < o

jo e
m D . Ineach case, D’ isthe image of D under y(x) and y(x) is either a
constant or a K-quasiconformal mapping, depending on whether or not D’
is degenerate.

Proof. Suppose that the w.(x) converge to & finite limit y(x) in D
and let D* be the image of D under y(x). We prove first that D* = I’ .
Now Theorem 2 implies that D* c D’ . For if y(x) is constant, then D*
consists only of the origin. Otherwise y(x) is a K-quasiconformal mapping
of D onto D* and each compact subset of D* is contained in all but a
finite number of D, . Since D* contains the origin, it follows from (c)
of (16) that D*c D’ .

In order to show that D' c D*, fix P’ €D’ and let .1’ be any bounded
domain, containing the origin and P’, such that 1'c D' . Then ' is
a compact subset of D’ and hence A" c D, for n = n,. Let I, be the
image of A’ under z.(y) for n = n,. Then 1,c D, and hence
(20) sup 0(0 , 0.1,) = sup o(0.3D,).

Now the fact that the D, converge to D . a domain with a finite boundary
point, implies that
(21) sup o(0 , 0D,) < = .

n

For otherwise we could find a subsequence {n;} such that
[§ J

lim o(0,dD,) = =,

and the kernel for the subsequence of domains {D,} would be the finite

space. Since x,(0) = O, we conclude from (20), (21) and Lemma 4 that
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the ,(y) are uniformly bounded and equicontinuous on each compact
subset of A" . Hence by Ascoli’s theorem, we may pick a subsequence {n;}
such that

lim 2, (y) = 2(y)
J-r
in A",

Let A4 be the kernel of the sequence of domains {A,,j} and let A4* be
the image of A’ under x(y). Then the argument of the first paragraph,
applied to the xnj(y) on A, shows that JA*c A . Moreover, since D
is the kernel of the sequence {D,,j} , weseethat 4 c D . Hence z,(P') €D
and, by virtue of the equicontinuity of the y.(x), we conclude that

Y(xg(P)) = lim yn (2e(P’)) = lim ynj(x,,j(P/)) - P

Jj—= = j—>x

Thus P’ € D*. Since P’ was chosen as any point in D', we conclude
that D’ € D* and hence with the above that D’ = D* .

Now let {n:} be any subsequence. By virtue of our hypothesis that
(18) holds in D,

lim yn (x) = y(x)

k—
in D . Then, since the D,
above to conclude that D’ = D* is the kernel of the sequence {D,:k}.

converge to D, we can apply what was proved

Hence the D, converge to D’ . Itis also clear that D’ has a finite bound-
ary point, since D’ either consists of the origin or is the image of D under
the K-quasiconformal mapping y(r). Thus the proof for the first half of
Theorem 3 is complete.

Suppose now that the domains D] converge to their kernel D’ and that
D’ has a finite boundary point. Next let A be any bounded domain con-
taining the origin such that 41 c D. Then Jdc D, for n =n,. Let
A, denote the image of A under y,(xr) for n =n,. Then .1, c D, and,
arguing as in (20) and (21), we have

sup (0, 94,) = sup o(0, aD)) < = .

Since y.(0) = O, we can use Lemma 4 and Ascoli’s theorem to obtain a
subsequence {y.(r)} which converges to a finite limit in 4. Now D
can be expressed as the union of an expanding sequence of such domains
A, and by means of a well known diagonal process, we can find a sub-
sequence {n;} such that (19) holdsin D . Finally, since the Dnj converge
to D, the first half of Theorem 3 implies that D’ is the image of D under
y(x) and that y(x) is either a constant or a K-quasiconformal mapping.
This completes the proof for the second half of Theorem 3.
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In Theorem 3 we established a relation between the convergence of the
ya(x) to a finite function y(x) and the convergence of the domains D] to
a kernel D’ which has a finite boundary point. The connection established
here, between these two kinds of convergence, is not as close as in the usual
forms of Carathéodory’s convergence theorem. For though the convergence
of the y.(x) implies convergence of the D, , convergence of the D, only
implies convergence of some subsequence of the y.(x) . To obtain the strong-
er conclusion that convergence of the D, implies convergence of the
ya(r) , we would have to know that all limit functions of the ya(x) are
identical. This is clearly so in the case where D’ is degenerate. However
in the case where D’ is a domain, we would have to include some additional
normalization for the w.(x) which would guarantee that there exists at
most one normalized K-quasiconformal mapping of D onto D’ with

y(0) = 0.

