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The Carath6odory convergence theorem for quasicontormal mappings
in space *

1. Introd,uction The main purpose of this paper is to give an analogue
of Carathdodory's theorem, on the conyergence of conformal mappings of
variable domains, for quasiconformal mappings in space. The results we
obtain are what one would expect to be true for quasiconformal mappings.
Ilowever, the proof differs in several respects from the usual arguments
for Carathdodory's theorem. Moreover the space form of this theorem
has several important applications. For example, one of the more interest-
ing problems in space is to determine whether or not a given domain D
is quasiconformally equivalent to the unit sphere. Theorem 3 shows that
if D has a finite boundary point and is the kernel of a convergent
sequence of domains, each of which can be mapped K-quasiconformally
onto the unit sphere, then D can also be mapped K-quasiconformally
onto the unit sphere. In a quite different direction, one can use Theorem
3 to show that the space of domains D , which are quasiconformally
equivalent to the unit sphere, is a complete metric spacel). Here the
distance between two domains D and D' is defined as

d(D , D') : inf (log K) ,

where the infimum is taken over all K for which there exists a ff-quasi-
conformal mapping of D onto D'. X'inally in a recent, paper [I], P. P.
Belinskii has announced an interesting strengthened form of Liouville's
theorem on the conformal mappings in space, the proof of which is appar-
ently based on a result very similar to Theorem 3.

In the final section of this paper, we give a space analogue of a theorem
due to Lindelöf on the boundary behaviour of conformal mappings.

* This paper supplies proofs of some hitherto unpublished results which were
first announced in a survey lecture, given at the Colloquium on Mathematical Analysis
in Helsinki, 24 August 1962. This lecture has alreadl, been published under the title
»Quasiconformal mappings in space». See [6].

This research was supported by a grant from the National Science Foundation,
Contract NSF-G-18913.

1) A proof will appear shortly in a joint paper by J. Väisälä and the present, author.
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2. Quasiconformal
domains in Euclidearr
onto D' . We say that
if the inequality

mappdngs. Suppose that D and D' are finite
3-space and that y(r) is a homeomorphism of D

mod.B 
= 

mod -R' 
= 

/( mod A(r)
I
K

holds for all bounded rings R with closure R c D , u'here -E' is the
image of -E under y(*). A quasiconformal mapping is one v-hich is 1l-
quasiconformal for some K . Ilere a finite domain .R is said to be a ring
if its complement with respect to the extended or Nlöbius space consists

of twocomponents Co and Cr, theconformalcapacity of -B isdefinedas

r@) - lVuf dco ,

where the infimum is taken over all functions u : u(r) which are contin-
uously differentiable in R with boundary values 0 on Co and I on
C, , and t}:e mod,ulus of 1? is given by

I 4xr \u2modÄ: \.trl/
See [4], [5], and l8l. An essentially equivalent class of mappings has also

been studied by J. VäisäIä in [11] and [12].
lf y(r) is a continuously differentiable homeomorphism of D onto

D' and if. y(r) maps each infinitesimal sphere in D onto an infinitesimal
ellipsoid so that the ratio of the major to minor axes ne\-er exceeds 1( ,

llnen y(r) is a /(-quasiconformal mapping b;, the above definition. Hence
the class of /(-quasiconformal mappings considered hele inclucles those
mappings which are (-quasiconformal according to the classical definition.

I{ow suppose lhat y(r) is a /(-quasiconforrnal mapping of D onto
D' . Then we see from (1) that the in'i'erse mapping a'(y) is a A-quasicon-
formal mapping of D' onto D . It is also obviotts that the restriction of
a@) to any subdomain / of D is again a 1i-quasiconformal rnapping.
We require two additional properties of quasiconfolmal mappings. The
first of these is the following closure property [5].

Lemma 1. Suppose that {A"@)} is a sequence of K-quasiconformal
mappi,ngs of D, that

tu a"@) : Y(r)

uni,formlg on each compact subset of D , and, that ylr) i,s a homeomorphisrn.

Then y(*) i,s a K-quas'iconformal, mappi,ng.

I
inf Iul U

R
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The second of these properties is given by the follor,ving distortion theo-
rem [5].

Lemma 2. Ior each I{, | < K { co, there erists a distortion func-
ti,on O(t) - @K(t) which i,s continuous and increasi,ng in 0 < , < L u;i,th
@(0) : 0 and, which has the following property. If y(") 'is a K-quasicon-
fornral mayrytittg of D onto D' and, if P e D , then

(2)
iy(Q) - y(P)i I 'o-Pl \
s(y(P) , iD')

for all Q uith IQ-P) < a(P ,AD).
Here 0D arrd äD' denote the boundaries of D a:nd D' taken with

respect to the Möbius space, and g(P ,0D) and q(y(P) , 0D') denote
the distances from P to AD and from y(P) to OD' , respectively.
Hence, for example, Q(P , AD) : cc whenever D is the finite space and
(2) then implies that D' is also the finite space. The distortion function
@(t) depends only on K and t , not on D or the mapping y(r) . It
can be expressed in terms of the moduli of the space analogues of the
Grötzsch and Teichmiiller rings.

