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Positive real resolvents and linear passive Hilbert systems*

Dedicated to R. S. Phillips on his 50th birthday
1. Introduction

The theory of dissipative operators in Hilbert space has been extensively
developed and applied to a wide variety of problems within recent years.
While my earlier prediction of [9] that this theory would soon become a
standard part of an advanced mathematical education has not yet been
fulfilled, recent advances make it most likely that this soon will be the
case. Rather than attempting a complete survey of this rapidly expanding
theory, attention here will be mainly focused on a reinterpretation, believed
to be new at least in this generality, of a large part of the existing theory
from the view-point of the so-called »black box» concept familiar in the
mathematics of system engineering. The motivation which led to the point
of view to be presented here stems from a question raised privately by
R. S. Phillips concerning the reasons why Penzlin and myself were interested
in having a Stieltjes type representation for the resolvents of dissipative
operators in a half-plane (cf. Dolph and Penzlin [10], and Dolph [9]). As a
result of the fact that Phillips in this same conversation also suggested a
way of obtaining a stronger result than those referred to; namely, theorem
4.14 of this paper, it is now possible not only to provide an answer to his
question which has intrinsic interest in operator theory but also one which
points the way toward a theory of the transient behavior of a class of
linear systems which can be associated with this representation in a natural
way. Since many of the important physical problems of interest today fall
into this class, it is hoped that the discussion here will be provocative and
will eventually lead to the development of a systematic theory of the
transient behavior of continuous linear systems.

To be more specific, the correspondence which exists between the
so-called class of positive real functions (admittance or impedances of linear
passive networks furnish the best known examples) and the resolvents
of maximal dissipative closed operators in the sense of Phillips [70] (for

* Part of this research has been supported by a National Science Foundation Grant.
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precise definition see § 4) will be examined in detail. Interpreting causality
to mean that a linear system cannot show a response before a signal is
applied, the analytical properties possessed by this class of resolvents
makes it possible to generalize the relationship which exists for positive
real functions and linear passive systems in the sense of Konig and Meixner
[44], Wu [109], and Youla, Castriota and Carlin [111]. That is, it will be
shown that to each resolvent of the subclass of maximal dissipative opera-
tors, which are regularly dissipative in the sense of Kato [39], there exists
an abstract linear system which is defined in a Hilbert space and which
possesses the additional properties of being invariant under time trans-
lations, causal, passive (and hence dissipative) and conversely, that the
abstract equation of evolution generated by a time invariant regular
dissipative operator has a resolvent possessing properties analogous to
those of positive real functions. In fact the larger class of resolvents of
maximal dissipative closed operators have properties analogous to positive
real functions and will be termed the class of »positive real resolventsy.
Whenever the associated abstract equation of evolution admits a strict
solution, it will correspondingly be termed a »linear passive Hilbert systemp.
For precise definition see § 4 and § 5 respectively. In the discussion leading
to these results, a new characterization of positive real resolvents will be
derived. This characterization is of independent mathematical interest
since it is a partial generalization of the relationship which exists between
a self-adjoint operator and its resolvent.

The first modern extensive general theory of linear passive systems
is due to Konig and Meixner [44] and was the direct result of Meixner’s [58]
deduction of the condition of passivity from thermodynamic considerations.
This theory emphasizes continuity properties and does not use the results
of Hilbert space theory for functions in contrast to that of Wu [109],
Youla et al [111]. The last named authors, however, made an important
addition to the general structure of these theories since they were in fact
able to show that Meixner’s condition of passivity was sufficient to
guarantee causality. Their considerations will be extended to the more
general case treated here in § 5.

In addition to these treatments which, with the exception of work of
Konig [43], have all been concerned with the scalar Hilbert space theory,
Fourés and Segal [16] discussed causality for an abstract linear system
within a framework closely related to that which will be treated here.
They considered a class of inputs and outputs consisting of the pre-Hilbert
spaces of linear sets of square integrable functions on a real vector group
to a countable complex Hilbert space A. Under reasonable condition they
were able to establish the existence of a »gain function» in their terminology
— a resolvent in ours — such that in terms of the Fourier transform on the
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dual group, the transformed output was related to the transformed input
by simple multiplication. Moreover, for a bounded set of such operators,
invariant under translation, they were able to prove that causality with
respect to a cone was equivalent to the existence of a bounded analytic
extension of the »gain» to the stube» over the dual of the group. An interest-
ing application of their results in combination with the theory of the shift
operator due originally to Beurling [3] and then generalized by Lax [47]
and Halmos [25] has just been made by Lax and Phillips [50], [51].

Here the group will be specialized to the real line and the integral over
the group to the Bochner integral. Also semi-group rather than Fourier
transform methods will be used and in fact it is the analogy which exists
between Laplace transform theory and semi-group theory (cf. Hille and
Phillips [29], and Phillips [71]) which has been the main guide leading to
the theory of positive real resolvents which will be presented here. Within
this framework, the fact that the resolvent has an analytic extension to
a whole half-plane follows readily from known theorems of Sz.-Nagy, Phillips
and Stone — see theorem 4.14. While the author believes that many of the
new results presented here unquestionably have their counterparts in the
Fourés—Segal theory he does not feel competent to so phrase and prove
them within the more general group context.

The results so far achieved indicate clearly that the analogy between
Laplace transform theory and semi-group theory is capable of much further
exploitation, and it is our firm belief that it contains the seeds of a new
mathematical discipline — the theory of the transient behavior of con-
tinuous linear systems just as the theory of Laplace transformations has
given rise to the theory of the transient behavior of discrete linear systems.