8. O@-mappings. The proofs of the convergence theorems in § 7 are
based on two important properties of sequences of K-quasiconformal map-
pings. These are the uniform boundedness and equicontinuity property
given in Lemma 4, and the Hurwitz property given in Lemma 7. The proofs
of these two lemmas follow, in turn, from the fact that a K-quasiconformal
mapping of a domain D, as well as its restriction to any subdomain A1,
satisfies the distortion property given in Lemma 2. This suggests that it
might be of interest to consider what more can be said about the class of
homeomorphisms which have this distortion property.

Definition. A homeomorphism y(x) of a domain D onto D' is said
to be a O-mapping if there exists a function O(t), which is continuous and
increasing in 0 =< t << 1 with ©(0) = 0, such that the following are true.

i) If P€D and |Q—P| < o(P,0dD), then

y(@) —y(P)! ( QP )

oy(P),oD") — (P .aD)

<

A

(ii)  The restriction of y(x) to any subdomcin 1 satisfies (i).

It is now readily seen that Lemmas 1. 3. 4. 5. 6. and 7 can be reformu-
lated so that they hold for sequences of @-mappings which have the same
distortion function ©(t). Since these lemmas include, with one exception,
all the properties of quasiconformal mappings which we have used so far
in this paper, it is reasonable to conjecture that Theorems 2 and 3 are also
valid for such sequences of mappings. As a matter of fact, much more is
true, and we have the following result.

Theorem 4. A homeomorphism is a O-mapping if and only if it is a
quasiconformal mapping.
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Proof. The sufficiency is a consequence of Lemma 2. For the necessity
let y(x) be a homeomorphism of a domain D onto D’ . It will be sufficient
to show that z(z) is a quasiconformal mapping under the assumption that
the inverse mapping x(y) is a @-mapping. For this fix a point P €D
and choose a, 0 <a < o(P, D), so that

(22) (@) — y(P) < oy(P), oD’
whenever |Q—P| < a. Next for each fixed », 0 <r < a, choose @,

and @, sothat |Q,—P| = |@,—P| = r and so that

L(P,r) = max |y@) —yL) = y(@) —yP),
(23) lx—P =r
UP,r) = min |y@) —yP) = [y(@) —y@P).

x—Pl=r
Now suppose that
(24) WP ,r) < L(P,r),

let A be the domain D minus the point @;, and let A’ be the image of
A under y(x). Then A’ is D’ minus the point y(@;), and we see from
(22), (23) and (24) that

Y(@y) —y(P)| = WP, r) < L(P,r) = o(y(P), o4").
Since x(y) was assumed to be a @-mapping, we have

2(y(Qy) — a(y(P)) ('y(@g E y(P)) B @< up, r))
olely(P)) . ad) = O\ ey®). o) ) T \NLP.n)

A

and hence it follows that

LP,r) B B . ;
Wé(el(l))lzﬁ, K > 1,

where ©71 is the inverse function for @ . If (24) does not hold,
LP,r)=1IP,r), and so in either case we have

L(P ,7)
Tl =
WP,ry —
for 0 <r <a. Thus
ey e AP
Py =tmowp ) =

for each P € D and y(x) is K-quasiconformal by Corollary 3 of [5].
Hence Theorem 4 gives us still another way of defining the notion of
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quasiconformality in space, and of course also in the plane. It further shows
that the distortion property, given in Lemma 2, is not just a lucky accident,
but rather a property which cheracterizes the class of quasiconformal
mappings.

9. Normal families. Suppose that £ is a family of homeomorphisms of
a fixed domain D . We say that # is a normal family if each sequence of
homeomorphisms in # contains a subsequence which either converges to
a finite function or diverges to oo, uniformly on each compact subset
of D. Next we say that & has the Hurwitz property if each finite
function, which is the limit of homecomorphisms in &, is either a
homeomorphism or a constant.

Lemma 7 shows that a normal family # has the Hurwitz property if
all of the homeomorphisms in 4 are K-quasiconformal for some fixed K ,
and it is natural to ask for how large a class of homeomorphisms is this
result true. That is, suppose that ~# is a norinal family which has the Hur-
witz property. What can we say about the homeomorphisms in & 7 To
obtain a meaningful answer to this question. we must make some further
assumption about the structure of & . For example, we must rule out the
trivial case where £ contains only a finite number of homeomorphisms.
We say that & is complete with respect to similarity mappings if, given any
pair of similarity mappings S(x) and 7'(x) such that 7'(x) maps D into
itself, the composite homeomorphism S(y(7(x))) is in & whenever y(x)
is. We then have the following result.