3. Equi,continuity. We begin by establishing some equicontinuity pro-
perties for sequences of quasiconformal mappings.

Lemma 3. Su,pgtose that {y"(r)} is a sequence of K-quasiconformal,
magtpings of D which are uniformly boundeil on each compact subset of D .

?hen the y"(n) are eEticontinuous on each corupact subset of D .

Proof. Let E be a compact subset of D, choose PoeD-U, and
let / be the domain consisting of D minus the point Po . By hypothesis
there exists a finite constant A : A(8, Po) such that

ly"V) ?/"(Po)i < iy"@)i + iy"(Pii < A
for Peil andall %. Hence

for PeE andall n, v.here A: istheimageof Å under y*(r)
fr is compact

(4) s(P,O/)2a>0
for PeE. Nowfix P€Z andchoose Q sothat Q-Pi<a.Then
Lemma 2 applied to the restriction of y"(r) to z1 yields

(b) Wf^rl' = 
r( 

,,or-'un,)
and combining (3), (a) and (5) we obtain

Since
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/10-Pr\
la"(Q)-a"@)l S Ao\-).

Since lim @(f) : 0 , this implies the desired equicontinuity of E '
,+0+

l,emma +. Suprytose that {y*(")) is a sequence of K-quasicon'formal

magtpings of D onto D*, that

sup ly"(Po)l < m

for some fired, poi,nt Po e D , and, that

supq(O,OD',)<a,

where O d,enotes the origi,n. Then the y"(t) are uniforntly bounded and

equicontinuous on each compact subset of D '

Proof. Fix a sothat 0<a<1. Thenif rrechoose P€D arlJ- Q

so that lQ-Pl < a A(P ,AD) , Lemma 2 implies that

la^@) - a^(P)\ < @(a) e@^(P) , OD.)

for all za . Since

p(Y"(P) , AD.) < lA.€)l * s(O , AD:) ,

we thus obtain

(6) lv"@)l < Ala"@)l +8,
where A and B ate constants,

(7) A : r*O(a), B : O(a)suPs(O'aDi) < a'

In particular we conclude that eacir point P e D has a neighborhood

U: U(P) c D sush that (6) holds for ail Q € t- '

Next if we choose Q eD and P so that P-Q < la e(Q , AD) 
'

then it is easy to shorv that Q-P I « 2@ , aD). Hence rre see that

each point 8eD has a neighborhood I-:T-\Q)cD such that (6)

holdsfora]-I Pe V.
I{ov' let G denote the set of points P < D for t-hich

(8) suP lY"(P)t : C(P) < rc '

If P € G and if I/ is the neighborhood described abore, then (6) implies

that
suPlY"(Q)l < AsuPiY"(P)i tB < oo
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forall QeU. Hence UcG and G isopen. Similarlyif Qe D-G
and if Z is the neighborhood described above, the same argument sho.ws
that V c D-G and hence that D-G is open. Since D is connected
and Po e G , we conclude that (8) holds for all P e D .

Finally suppose that E is a compact subset of D . Then the neighbor-
hoods I/(P) described above covet D as P ranges through il , and we
can choose Pr, . .. , P- sc that

, . 
!_,u(Pt 

.

It then follows from (6) that

y"(8)1 < Amax(C(Pr),...,C(P^)) * B < oo

for Q e E , and hence the y"(r) are uniformly bounded on E . The
equicontinuity is now a consequence of Lemma 3.

Lemma 5. Suppose that {y"(*)} is a sequence of K-quasiconform,al
mappings of D and, that

sup y"(Po)] < oo, sup A^(Pr) ( cc

for a Ttair of d,istinct fired, points Ps, Pt Q. D . Then the y"(r) are uniforrnly
bounded, and, equicontinuous on each comltact subset of D .

Proof. Let ,4 denote D minus the point P, , and let /, denote the
image of / undet y^(r). Then U,(Pr)e0/'. and hence

sup q(O , ay'^) < sup ;y,(Pr)l ( oo .

Lemma 4 now implies the desired conciusions on each compact subset
of Å . Interchanging the roles of Po ancl P, tiren r-ields these results on
each compact subset of D .

4. Huru;i,tz property. We next applv Lemrnas 2 and 5 to obtain space
analogues for Hurwitz's theorem on the limit functions of normal families
of analytic functions.