Some of the general features and advantages of such a theory are already
apparent from the known examples discussed by Titchmarsh [97], [98],
Friedman [18], Dolph [9], Beck and Nussenzveig [2], Nussenzveig [62],
[63], and Petzold [68]. In all of these cases it has been possible to continue
the matrix elements formed with the resolvent and elements of comract
support from the original half-plane of analyticity into at least part of the
other half-plane where new complex singularities are then found. These
new singularities, while not part of the spectrum, give rise to the analogue
of the Heaviside expansion theorem for the associated continuous system.
The resulting series expansion is in terms of transient, non-orthogonal
modes, which have no individual existence but which do exist collectively
and yield a representation which appears to have far wider and superior
convergent properties than any other that are known (cf. for example,
the discussion in [63]). Loosely speaking this representation can be said
to represent the »peaks» or »resonances» in the continuous spectrum of the
operator and as already recognized by Heitler [28] — their use facilitates
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many of the calculations in physics where detailed consideration of the
continuous spectra is necessary. In addition, these examples already make
it clear, because of exponential growth associated with the complex singulari-
ties, that it is only matrix elements of the above form that offer any
possibility for continuation within the framework of a Hilbert space theory.
Thus one must conclude with Hohler [30] that attempts by Schonberg
[79]—[81] to perform the corresponding continuation of the resolvent are
incorrect as stated.

This does not, of course, preclude the possibility that the use of a
different space might result in a simpler, conceptually more satisfying
theory. A promising beginning in this direction has apparently been made
by A. Grossman of the Institute for Advanced Study*. While no details are
vet available, he appears to have been able to imbed Hilbert spaces in a
distribution space large enough to admit functions of exponential growth
and still small enough so that Schrédinger’s equation still has a unique
solution. Moreover, in this space the resolvent itself can be continued
analytically, and its complex singularities appear naturally on Riemann
surfaces as in the sphetical shell model treated in detail by Petzold [68]
and Nussenzveig [63]. The details should prove most interesting and their
publication is eagerly awaited.

Returning to the Hilbert space situation, little if anything is known
in general concerning the possibility of continuing the matrix elements of
the resolvent of a general maximal dissipative closed operator or even of a
self-adjoint operator. LadyZenskaja [45] succeeded in carrying out a
continuation for the scattering integral equation associated with a wave
equation having a potential of compact support but the resulting con-
tinuation was too limited to lead to new singularities. For the potential
free wave equation in three dimensions Lax and Phillips [50], [51] have
recently succeeded in analytically continuing the associated scattering
matrix from one half-plane into a strip in the other halfplane with im-
portant consequences for the decay problem. These consequences are
sketched in Lax, Morawetz and Phillips [49].

Some information concerning when such continuation is not useful has
recently been deduced by McKelvey [57]. For the class of minimal self-
adjoint extensions of symmetric operators, he was able to prove that the
representation of the resolvent of a symmetric operator in the form of the
projection of a resolvent of its self-adjoint extension in a half-plane retained
its meaning on an interval of the axis if and only if the resolvent of the
self-adjoint extension could be analytically continued through this interval
and that this, in turn, required it to be continuous and self-adjoint on the

1 Personal conversations with Dr. A. Grossman and Professor B. Zumino (cf.
also the note added in proof-reference, p. 33).
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interval. These results imply that the corresponding matrix elements
would be analytic across such an interval and thus could not introduce
the complex singularities necessary for the transient theory.

Perhaps the most promising attack on the continuation problem of
resolvents within a Hilbert space framework depends on a result of Green-
stein [21] and leads to the independent interesting question of when is a
generalized resolution of identity real analytic on an interval of the axis.
The corresponding question involving absolute continuity rather than
analyticity has been the subject of several recent investigations; one of
the most recent being that of Schreiber [83]. In a form appropriate for
the theory to be developed in this paper, Greenstein’s result is as follows:

Theorem 1.1. A necessary and sufficient condition that an analytic
Sunction  f(2) with positive real part, Re f() > 0 for Re A> 0. which
in this region admits the representation

=]

) — /n d m(w)

10— 1’

—0

admits an analytic continuation through an interval a < Im A < b s that
m(A) be real analytic for w = Im 4 n this interval. When this condition
s satisfied, the continuation to the region Re A << 0 is given by the relation

fO) = f(—= ) —2am'(— 7).

(Since the original formulation involved the upper half-plane, the
necessary transformation for the above form is given in Appendix II for
the reader’s convenience.)

For the continuation problem, the main result to be developed in
this paper is that of theorem 4.14 which implies that the matrix elements
formed by the inner product of the resolvent of a maximal dissipative
closed operator with functions of compact support are precisely functions
admitting the representation necessary for the application of Greenstein’s
theorem. The continuation problem is therefore reduced to the question
of discovering additional conditions sufficient to guarantee that the weight
function involving the generalized resolution of the identity is real analytic.
Unfortunately, this problem continues to remain open.

The other results to be developed here, however, are of intrinsic interest
since as previously stated they represent a considerable generalization of
the theory of so-called positive real functions as suggested by the corre-
spondence between the theory of Laplace transform and the theory of semi-
groups. To initiate this correspondence, consider the system of differential
equation
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dp
7 Ar=r

in which p and f are n dimensional vectors in R” and 4 an n X n
constant matrix. A system of this form is general enough to encompass the
equations of linear lumped passive networks. If it is solved by the method
of Laplace transforms under the assumption (for convenience only) that
all initial conditions are zero, then one finds if, for example,

0

oy

p:/e—“pdt, Rel > 0,

0

that
P = (A —A)F.