Theorem 5. Suppose that . is a family of homeomorphisms of @ bounded
domain D and that F is normal and complete with respect to stmilarity
mappings. Then & has the Hurwitz property if and only if each homeomor-
phism in F is K-quasiconformal for some fived K .

Proof. The sufficiency is a consequence of Lemma 7. For the necessity
we may assume, by performing a preliminary change of variables, that D
contains the closed unit sphere (x| = 1. Then for each homeomorphism
y(x) € F we set

max y(v) — y(0)

Ky) = = —.
min y(x) — y(0)
x =1

Now the fact that & has the Hurwitz property implies that
(25) K = sup K(y) < =.
YE€F

For if (25) does not hold, we can find a sequence of homecomorphisms
Yn(r) € K such that
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nly = nmin (ya() — y(0)] = max [yu) — ya(0)| = Lu.

x|=1 x =1

Then, since & is complete with respect to similarity mappings,

2(2) — ya(O
za(2) = ﬂ,@L 5(0) € .

Now |zu(z)] =1 for |z| = 1, and because F

find a subsequence {n;} such that

is a normal family, we can

(26) 'lim z,,j(x) = z(x), z(x) < oo,

uniformly on each compact subset of D . Next for each =, there exist
points P, and @, on |z, = 1 such that

In 1
27 za(Pn) = 1, [2a(@n) = = .
(@7) Pl =1, @) = =
Because |x| = 1 is compact, we may assume, by choosing a second sub-
sequence and then relabeling, that
lim P, = P, Iim @, = @,
j>x J j—=x J

and by virtue of the uniform convergence in (26), we conclude from (27)
that

BP) = lim g (Pa) = L Q) = lim (@) = 0.
Jj—x j—>®

Now 2(0) =0 and @ = O. Thus z(x) is neither a homeomorphism nor
a constant, and we have a contradiction.

We complete the proof of Theorem 5 by showing that each homeo-
morphism in & is K-quasiconformal, where K is the finite constant given
in (25). For this, fix y(x) € & andlet P € D. Since D is bounded, we
can choose a << oo so that D is contained in a =a. Then for
0 < ar < o(P,aoD), the similarity mapping

Tx) = P+ rx
maps D into itself, and hence
o) = yP +rax) € K.
If we now apply (25) to z.(x), we obtain

L(P,r) = max |y() — y(P) = max z(z) — z(0)!

lx—P =r x =1

=< Kmin|z(zx) — 2(0)] = K min y(x) — y(P) = KUP,r)

x|=1 x—P =r

for 0 < ar < o(P, dD). We conclude that
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H(P) = 1 LP.n
(P) = limsup 7,7 = &

for all P € D, and hence y(x) is K-quasiconformal by Corollary 3 of [5].

10. Lindelif’s theorem. We conclude this paper by showing how
Lemma 2 can be used to obtain a space analogue of a theorem due to Linde-
16f on the boundary behaviour of conformal mappings of a disk. We re-
quire first the following result.

Lemma 9. Suppose that y(x) is a K-quasiconformal mapping of the
hemisphere x| <c¢, x>0, that A s the half spherical annulus
a<|x|<b<c, x>0, and that A" is the image of A wunder y(x) .
Then

b

o

d
/ (osc y(@))? -«} < Am),
S

a

where S = S(r) is the hemispherical surface x| =1, 23>0,

oscy(x) = sup [y(P) —y@)],
S PQES
and A is a finite constant which depends only on K .
Proof. Let yi(x) be the i-th coordinate function for y(x) . Then y:(x)
is continuous and ACL, and an elementary adaptation of the proof of
Lemma 12 in [5] gives

b
A dr
/ (ose yi(x))? L < B/ [ Tyi(x) Bdo
S
a pl

where B is an absolute constant. Since y(r) is a A-quasiconformal
mapping, y(r) is differentiable with Tyi(x)? = A*J(v) a.e., where
J(x) denotes the absolute value of the Jacobian of the mapping. Now

3

(osey(@) = X
s =

(ose y(2))? .

and applying Holder’s inequality we obtain

b
dr A
(ose y(@))? o <A/ Ja)do = Am(d),
a s A
where 4 — 34 3 B K2. (Sce cither [5] or [11] for the analytic properties
of quasiconformal mappings used in the above argument.)
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Now suppose that y(z) is a homeomorphism of a domain D and that
P € 9D . We say that a sequence of points {P.} in D converges in a cone
to P ifthe P, convergeto P and there exists a constant a, 1 =< a < «©,
such that
|P, — P| = ao(Pn, D)

for all n. We then denote by C (P) the set of all points P’ , including
possibly the point at infinity, for which there exists a sequence {P,} con-
verging in a cone to P such that

(28) lim y(P,) = P’.