Lemma 6. Suppose that {9"(*)) i,s a sequence of K-quasiconformctl
mappirugsof D, that

Ii:lr ylr) : y(r) , ly(r)l < .c ,

in D , that y^(r) + Q^ in D , ancl thot

)::a:: e'

Then eitlwr y@) + Q' in D or y(r) - Q' in D .
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Proof. Let G bethesetof points P eD forv'hich y(P): Q'. Lemma

5 implies that the y"(r) are equicontinuous on each compact subset of D .

Hence A@) is continous and G is closed in D . Now suppose P e G

and let U be the set of points A for rvhich i}-Pl < a A(P , AD) ,

where a is some fixed constant, 0 { a < I . Then Lemma 2 implies

that
ly,@) - a*e)) < O(a) P(Y*(P) , OD,)

forall 8eU, whete Di istheimageof 7) undet A-@). Since Q:eD:,
we see that

p(y,(P) , AD,) < 'y"(P) - Q: ,

and hence that

1a@) - y(P)1 : ti:rr- ly^(Q) - y^(P)t < O(a) rim'y^(P) - Q, : 0

forall A€U. Hence tlcG ancl G isopen. Since

in D or else A@) -. Q' in D as desired.

Lenrma 7, Suppose tltat { y"(r) } zs a sequem,{e ,f
n?,app'i1zgs ,f D tnd that

l:3/"@) - Y(r) y(x)i < cc,

i,n D . Then y(r) is either « homeotnarphism or cr cottstcrttt.

Proof. Lemma 5 implies that the y,(.r) are equicontinuous on each

compact subset of D . Hence y("i) is continuons in D . If y(r) is not one

to one, we can find a pair of distinct points P . Q e D such that'

Ae) : A(Q) - 8' . Let / be the domain D nrinus the point Q and let

A^(Q) : Q^. Then y,(r) I Q', in I and

)::a:: Q'

Since PeJ and y(P):Q', Lemma 6 implies that y(t):Q' in /
and hence that y(.i') is constant in D . The clesirecl conclusion now follov's

from a well knou'n theolem in topolog-v. (See. for example. p' 137 in [10].)

5. Uniformly conaergettt sequ€nces of homeontorplti.<ms. \1-e consider

next the following result.
Theorern 1. Suppose that { A"@) } i,s a

,f Dn o?Lto D: , that each compoct subset ot

0ll but a fin'ite numbercf D,, , that

D is connected,
either y(x) + Q'

K -q?L{{s'icon f orwtctl

seq?te;ice rf h,omeomorph'isms

ct clontain D is conta'ined i?'t,
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uni,formly on each compact subset of D , and, that y(r) is a homeomorphistn
of D onto D' . Then each comltact subset af D' is contained, in all but cr,

fini,te number o.f D'. and,

,1'l 
x"(y) -- x(y)

u,niformly on eac.h compact subset of D' , where r"(A) and, x(A) are the
inuerses of y"(rc) and, y(r) .

Proof. trVe see that the first assertion in the conclusion of Theorem I
is contained in the following result.

Lemma 8. Under the hypotheses of Theorem l. for each cotngtact set
E' C D' we can fi,nd, a compact set l' qnd an integer n, such that 7' c D*
and, E' C I, for n,2 nr, where ?, i,s the i,m,age of I uniler y^(r) .

Proof of Lemma 8.t) Let U' be any open sphere with closure U' c I)' ,

choose a second open sphere V' such that e ' c V' and 7' c D' , and
let t- and 7 be the preimages of U' and 7' und.er y(r) . Then 7 is
a compact subset of D and there exists an integer mo such that 7 c D^
for n2no. We shall show. that there exists an nr2n, such that
U' c V',, for n 2 txr, u,here 7i ls tfre image of 7 under y"(r.) .

If this were not the case, v.e could find a subsequence {nj}, ni2_?,ts,
such that O'-l''": + b for all j . Let P be thepointrvhich y(z) maps
onto the center of tI' and let r > 0 be the radius of U' . Then there
exists a 7o such that

'iy",(P)-y(P) 1r
for j2jo, andhence O'nY: ==8i for jZjo. Sinee f isconnected,
we can find a sequence of points {Prl} such that

(r0) e', e e' n av:

for j } jo. Because r",(P'1) e OY and OV is compact, 1lie may assume,

by choosing a second subsequence and then relabeling, that

(11)

Since the

,gn"i(P;) -P€av'
y"i(*) converge unifcreuly on AV , it is eas\,' to see tirat

(12) P' : y(P) : Ji* y1r",(P1D : li- y",lx",(Pj)) : ]im r"i .
j-T j.*r ' " j.t

Now (10) impiies thab P' € [-" t'hi]e (1I) and (12) imply tha| P' e AV' .