This relationship, as in the theory of Foures and Segal [16] is of the
form, the transformed output is equal to the product of an admittance
operator — the resolvent — or »gain» function and the transformed input.
How if one uses the formal analogy between Laplace transform theory and
semi-groups and, as in Hille and Phillips [29] page 337, one finds that the
resolvent of the infinitesimal generator is the Laplace transform of the
semi-group operator and conversely that the semi-group operator is obtaina-
ble from the resolvent by inversion of the Laplace integral for a suitable
integration path ¢. If S(f) denotes the semi-group operator and R,;(4)
the resolvent of the generating operator 4, then

- / e * R (A)d) = S(t).

27

Thus one sees easily that the resolvent (41 — A)~! clearly plays the
role of an admittance operator whenever A can be interpreted as the
infinitesimal generator of a semi-group. Actually, although it is somewhat
aside from our main considerations, one can use an observation of my
colleague, W.Root, to the effect that »feedback systems» so fundamental to
our automated society can also be interpreted as the theory of the resolvent.
It is even possible to phrase much of the classical mathematical procedures
in this language. For example, using this remark, I observed that any
wellset elliptical problem of the form

'
Lo = —7+f
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can be so interpreted by constructing the Green’s function of
Le =0.

If the associated integral operator is denoted by A4 again, the solution
to the given problem is of the form

g = I+ A" (14

in which the right-hand side is in the canonical form of the feedback circuit
shown in the figure below. Obviously, in this interpretation, the values of
A for which (A1 + A4)™* does not exist — the discrete spectra — must
correspond to regimes of instability. While it will not be pursued here,
the suggestion of W. Root that the entire known theory of feedback systems
be re-examined from the point of view of resolvents and semi-groups is
most suggestive and worthy of further investigation.

fO_ 4 ?

1/

Fig. 1

Before pursuing in more detail the correspondence suggested by the
above consideration, § 2 will be devoted to a brief sketch of the occurrence
of the »black box» or admittance (or impedance) concepts in physics and
may be omitted either by physicists or by mathematicians who are not
interested in possible applications. § 3 will summarize the properties of
linear passive systems as they occur, for example, in network theory.
§ 4 will be mainly devoted to a summary of the aspects of the theory of
maximal dissipative closed operators necessary for the ensuing discussion.
§ 5 will discuss some of the less obvious correspondences which exist between
linear passive systems as treated in § 3 and the theory developed in § 4.
In particular, the relationship between passivity and causality will be
discussed in Hilbert space for regularly dissipative operators in the sense
of Kato [39]. The paper concludes with two appendices, the first devoted
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to an example of Griffin in which the original method of Dolph and Penzlin
[10] is used to construct an explicit representation of the resolvent of a
dissipative operator and the second given over to the reformulation of
Greenstein’s theorem [21] appropriate for the right half-plane.

2. The admittance or black box conecept in physics

In most physical theories two formulations are usually possible. The
first and most historical approach is based on the concept of causality.
The physical quantity, whether a voltage, a quantum wave function, an
electromagnetic wave, etc. is assumed known at some definite time (the
initial condition) and then calculated at a later time by means of an
appropriate equation as, for example, Schrodinger’s for the quantum
wave problem. The method of calculation is in essence the method of
semi-groups which often are time dependent (cf. the discussion in Kato
[36], [38]). In the other formulation, a description of part of the state of
the system — e.g. all incoming waves — is assumed to be known for all
times and the remaining part of the state of the system — e. g. all outgoing
waves — are then calculated for all times by means of a postulated inter-
action model. The interaction mechanism takes place in a region — the
sblack box» — about which usually little is known. In network theory
where this formulation was first developed systematically, the interaction
mechanism is usually represented by an admittance or impedance function
which characterizes the frequency response properties of the network.
The network in turn, if it is causal, can be realized in a number of equivalent
ways, all of which have the same frequency response. In nuclear physics,
the black box »corresponds to the so-called internal region» where the
colliding particles are close together and interact strongly. Because of
the nuclear scale, all real observations must take place essentially at
infinity and thus it is natural that this second formulation would be more
convenient for the discussion of asymptotic properties. The complicated
internal mechanism is replaced by a boundary condition on the surface
of the internal region and the theory involves only the asymptotic properties
of the input and output states of the system, and the »admittance» relation
between them.

The usefulness of the »black box» point of view has been commented
on by many authors including Heisenberg [26], [27], Wigner [100], Gross
[22], Meixner [60], Zadeh [112], and Falkoff [14]. Although the last named
author never published a paper corresponding to the following abstract,
his summary is most succinct and will be quoted:
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sImpedance Concept in Nuclear Scatteringy

»yThe description of the scattering of incident particles by complex
nuclei has much in common with the methods used in describing the
scattering of electromagnetic waves by obstacles or the effects of dis-
continuities in wave guide and transmission line problems. Many of the
general features of both kinds of scattering, e.g. reciprocity conditions,
conservation laws, resonant frequencies and connected formulas may be
established within the framework of a common formalism. In particular,
the familiar impedance concept of electrical network theory has its counter-
part in the ‘logarithmic derivative’ of the wave function for the quantum
mechanical description of the nuclear scattering. Hence all the well-known
properties of the impedance as a function of frequency have immediate
application to the energy dependence of nuclear cross sections. As a further
example of the parallelism, the counterpart of the Breit—Wigner resonance
formula and the Campbell—Foster theorem will be given.»