Next let y denote any arc which has P as an endpoint and lies, except for
this endpoint, in D . We say that y is an endcut of D from P, and we
denote by C,(P) the set of all P’ for which there exists a sequence of
points {P,} converging to P along y such that (28) holds. Finally we set

1(P) = N CLP).

where the intersection is taken over all endcuts » of D from P .

The following space analogue of a theorem due to Lindelof (p. 28 in
[7]) gives us a relation between the sets [/(P) and C(P) when y(x) is
a quasiconformal mapping.

Theorem 6. If y(x) is a quasiconformal mapping of a sphere D , then

(29) H(P) = C4P)
for all P €oD .

Proof. Fix P € 0D . By perfcrming a preliminary Mébius transforma-
tion in the x-space, we may assume that D is the half space a3 > 0 and
that P is the origin O . If y is any segment which joins O to a point of
D, then y isan endcut of D from O which lies in a cone and hence

11(0) c C,0) c C40).

To complete the proof for (29) we must show that, given P’ € C4(0) and
any endeut y of D from O, there exists a sequence of points @, € y N D
which converge to P such that

(30) lim y(Q.) = P’

Choose P’ € C4(0) and let » be an endcut of D from O . Then there
exists a sequence of points {P,} in D which converge to O and a constant
a, 1 <a< o, suchthat
(31) lim y(P.) = P° and [P, = ao(P.,dD)

n— w
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for all n. Pick ¢ > 0 so that A, the hemisphere 2| <c¢, 23>0
contains the P,., and assume for the moment that y(x) maps A K-qua-
siconformally onto a bounded domain /’. Next set b = 1 — 1/(2q),
let A, denote the half spherical annulus 6 |P, < x < [P, , @3>0,
and let /A, denote the image of A, under y(x). Since A, c .’ and
m(A’) < oo, it follows that

(32) lim m(4.)) = 0.

n-— o0

Lemma 9 implies that for each n thereexistsan r,, b P, < r, < P,

such that
(A m(;l,j))l s

— log b

(33) osc y(r) =
S(rp)

Now yNS@.) == O for n =ny; choose . € y N S(r,) and let R,

denote the point where the radius from O to P, meets S(r,). Then (32)

and (33) imply that

(34) lim [y(@n) — y(Bn)| = 0.

n— w0

On the other hand, we see from (31) that |R,—P, =
hence Lemma 2 yields

D=

o(P, . 3D) and

(35) Y(Bn) — y(Pn)] = OF) o(y(Pr) . 0D") .

where D’ is the image of D under y(x). Now y(P,) € I". Hence the
y(P.) are bounded, and since the P, converge to O € éD) ,

(36) lim o(y(Pn), 0D") = 0.
oo
and (30) follows from (31), (34), (35) and (36).

Now we have obtained (30) under the assumption that /1’ is a bounded
domain. Suppose that this is not the case. Since y(v) is a homeomorphism,
there exists an open sphere U’ such that U'N.A = 0. Let z(y)
denote inversion with respect to U7 . Then =z(y(r)) maps A K-quasi-
conformally onto a bounded domain. and arguing exactly as above, we can
find a sequence of points @, € y N D which converge to O such that

(37) lim z(y(@n) = 2(P').

n-— w

DY

Since z(y) is an inversion, (37) implies (30) and the proof of Theorem 6 is
complete.
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The following immediate consequence of Theorem 6 is an analogue
of a very well known theorem due to Lindel6f (p. 10 in [7]) on bounded
analytic functions.

Corollary. If y(x) is a quasiconformal mapping of a sphere D and if
y(x) converges to P’ as x converges to P € 8D along some endcut y of
D, then y(x) converges to P’ as x convergesto P in a cone.

University of Michigan
Ann Arbor, Michigan, U.S.A.
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