Thus U' n AY' + b , and this coniradicts the u-ay in r,r,'hich Y' was
chosen.

t) The argtlr:rrent girren here is essentiall-,. Cue to Carathdoclory [3].
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Now suppose that E' is a compact subset of D' . Then n'e can coYer

E' by a finite numJrer of open spheres Ut,...,[J* whose closures lie

in D'. Chooseopenspheres tri ,...,V; sothat U'rcV', and 7',cD'
for i,: I, ..,m, anrdlet l bethepreimageof

under y(r) . Then -ä, is a compact subset of D , and if we apply rvhat

was proved above to each U:, it follows we can find an integer z, such

that I c D^ and E' c I'^ for n 2 nr. This completes the proof of
Lemma 8.

I{ow to complete the proof of Theorem l,let E' be a compact subset

of D' and choose 7, and z, as in Lemma 8. Then F C D^ and E' c I'^
for n 2 nr. We want to show that (9) holds uniformlv on E' . If this
were not the case, we could find an e ) 0 , a subsequence {"i) u'ith
ni 2 nr, and a, sequence of points {Pr|} in Z' such that

NL

fr, =- u l/:
L-L

(r 3)

for all .i

proof of

(14)

. Since *,i(P.'i) € f' and F is compact, w'e may assume as in the

Lemma 8 that

,llt**i(Pi) - P € F'

as in (12), we getand arguing

t)' y(P) =:= lim P;-L 

J-> co

Btrt x(y) is continuotls at P' € E' ,

j- r-
( 15)

and we see that (14) and (15) contradict (13). thus completing the proof
of Theorem 1.

6. Carathdod,ory kernels. Suppose that {D"} is a sequence of domains

which contain the origin O . \Ye define tt.e kernel D of the sequence {D"}
as follows.

(i) If there exists no fixed neighborhood U of the origin which is
contained in a1l of t]ne D., then D consists only of the origin.

(ii) If there exists a fixed neighborhood U of the origin rvhich is

contained in all of Lhe D", then D is the domain with the following three
properties.
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(16)

(17)

(a) O € D.

(b) Each compa,ct set E c D lies in all but a finite number of Dn

(r) If I is a domain satisfvi*g (") and (b), then Å C D .

In the first case, the kernel
case, it is not a priori, obvious
\A,e ffi&y, for example, set

D is said to be degenerate. In the second

that any such domain D exists. Ilowever

D : V^",
where the union is taken over the collection of all domains {/"} which
satisfy (a) and (b). Since the neighborhood [/ satisfies (a) and (b) this
collection is not empty. Then D is clearly a domain which satisfies (a)

and (c), and it is easy to verify Ltrat D also has the property (b). For an

interesting alternative characterization of D in the second case, see [9].
Finally ltre D^ are said to conaerge to thei,r kernel D if every subsequence

of domains 1O",\ also has D as its kernel.

7. Conaergence theorems. We now ,pply the results of §§ 3-5 to prove
a pair of convergence theorems for quasiconformal mappings in space.

Theorem 2. Suppose that {y"(r)} is a sequence of K-quasiconformal
mappings of D^ onto D',. that eqch corugtact subset of a d'omain D is con-

tained, in all but a finite number of D" , cmd, that

in D . Then the conuergence is uni,form on each comgtact subset of D and
y(r) is either a constant or a K-quasiconformcil mappi,ttg of D onto D' .

In thi,s last case, each compact subset of D' i,s conttined in all, but a fi,ni,te
number of D'^ and,

)l:""(') : "(Y)

uni,formly on euch compact subset of D' , where x"(A) and r(y) ure the

inuerses of y"(x) and, y(r), respect'iaely.

Proof . Let A be any domain with compact' closure in D . Then
.4 c D. for n 2 n,o, and we can apply Lemma 5 to conclude that the
y"(r) are equicontinuous, and hence converge uniformly, by a familiar
argument, on each compact subset of A . Lemma 7 further implies that
y(r) is either constant in ,4 or a homeomorphism of A . In this last case

v'e then see from Lemma 1 that y(r) is a K-qua,siconformal mapping of Å .

Now / may be chosen arbitrarily. Hence the convergence in (17) is
trniform on each compact subset of D and y(r) is either constant in D
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or a K-quasiconformal mapping of D onto a domain D' . X'inally in this
last, case, the remaining conclusions follow from Theorem l.

We next have the following space form of the Carathdodory convergence
theorem [2].