In the theories of the compound nucleus, these observations have beea
used extensively in the R-matrix theory of Wigner— Eisenbud [105] (cf. the
other references to Wigner and the review article of Lane and Thomas
[46]), as well as in the Kapur—Peierls [33] formalism (cf. also Peierls [65]
and [67] and the review article by Brown [6]). Bloch [4] has presented a
beautiful unification of these two approaches by introducing a Hamiltonian
containing a singular boundary value operator. Upon its inversion the
Wigner— Eisenbud or Kapur—Peierls theory results by a choice of an
appropriate basis in the Hilbert space of the internal region. Finally,
Siegert [87] introduced a theory based on radio-active states which is
also closely related to the discussion by Petzold [68]. This theory was
later extended by Humblet [31] by the use of the theory of meromorphic
functions and as such is closely related to the method used by Nussen-
zveig [63].

There are other recent developments in physics which are also closely
related to the matter at hand. For example, Regge in [73] and [74] applied
the well-known (since 1918) Watson transformation (cf. Sommerfeld [88]),
a frequently used device in more classical propagation problems, to continue
the orbital momentum j of the radial Schrodinger equation from discrete
integral values to the complex plane. As a result he was able to show that
under reasonable conditions, satisfied by most field theoretical potentials,
the scattering amplitude at some fixed frequency determined the
potential uniquely whenever it existed. Moreover, for the special class of
time independent potentials which were capable of analytic continuation
into a bounded region in the complex plane, the scattering amplitude



12 Ann. Acad. Scient. Fennicae A.I. 336/9

can be continued to arbitrary large negative values of the cosine of the
scattering angle and thus for arbitrary large real and positive transmitted
momentum. This enables him to establish the Mandelstam dispersion
relations over a wider range and has led to a better understanding of so-
called shadow states, bound states, and resonances. Many physicists
believe that the successful extensions of his ideas to quantum field theory
hold much promise for the future (cf. Chew [8]).

The attempts at a quantum field theory adequate for unstable particles
also involve ideas and methods which, if successful and rigorous, would
require the existence of a transient theory of continuous systems. As of
1958, of the sixteen known elementary particles all but four were known
to be unstable. Recents attempts at a theory of the unstable particles
are based on a remark of Peierls [66] who suggested that the complex poles
of the so-called »propagator» or resolvent in the second sheet of the Riemann
surface can be used to account for the unstable states in the Lee model.
This problem can also be viewed as a perturbation problem for a Hamil-
tonian with a continuous spectrum having a discrete eigenvalue embedded
in it and the unstable states arise from analytic continuation through the
continuous spectrum (cf. Zumino [113] and [114] and Lévy [53] and [54]).
This subject is also intimately related to the work of Friedrichs [19], [20],
Rejto [75], and Schwartz [84], who have develope da rigorous theory for
sufficiently weak and smooth perturbations. On the other hand, as Lévy
has remarked [53]:

»The great advantage of the propagators’ method, apart from the fact
that it is 'natural’ and independent of the various production mechanisms,
is that it involves only the assumption of a ’field’ ¢ but no asymptotic
free’ states into which the particles go when ¢— oc0. ...»

»Unfortunately, the propagators’ method has also a disadvantage:
the Riemann surface in a realistic theory will have an infinite number of
sheets, a new one starting at each value of the energy corresponding to the
threshold of a new real process. Each of these sheets will contain poles,
and an additional physical principle is necessary to decide which one has
the correct physical meaning in order to represent the complete mass of an
unstable particle.»

All of these theories, whether for networks, compound nucleus, or
unstable particles, make extensive use of the concept of the resolvent
(i.e. the admittance, the propagator, or the Green’s function) and the
methods of analytic continuation. The resolvent is, of course, at the heart
of linear applied mathematics since once it has been constructed, usually
in the appropriate concrete form of an impedance or admittance function



C. L. DorLrH, Positive real resolvents and linear passive Hilbert systems 13

or as an integral operator having a Green’s function for its kernel, both
the applied mathematician and physicist uses its singularities to obtain
various expansion theorems and completeness relations. In mathematics
it can be used as a basis for developing the spectral theory for both bounded
and unbounded operators in a Hilbert spaces as in Stone [89] or Achieser
and Glasman [1] and the projection properties associated with its contour
integral over isolated parts of the spectrum not only form the basis for
the rigorous perturbation theories of Sz.-Nagy [90]—[92] and Kato [34], [35]
but represent the basis for an operational calculus of operators in Banach
spaces (cf. e. g., Riesz and Sz.-Nagy [78], Taylor [95], [96], and Dunford
[11]—[13]). Since until very recently, mathematicians concentrated on
self-adjoint problems where the resolvent exists everywhere in the plane
except on the real line (or imaginary axis in semi-group theory), the theory
of analytic continuation has not been systematically combined with the
theory of the resolvent, although as noted in [9], the continuation of the
resolvent from one half-plane to another when possible, usually gives rise
to new phenomenon discussed in § 1. To repeat, it is hoped that the dis-
cussion here will stimulate and draw the attention of other mathematicians
to this gap and will cause a new discipline to emerge.