Theorem 3. Suppose that {D"} is a sequence of d,omains which contain
the origin, that the Dn conuerge to their kernel D , and, th,at D is a d,omain
with u finite bound,arg poirut. Su,gtpose further that {y"(r)} i,s a sequence of
K-quasiconformal mappi,ngs of D^ onto D'- and that A*(O) - O . Il

,,1i u"(x) - y(r)(t B)

(1e)

iy@)i < .o ,

in D, thentlte D'^ corutergetotheirkernel D' anrl D' h,asafinitebounclary
poi,nt. Conuersely if the D* conuerge to their kernel D' anrt if D' has a

fi,ni,te bound,ary ytoint, then there erists a subsecluenc,e {n1} such that

,it Y",(r) =- Y(x)

i,n D . In euch cctse, D' ,is the image of D under y(r) and y(r) is either a
constant or a K-quasiconformal mapping, depend.ing on whether or not D'
is d,egenerate.

Proof. Suppose that the y^(r) converge to a finite limit y(r) in D
and let D* be the image of D under y(r) . We prove first that D* : D'
Now Theorem 2 implies that D* C D' . X'or if y(r) is constant, then D*
consists only of the origin. Oiherwise y(r) is a K-qiiasiconformal mapping
of D onto D* and each compact subset of D* is contained in all but a
finite number of D',. Since D* contains the origin, it follou's from (c)

of (16) that D* c D'
In order to show that D' c D* , fix P' € D' and let J' be anv bounded

domain, containing the origin and. P', srreh that J' c D' . Then J' is
a compact subset of D' and hence tl' c D, for ru 2 ri, . Let J" be the
image of 1' under r"(y) for n 2 rzo. Then J^c D^ and hence

, Dn con\'-erge to D . a clo]]rairl \\-ith a finite boundar\,-

.:P eQ , )Dn) < T-

For otherwise we could find a subsequence { rr;} such that

§ etO ,0D^,) : CL ,

and the kernel for the subsequence of domains {D",} rrould be the finite
space. Since r.(O) : O , we conclude from (20), (21) and Lemma 4 that

ly(*)i < vr ,

(20) 
r

Now the fact that the
point, implies that

(21)



F. \\r. Gnnnrxc, Quasiconformal mappings in space 13

the r"(y) are unifcrrntry
subset of Å' . t{ence by
such that

br:undectr and equicontinuous on each compact
Ascoli's theorem., rve may pick a suhsequence {"i}

. ./ ''
J-+6)

in ,4'
LeL A be the kernel of the sequence of domains {A"\ andlet Å* be

the image of /' under ro(!l). Then the argument of the first paragraph,
applied to the r",(A) on Å' , shows that Å* c A . Moreover, since D
isthekernel of thesequence {D"i}, wesee that / c D. Hence xr(P') e D
and, by virbue of the equioontinuity of the y"(r), 'nve conclude that

y(,ro(P')) : 
,,li a",(,ro(p')) _ 

Iti u",e,"1@')) - p' .

Thus P' e D* . Since P' v'as chosen as any point in D' , we conclude
thal D'C D* and hence udth the above that D' : D* .

No'vy let {nr,} be any subsequence. By virtue of our hypothesis that
(18) holds in D ,

*lim /"*(r) - 
ylr)

in D . Then, since the D*n converge to D , we c&n apply ri,hat was proved
ai:ove to conclude that D' : D* is the kernel of the sequence {D:r} .

Hence Lhe D* converge to D' . It is also clear that D' has a finite bound-
ary point, since D' either consists of the origin or is the image of D under
the K-quasiconformal mapping y(z) . Thus the proof for the first half of
Theorem 3 is complete.

Suppose now that the domains Dj converge to their kernel D' u:ndLirrat
D' has a finite boundary point. Next let I be any bounded domain con-

taining the origin such that i c O. Then ,1 c D* for n 2 no. Let
/'" denohetheimageof / under y,(r) for n2no. Then /|cD^ and,
arguing as in (20) and (21), we have

sup q(O ,0/") 
= 

sup p(O , ODi) < a .

Since y"(O) : O , we c&n use Lemma 4 and Ascoli's iheorem to obtain a
subsequence {y",(r) } ra.hich conrrerges to a finite limit in /. Now D
can be expressed as the union of an expanding sequence of such domains
/ , and by means of a v'ell knou.n diagonal process, we c&n find a sub-
sequence {zi} such that (19) holds in D . Finally, since Lhe D^. converge
to D , the first half of Theorem 3 implies that D' is the image of D under
y(r) and Lklat y(x) is either a constant or a /(-quasiconformal mapping.
This completes the proof for the second half of Theorem 3.
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In Theorem 3 we established a relation between the convergence of the

y,(r) to a finite function y(x) and' the convergence of the domains Dj to
a kernel D' which has a finite boundary point. The connection established

here, between these two kinds of convergence, iS not as close as in the usual

forms of Carath6odory's convergence theorem. For though the convergence

of the y,(r) implies convergence of the D'^, convergence of the Di onl;r

implies convergence of some subsequence of the U"@) . To obtain the strong-

er conclusion that, convergence of the D: implies convergence of the

A"(n) , we would have to know that all limit functions of the y"(r) are

identical. This is clearly so in the case where D' is degenerate. Ilowever
in the case where D' is a domain, we would have to include some additional
normalization for llne y"(r) which would guarantee that there exists at
most, one normalized K-quasiconformal mapping of D onto D' with

v(0) :0.