3. Linear passive systems and positive real functions

A linear passive system is universally required to satisfy four conditions.
If I denotes a suitably chosen class of inputs and O a corresponding
class of outputs and if L is used to denote the functional operation which
assigns to each element f of I a unique element f; of O, the map
Lf = f, is required to be:

1. Linear; i.e. L(ajfi + asfs) = ay Lfy + ay Lf, when a,, a, are
complex numbers;

2. Translational invariant in time; v.e. if f,g €1 and g(t) = L f(¢)
for all t then L f(t—s) = g(t—s) for all t;

3. Causal; i.e. if f€I issuchthat f(t) = 0 for t =<t, then Lf(t) =0
for t <ty

4. Passive or dissipative; i.e. for any f€ 1 with associated Lf € O,
the condition

Re/Lf*fdth forall t <t

—

must hold for a suitably defined product »*».



14 Ann. Acad. Scient. Fennica A. 1. 336/9

The closely related concept of a linear scattering system is due to
Meixner [60] and is sometime more convenient for some physical problems.
In such a system with corresponding classes I and O, postulates 1, 2
and 3 are assumed to hold and postulate 4 is replaced by

4'. Passivity for scattering systems: i.e. for any f€1I and associated
Lf € 0, the relation

t

~

Re/f(t)*f(t)dt > Re/ LE*Lfdt  for all t=t,

—c0

must hold for a suitably defined product »*».

Now as Meixner observed, given the product »*» there is a one-to-one
correspondence between linear passive systems and linear scattering
systems. This results from the fact that the condition of 4" can be written as

Re/ [f&) — Lfo)1* [f@t) + LfO]dt = 0

so that if f, L f are elements of a linear scattering system, then f— L f,
f-= Lf are elements in a linear passive system and vice versa.

According to Meixner [60] and Gross [22] the first three postulates
are due to Duhamel and were also employed by Boltzman. The fourth
postulate has only evolved comparatively recently although an incorrect
form with the upper limit of the integral set equal to plus infinity has
been used for some time in network theory (cf. Wu [109], Carlin [7], Oono
[64], and Raisbeck [72]). The correct form was deduced by Meixner [58]
from thermodynamic considerations and Youla, Castriota and Carlin [111]
not only pointed out (by a counter example) that the plus infinity form may
not be meaningful for even the simplest networks but they were the first
to obtain the important result that postulate 4 — passivity — implies postu-
late 3 — causality. Their argument can be easily extended to the Hilbert
space situation and this will be done in § 5.

Depending on the choices made for the classes I, O and the product
»¥» it is possible to derive slightly different theories. Thus to put continuity
properties in the foreground and avoid the complications of generalized
integrals and distribution theory, Kénig and Meixner [44] chose [ to be
the class of real functions m-times differentiable on the interval
— o0 <t < oo (not necessarily the same interval for each function) and
chose O to be the corresponding class C; with »*» an ordinary product
of two functions. Youla et al [111] chose I and O to be the Lebesque



C. L. DorrH, Positive real resolvents and linear passive Hilbert systems 15

space of square-integral n-component column and row vectors with an
inner product defined by

€L

(a,b) = /ddet,

o
—0

where the bar denotes conjugation and a” the transpose of the column
vector a. Wu [109] made a similar choice while, as already noted in the
introduction, Fourés and Segal [16] chose I and O to be the pre-Hilbert
spaces of the linear set of square integrable functions say H on a real
vector group G to a separable complex Hilbert space K with an inner
product defined by

(fs P = / (f(a) , gla))x da

G

where the subscripts »H» and »K» indicate inner products in the respective
space and da is the element of Lebesgue measure on (. Clearly their
framework includes that of Youla et al [111] and Wu [109]. Here a similar
situation will be used in § 5 except attention will be restricted to the real
line and a Bochner integral used.

In terms of these theories by introduction of a Laplace or Fourier
transform it is possible to establish a relation of the form

Fo(3) = Y(2) F(2)

where the F, F, are the transforms of f, f; and Y represents the
admittance or »gain» or resolvent. Restricting attention for the moment
to the network case consisting either of lumped reactances (inductances
and capacities) or relaxation elements (resistance and inductance or resist-
ances and capacities) the admittance Y(2) is a so-called positive real
function and has the following properties:

(1) It is analytic in the right-half plane except possibly on the imaginary
axis;

(2) Re Y(4) > 0 for Rei > 0;

(3) Its real part in the first quadrant, with the exception of the imaginary
axis must be positive;

(4) If it corresponds to a reactance network, it may have only simple
poles on the imaginary axis;

(5) If it corresponds to a relaxation network, it may have poles only on
the negative real axis and the residues at finite poles are negative real for RL
networks and positive real for RC networks.
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It may be proved that a positive-real function admits the unique
representation
€
l—t0w i

B
(1) = A A+ — E— , n) . ‘.
Y(2) A L+ 1 - PR d o(w) , Re

1%
[}

—X
where
(a) o(w) is monotonically increasing, odd and bounded,
(b) o(@) = %lo(w + 0) + gl — 0)],
() o(+0)—o(—0) = 0.

In general p(w), the distribution function, is the sum of a discontinuous
part o4, which is everywhere constant apart from its utmost denumerable
points of discontinuity, a singular part o,, which is continuous but has
a derivative = 0 almost everywhere, and an absolutely continuous part
0., having a derivative almost everywhere. Electrical networks of the
reactance type have distribution functions of the type ¢4, while other
networks of lumped elements have spectral functions which in general
consist of sums of ¢, and .. Examples have been constructed however,
where special spectral functions of the singular type occur (cf. Wu and
Pickard [110]).