8. O-mctTtpings. The proofs of the convergence theorems in § 7 are

based on two important properties of sequences of K-quasiconformal map-

pings. These are the uniform boundedness and equicontinuity property
given in Lemma 4, and t'he Hurrtitz propertv given in Lemma 7. The proofs

of these two lemmas follow, in turn, from the fact that a K-quasiconformal
nrapping of a domain D , as well as its restriction to any subdomain ,4 ,

satisfies the distortion property given in Lemma 2. This suggests that it
might be of interest to consider what more c&n be said about the class of
homeomorphisms which have this distortion property.

Definition. A homeomorphi,sm y(ru) of a domain D onto D' is sai,d,

to be a @-mapping i,f there erists a function O(t) , which is continuous qnd,

increasingi,n 0(t 1r wi,th @(0) :0, suchthatthefol,l,ot'ai'ng aretrue'
(i) If PeDand, lQ-Pl <e(P,0D),then

(ii) The restrict'ion of y(r) to rtny subclontain -l .snfi.s/ies (i).

It is now readily seen that Lemmas 1. 3. 4. 5. 6. ancl 7 can be reformu-
lated so that they hold for seqlrences of O-mappings rvhich have the same

distortion function @(t) . Since these lemmas include. vtth one exception,
all the properties of quasiconformal mappings rrhich rve have used so far
in this paper, it is reasonable to conjecture that Theorems 2 and 3 are also

valid for such sequences of mappings. As a matter of fact, much more is

true, and we have the following result.
Theorem 4. A homeomorphism is a O-mapping if and, only if it is a

quasiconform,al mapping.
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Proof . The sufficiency is a, con§equence of Lemma 2. For the necessity

let y(r) beahomeomorphismof adomain D onto D', .Itvillbesufficient
to sho.w LLIat u(r) is a quasiconformal mapping under the assumption that
the inverse rnapping r(y) is a @-mapping' For this fix a point P e D
and choose a, 0 <1.a < a(P,AD), so that

(22) la@) - ae)l < s(Y(P) ,0D')

whenever 1Q-Pl<o. Nextforeachfixed r, 0(r<a, choose Q,

and Q, so that lQr-Pl: lQr-Pl: r and so that

L(P , r) : rnax ly(n) - y(P)l : 1y(Qr) - ae)l ,

(23) x-P :r

t(P , r) : min 1y@) - y(P) : la@) - Y(P)I .

Now suppose that

(24) l(P , r) I L(P , r) ,

let / be the domain D minus the point Qr, andlet /' be the image of
Å under y(r) . Then lf is D' minus the point U(Qt) , and we see from
(22), (23) and (24) that

ly@r)-a€)l: l(P,r) < L(P,r): P@(P),aÅ')'

Since r(y) w&s assllmed to be a @-mapping, we have

, _ l*@@il_.(y(P)) . c,( 19) - /(P) \ ^( 
t(P . 4 \I - a@@n,aO >tz1 ,1.r1ry .a-t)/-'\t1e,rll'

and hence it follows that

L(P , r\

'e; 
< (@-'(r))-t : K' K ) r'

where O-L is the inverse function for O . If (24) does not hold,
L(P , r) : l(P , r) , and so in either case 'r,r'e ha,ve

L(P . r\
t@.r) < K

for 0 < r {d. Thus

LtP . r\
H(P) : limsup ,,'n--- I E

,*0.' l(P , r)

for each P e D and y(r) is /(-quasiconformal by Corollary 3 of [5].
I{ence Theorem 4 gives us still another v'ay of defining the notion of

15
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quasiconformality in space, and of course also in the plane. It further shows

that the distortion propert5r, given in Lemma 2, is not just a lucky accident,
but rather a properby n'hich characterizes the class of quasiconformal
mappings.

9. Normal fami,lies. Suppose that 5 is a farnily of hcmeomorphisms of
a fixed domain D. We sav that J7is a normal family if each sequence of
homeomorphisms in Jl contains a subsequence v-hich either converges to
a finite function or diverges to @ , uniformly on each compact subset
of D . Next we say that y ha, Lhe Hurutitz property if each finite
function, rvhich is the limit of homeomorphisms in g, is either a
homeomorphism or a constant.

Lemma 7 shows that a normal family -7_ has the Hurrritz property if
all of the homeomorphisms iir 5 are ff-quasiconformal for some fixed 1( ,

and it is natural to ask for hov' large a, class of homeoinorphisms is this
result true. That is. suppose that .v is a norrnal familv r-rhich has the Hur-
witz property. What can \\-e sal, zlbout the homeoilorphisms in ,V ? To
obtain a meaningful ansu'er to this question. rve must make some further
assumption about the structurc of ,f . For example, we must rule out the
trivial case where .7 contairrts only a finite number of homeomorphisms.
We sav that ,7 is complete with respect to simi,larity mappings if, given any
pair of similarity mappings S(r) and 7(z) such that T(r) maps D into
itself, the cornposite homeomorphism §(y(?(z))) is in .flwhenever a@)
is. We then have the following result.

Theorem 5. Su4tpose that .jl is a fami,ly of homeomorpthdsrtts of a botmdecl,

d,omain D and, thqt f is normal and, compl,ete uith respect to si,milari,ty

nr,appi,ngs. Then .l- kas the Hurwitz property if and only if each Ttomeomor-

phisru i,n 5 'is K-quas'iconformal for some fired Ii .

Proof . The sufficiency is a consequence of Lemma 7. For the neeessit5r

rye may assume, by performing a preliminarv cliange of varialtles, that D
contains the closed unit sphere lrl < I. Then for each homeomorphism
y@) e,7 we set

max y("r) - y\O)
r r-l

K(v) - min y(r) - y(O).

Now the fact that ff has the Hurrritz propertv implies that

sup K(y) < T.
)'e F

can find a sequence of horneomorphismsI'or if (25) does not hold, s'€

U*(r)egsuchthat
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nl^ : n,tninly"@) - A(O)) < maxly"(x) - U"(O)l : L" .

,:I x-L

Then, since .7 is complete v'ith respect to similarity mappings,

y"(x)-y"(O) - _z"\x): L^ e,7

Now ]2"(r)l! I for lel {I, andbecause STisanormalfamily,wecan
find a subsequence {nj) such that

(26) lim 2".(r) : z(n) , l"@)l < co ,
j-a J

uniformly on each compact subset of D . Next for each n, there exist
points P, and Q, on 1"1 : L such that

l. I

Because lr] : I is compact, \Ye may assume, by choosing a second sub-
sequence and then relabeling, that

1imP"--P, !i^Q",:Q,
J-@ J -n

and by virtue of the uniform convergerlce in (26), we conclude from (27)

that

lz(P)l : Iim 2".(P",) - l, )"Q) : lim lz",(Q") I : 0.
j-x l r j*€ r r

Now z(O) : O and Q + O. Thus z(r) is neither a homeomorphism nor
a constant, and we have a contradiction.

We complete the proof of Theorem 5 b5r showing that each homeo-
morphism in -V is K-quasiconformal, where K is the finite constant given
in(25). Forthis,fix g(r)e $andlet Pe D. Since D isbounded,we
can choose a I @ so that D is contained in r) < a. Then for
0 < n, r < e(P , AD) , the similarity mapping

T("): Plrr
maps -D into itself, and hence

z,(n):y(P+r$ef.
If we now appl5r (25) to z,(r), v.e obt'ain

L(P , r) : max I y@) - y(P)i : max z,(r) - z,(O))
x-P):r ' 

:l

( 1{ rnin 1",@) - z,(O)l : 1l rnin )a@) - Ue)l : K l(P , r)
"]-r x-P:r

for 0 ( ar I g(P,0D). Weconcludethat

L7
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H(P) - lim sup
r+ 0-f

for all P eD, and ]nence y(r) is /(-quasiconformal by corollary 3 of [5].

10. Lindelaf's theorem. We conclude this paper by showing horv

Lemma 2 can be used to obtain a space analogue of a theorem due to Linde-

löf on the boundary behaviour of conformal mappings of a disk. we re-

quire first the follorving result.
Lemnra 9. Srytpose that y(r) is a K-quasiconformal mappi'ng of the

hemisphere 1r1 <c, nt>- 0, that A is the half spherical annulus

a <lnl <b <c, rz) 0, and, that Å' is the image of / und'er y(r) '

Then
!.

J

n

I

J
il/t"='

where S : §(r) i,s the hemispheri,cal surface lrl : r, ns > 0,

osc y(r) : jr".n, la@) - y(Q)l ,

and, A i.s a fi,ni,te constant which d,epend,s only on K .