While such a complete characterization of RLC networks of lumped
constants cannot be given, their admittance are still regular in the right
half-plane and they can possess only simple poles on the imaginary axis
with positive real residues. Other poles may have any relative position
and multiplicity. For all of these networks, however, a knowledge of the
real part of the admittance or its reciprocal — the impedance — for 2 =t o
completely characterizes Y(A) throughout the entire complex plane in
the sense that one is able to construct Y(4) from a knowledge of the values
of Re Y(A) alone by use of, for example, the Stieltjes inversion formula.
A detailed derivation of the properties given above can be found in the
books by Bode [5], and Guillemin [23], [24].

One of the most important common results of the theories of Meixner
and Konig, Youla et al, and Wu is that there is a one-to-one correspondence
between the linear passive systems they consider and the class of real
positive functions. Thus each linear passive system gives rise to a real
positive function and conversely to each real positive function one can
construct a linear passive system having the same real positive function
for its admittance. The analogous result for regular dissipative operators
and the more general linear passive system to which they correspond will
be established in § 5.

To conclude this section it should be mentioned that many but not all
of the above properties persist if distributed inductances, capacities and
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resistances are permitted and some even for wave-guide circuits where
the network equations have to be replaced by those of Maxwell. The
interested reader is referred to the papers by Richards [76], [77], Wigner
[101]—[103], and Frianz [17] where these matters are discussed in detail.
It will be shown that the important properties of analyticity in a half-plane
and rate of growth and representation all have their counterparts for
maximal closed dissipative operators.

4. Closed maximal dissipative and conservative operators

The derivation of the relations which exist between the class of closed
maximal dissipative operators in a Hilbert space and an appropriately
defined linear passive system will be carried out in two steps. In this
paragraph attention will be focused on the properties of maximal dissipative
operators alone and the discussion will contain both a summary of published
results and the proof of the new results which are needed. The following
paragraph will relate these results to linear passive systems and discuss
the relation between passivity and causality. The basic definition below
and the theorems 4.1—4.10 are all due to Phillips [70] although the first
was obtained independently by Dolph and Penzlin [10].

Definition 4.1. Let H, be a Hilbert space with an inner product (f,g) .
A linear operator A with domain D(A) is said to be dissipative if

2Re(Af,f)) = AfN)+(f.4f) =0, [fE€DA),

and to be maximal dissipative if it is not a proper restriction of any other
dissipative operator.

Theorem 4.1. Let A be a dissipative operator and suppose i > 0.
Then for g=Af— Af and f in D(A) one has ||f|| = |lg||, or for
R,(A)yg = (Al —A)tg = f one has ||R,(4)|| = 1/A. Further the map
lf,Af]l—>g of the graph G(4) = {f, Af; f€ D(A) Cc HyxH,} onto the
range R(I — A) is one-to-one and bicontinuous.

Theorem 4.2. Let 4 << 0 and suppose that A is a dissipative operator
with dense domain. Then A is maximal dissipative if and only if the range
R(AI — A) = H,.

Theorem 4.3. If A is maximal dissipative and closed, then it has a
dense domain.

Theorem 4.4. If A is amaximal dissipative operator with dense domain,
then so is its adjoint A*.

Theorem 4.5. Let A, be a dissipative operator with dense domain and
set By = A¥. Then there exist mazimal dissipative operators A and B,

2
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adjoints of each other and both having dense domains such that A D A, and
B c B,.
Definition 4.2. 4An operator A s called conservative if

Af, N+, Af) =0  for [fE€DA).

Theorem 4.6. The operator A isconservative if and only if ¢ A is sym-
metric. If A is conservative and maximal dissipative with dense domain the
1 A 1s maximal symmetric. Conversely, if ¢ A s maximal symmetric with
dense domain, then either A or (—A) is conservative and maximal dissipa-
twve. Finally A and A* are conservative with dense domain if and only if
i A s self-adjoint.

Theorem 4.7. Suppose A, is a closed conservative operator with dense
domain and set A, = —AF¥. Then each maximal dissipative extension of A,
is a restriction of A,.

Theorem 4.8. A mnecessary and sufficient condition for an operator A
to generate a strongly continuous semi-group of contraction operators on H,
to itself 1s that A be a maximal dissipative operator with dense domain.

Theorem 4.9. A necessary and sufficient condition for an operator A
to generate a strongly continuous semi-group of isometries is that A be
conservative and maximal dissipative with dense domain.

Theorem 4.10. A necessary and sufficient condition for a conservative
mazximal dissipative operator with dense domain to generate a strongly con-
tinuous group is that ¢ A be self-adjoint. In this case the group consists of
unitary operators.

While the material will not be needed here for the sake of completeness,
it should be mentioned that some of the above theorems have been general-
ized by Lumer and Phillips [56] to the semi-inner product Banach spaces
introduced by Lumer [55].

It is well known in the theory of self-adjoint operators in Hilbert space
that the resolution of the identity of the resolvent of a self-adjoint operator
A is the resolution of the identity of the operator 4 and conversely
(cf. [1] page 182). Partial results of this same sort are possible for maximal
dissipative operators using the improved representation of the resolvent
given in the next theorem following the suggestion of Phillips referred to
in the introduction. Before stating this, recall the

Definition 4.3. 4 one parameter family of bounded self-adjoint opera-
tors F(w) in the space H, is said to be a generalized resolution in the sense
of Navmark [1] if

(@) Flw) —Flw) =20 if o>0,,

(b) F(—o) = 0; F(+ ) = I (the identity operator) .

(¢) Flw—+0) = Flw).
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Naimark [1] also proved the following:

Theorem 4.11. If F(w) is an arbitrary generalized resolution of the
Hilbert space H,, then there exists a larger Hilbert space H which contains
H, as a subspace and there exists an orthogonal resolution of the identity
E(w) such that for each f€ H, one has

Fw)f = PE)f

where P is the projection operator from H to H,.

Since the proof of the new representation theorem depends essentially
on theorems due to Sz.-Nagy and Stone, their precise statement is included
for convenience.

Theorem 4.12. (Sz.-Nagy [93].) Let {S(t), t = 0} be a strongly con-
tinuous semi-group of contraction operators on. Hy. Then there exists a group
of unitary operators {U(t), —oo <t <o} on a larger Hilbert space H
containing H, as a subspace such that

St)f = PUHPf for fEH, t=0;

here P is the projection operator with range H,. The space H can be con-
structed in a minimal fashion so that it is spanned by U(t) f where [ isin
H, and — o <t << . In this case, the structure {H,,U(t),H} 1is
determined to within an isomorphism.

Theorem 4.13. (Stone [89].) All weakly continuous groups of unitary
transformations in a Hilbert space H admit the spectral representation

0

Ut) = / ¢ d B(o)

—0

where E(w) s a uniquely determined resolution of the identity.

It is now possible to state and prove the

Theorem 4.14. Let A be a maximal dissipative and closed operator in
the Hilbert space H,. Then for any A, Re 2 > 0, the resolvent exists and can
be represented uniquely as

ool

R(4) = (1] — A)" = /

— ®©

d F(o)

Tt — A

where F(w) is a generalized resolution of the identity and hence the projection
of orthogonal resolution of the identity in a space H containing H, as a
subspace. Further H can be constructed in a minimal fashion, and

2Re (R(A)f.,f) = BA(ASF./)+ ([, B(A)f) =0  for Red>0.
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To establish this result, recall that by definition (Hille and Phillips
[29]) that the resolvent of the semi-group S(t) whose existence is guaranteed
by theorem 4.8 is defined for any f€ H, by

oo

RAf =0Q1—4)f = / e 8(@t) fdt.

0

By Sz.-Nagy theorem it follows that

oo}

R(A)f = / e PUW)Fdt,

0

and by Stone’s theorem that this in turn is equal to

[ee] o)

R(A)f = / e—i'{/eiw‘ P E(v) f}dt,

— @

whence by Fubini’s theorem

R(A)f = f{/e“;"+i(”‘ dt }d (P E(w) f)

e}

_ de(w)f.
tw— A

—

Since R,(4) is a resolvent, it is defined for every f in Re 2> 0 and
hence has a range dense in H, and satisfies the Hilbert relations

R(4) — R (4) = — (A—u) B,(4) R, (4)

thus the theorem is proved. Now by consideration of the adjoint as in [9]
it follows that the representation is unique. Finally, if one sets

9 =R(A)f,
(AI—4A)yg =f,
the inequality for dissipative operators implies that
(AL —A)g,9)+ (g, (2L —4d)g) =0

so that
RB(A)f. 1)+ (f, R(4A) f) = 0.

In general the representation given here seems to involve a larger
Hilbert space than that deduced from the original representation of Dolph
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and Penzlin [10]. It is clear from the method of proof here that F(+ o) = I,
a property not established for the family of monotone functions used in
the representation given in [10]; and E. Griffin has found an example
where the monotone family used there fails to reach the identity. However,
when the monotone family, used in the original method of Dolph and
Penzlin [10], is a generalized resolution of the identity then the extension
can be carried out explicitly. An example of this is given in the appen-
dix I. To the best of my knowledge, no one has as yet succeeded in
carrying through a comparable example via the extension which depends
on the theorem of Sz.-Nagy used above.

A precise converse to the above theorem is not known at this time.
One can, however, prove the following:

Theorem 4.15. Let F(w) be a generalized resolution of the identity and
suppose:

(a) The one parameter bounded family of operators

©

d F(w)
o(A) =
o®) /iw—i

— 0

exists and has a dense range for all A such that Re 2 > 0.

(b) There exists one A, with Re Ay > 0 such that o(4,) f = 0 implies
that f = 0.

(¢)  The resolvent equations of Hilbert hold; namely,

0(2) — o(u) = — (A—p) o(4) o(u) -

Then there exists a maximal dissipative closed operator A whose resolvent
is p(A) for Re 2> 0 and moreover,

2Re (o(A)f,f) = (A f.f/)+ (f,eA)f) = 0  for Rei> 0.

To prove this, one first recalls that the hypotheses (b) and (c) are
sufficient for theorem 4.10 of Stone [89] so that a unique closed linear
operator A will exist and have a resolvent coinciding with ¢(4) for every
4, Re 2> 0. On the other hand, the representation (a) implies that

1
' I N
Ho(A)]] < Re 4 for Re 2> 0.

To obtain this estimate, the recent result of Schreiber’s [83] will be used.
He proved that for any ¢ in L

+ o
l
‘/QJ(w)d(F(w)f,g)‘ = llells VId (F@) fi9] = llelle 1] gl -



22 Ann. Acad. Scient. Fennica A.I. 336/9

In this expression || ||, is the L, normand V the total variation of
the measure d (F(w)f,g). Since

)

Y= e —2

in (o(4)f,q) it follows that if 2 =2+ 1y
o 1 1 - 1
Hlolle = esssup To— 7 = sup 2t g = &
so that choosing ¢ = ¢(4)f one has

. ST e(A) S
e f12 = (W) [, e ) = ! {Qel /1

from which the desired estimate follows.