Proof . LeL yt(r) be the i-th coordinate function for y(r) . 'Ihen Ylr)
is continuous and ACL, and an elementary adaptation of the proof of
Lemma 12 in [5] gives

i' dr

J (ol' v'('''))' r

dr
a@))r -r-

J 
iv

where B is an absolute constant. since y(..) is a ,Ii-qriasieonformal

mapping, y(r) is differentiable with Vy,(r) ': < 1i2 '/(r) å' €', rvhere

J(z) denotes the absolute value of the Jacobian of the mapping. Now

(osc y(r))2 = 
t' 

1o." /,(.,'))' ,'s ,-r's

and applying HöIder's inequalit;' rre obtain

where A : 3li A K2. (See eith.er [5] or [II] for the analytic properties

of quasiconformal mappings used in the above argument.)

18
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Now suppose that y(x) is a homeomorphism of a domain D and that
P e AD. We say that a sequence of points {P"} in D conaerges 'in a cone

to P if the P, convergelo P andthereexistsaconstant, a, L 1a I @ ,

such that
lP"-Pl < aq(P",0D)

for all n. We then denote by Cn@) the set of allpoints P', including
possibly the point at infinity, for which there exists a, sequence {P"} con-

verging in a cone to P such that

",lt 
v(P,,) - P'

l9

Next let 7 denote any a,rc which has P as an endpoint and lies, except for
this endpoint,, in D. We say that y is an endcut of D from P , and we

denote by Cr(P) the set of all P' for which there exists a sequence of
points {P,} converging to P along 7 such that (28) holds. Finally we set

ne) : lr,(r),
where the intersection is taken over all endcuts y of D from P.

The following space analogue of a theorem due to Lindelöf (p. 28 in

[7]) gives us a relation betu-een the sets II(P) and Co@) rvhen y(r) is

a quasiconformal mapping.
Theorem 6. If y(") i,s a quusiconform,al mappi,ng of a sphere D , then

fi(P) - C_r(P)

( 28)

(2e )

(30)

(31)

for all P €. AD .

Proof . Fix P e AD . By perfcrming a preliminary Möbius transforma-
tion in the r-space, lve may assume thaL D is the half space a,3 ) 0 and

that P is the origin O . If 7 is any segment u'hich joins O to a point of
D , then 7 is an endcut of D from O rthich lies in & cone and hence

n(O)cC,(O)cCr(O).
To complete the proof for (29) we must shou'tirat, given P' € C7(O) and

anyendcut y of D from O, thereexistsasecluenceofpoints Q" e ynD
which conYerge to P such that

jl1 v{8") -- P'

Choose P' e CA(A) and let 7 be anendcut of D from O. Thenthere
exists a sequence of points {P"} in D which conYerge to O and a constant
e,, l{a { co, suchthat

j* U(P") =- P' and 1,P,, < ct Q(I'" , CD)
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for all n. Pick c>0 so that A, the hemisphere rJ<c, ts>0
contains the P", and assumeforthe moment, that' y(x) maps z1 /(-qua-
siconformally onto a bounded domain /' Next set b : | - LIQ a) ,

and let /: denote the image of /* under y(r) . Since /,c Å' and
m(/') < a, it follows that

(32) ln m(Å*) -: o

Lemma 9 implies that for each n there exists an rn , bt,Pn < r" < I,P"i

such that

(33 )

( 31)

Now yfiS(r")+A for n2no; choose Q"e yO§(r") aadlet Rn

denote the point v,here the radius from O to P^ meets S(r") . Then (32)
and (33) imply that

On the otlrer hand, we see from (31) that \,R"-P,l <
hence Lemma 2 vields

Q(P" , AD) and

r,vhere D' is the image of D under y(x) . l(ou- I/(P") e J'
A(P") are bounded, and since the Pn corl\,erge to O € AD :

(35 )

(37) l:t z(y(Q")) - z(P')

Fience the

and (30) follows from (31), (34), (35) and (36).
Now we have obtained (30) under the assuinption that y'' is a bounded

domain. Suppose that this is not the case. Since y("i') is a homeomorphism,
there exists an open sphere fl' such that U' n 1' : A . Let, z(y)
denote inversion with respect to L:' Then z(y(;t)) rna,ps A /(-quasi-
conformally onto a bounded domain. and arguing exactly as above, we can
find a sequence of points Q" e y fl D u-hich converge to O such that

Since z(y) is an inversion, (37) implies (30) and the proof of Theorem 6 is
complete.
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The following immediate consequence of Theorem 6 is an analogue
of a very well known theorem due to Lindelöf (p. 10 in [7]) on bounded
analytic functions.

Corollary. If A@) is a quasiconformal mappi,ng of a sphere D and, if
y(r) conuerges to P' as r conaerges to P e AD along some end,cut y of
D , then y(r) conaerges to P' as fi conuerges to P in a cone.
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