Theorems by Foias [15] for Hilbert spaces and Kato [37] for locally
sequentially weakly compact Banach spaces imply that the properties of
dense range and the Hille—Yosida criterion are sufficient to guarantee that
the operator A defined by Stone’s theorem has a dense domain. In turn, an
operator satisfying the Hille—Yosida criterion and having a dense domain
is the infinitesimal generator of a strongly continuous family of contraction
operators. Finally, theorem 4.8 implies that the operator A must be
maximal dissipative as well as closed. This in turn, as in theorem 4.15
implies Re g(4) > 0. The main features of the last two results may be
summarized in the

Theorem 4.16. A necessary and sufficient condition that a one-para-
meter family of bounded operators having the representation of theorem 4.15
be the resolvent of a maximal disstpative operator in the half-plane Re 7. > 0
is that hypotheses of theorem 4.15 hold for them.

While the statement of this theorem is probably sufficient for most
purposes, it would be of interest to have a necessary and sufficient condition
stated in terms of the measure defined by F(w) instead of the assumption
in regard to the resolvent equations.

For the sake of completeness, the following two, as yet unpublished,
theorems of Lebow [52] should be mentioned in this section, rephrased
in the right half-plane of analyticity.

Theorem 4.17. If A is a maximal dissipative closed operator, then
proper vectors of real proper values of i A are proper vectors of (i A)*.

Theorem 4.18. If A is a maximal dissipative closed operator, then v A
has no real residual spectrum.

To summarize briefly, this section has demonstrated that the resolvents
of maximal dissipative operators possess properties of regularity and
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representation which are completely analogous to those of the so-called
positive real functions. For this reason, they might be termed »positive
real resolvents» and henceforth in this paper, they will be referred to in
this manner.

Definition 4.4. A one-parameter family of bounded operators satisfying
the hypotheses of theorem 4.15 will be called a positive real resolvent.

5. Positive real resolvents and linear passive Hilbert systems

If A denotes the maximal dissipative closed operator associated with
a positive real resolvent it is natural to associate with it the system

(5.1) — — Au = f(t)

in which » = u(f) and f(t) are functions from the real line to a Hilbert space
H and to ask to what extent does this abstract equation of evolution
possess properties analogous to those of linear passive systems.

Since A is in general an unbounded operator, the hypothesis that 4
is the infinitesimal generator of a strongly continuous semi-group of con-
traction operators is not sufficient to guarantee the existence of a solution
to (5.1) in general (cf. Kato [36]). Several sufficient additional conditions
are, however, known. Thus Phillips [69] proved that (5.1) has a strong
solution in Banach space if A satisfies the Hille—Yosida criterion in the
weak form due to him (cf. [36]) provided that f(f) was strongly continuous;
Kato [36] has proved that a solution will exist in a Banach space also if the
conditions on f(¢) are replaced by the assumption that f(¢) is in the domain
of A for every ¢ and if it is assumed that Af(!) and f(¢) are strongly
continuous in ¢.

For Hilbert spaces, the condition that Re (4w, u) = — « (v, u) hold
for some « > 0 for A maximal dissipative and closed is also sufficient
to guarantee that the associated semi-group S(t) will have an exponential
decay so that the solution to (5.1) will be square integrable with f(t).

This addition hypothesis is, of course, the usual required in the Lax—
Milgram lemma [48] if A is replaced by (—A4).

A somewhat more general sufficient condition of this same type can be
obtained by specializing some recent results of Kato [38], [39] obtained for
equations of the form (5.1) when A is allowed to depend on the time.
Recall that a complex-valued function ¢(u,v) is called a sesquilinear
form in a Hilbert space H if for w,v belonging to a linear subset D —
the domain — contained in H, ¢ is linear in % and anti-linear in ».
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Also recall that if ¢ is a sesquilinear form the relation ¢*(u ,v) = ¢(v , u)
defines another sesquilinear form ¢* — the adjoint form — with domain
D(¢*) = D(¢). Finally, recall that any sesquilinear form ¢ can be
written as

¢ = Rep +Img
with
(¢ + %),

(p — ¢%).

=
[«]
S
I
o Bl

Img =

Kato [39] calls a sesquilinear form ¢ regular if:
(a) D(p) is dense in H .
(b) Re ¢ is closed, (Re ¢)* = Re ¢, and non-negative in the sense
that there exists a constant o > 0 such that Reg(u,u) =« (v, u).
(¢) There exists a f = 0 such that

(5.2) Im p(u,w)] = BRegu,u).

Kato then proved the following:

Theorem 5.1. Let ¢ be a regular sesquilinear form. Then there is a
unique closed, maximal dissipative operator (—B) with domain D(B) C D(¢)
such that

plu,v) = (Bu,v) for w € D(B) and v € D(p) .

(—B) is called the regular dissipative operator associated with the regular
sesquilinear form ¢ . Similarly (—B%*) is the maximal dissipative operator
associated with ¢*, where ¢@(u,v) = (u,B*v) for u € D(p) and
v € D(B*) and D(B*) c D(gp) .

Sufficient conditions for a closed maximal dissipative operator (—B)
to be regular dissipative are not known, but Kato [39] has shown that if
the inequality (5.2) holds for p << 1, then (—B) is regularly dissipative.

Specializing theorems I and III of Kato [38], one can now conclude by
identifying (—B) with A in equation (5.1) that the following is true:

Theorem 5.2. If S(t) ts the semi-group of strongly continuous con-
traction operators generated by the regular dissipative operator A, then if
f@) is continuous in t, any strong solution of (5.1) must be expressible
in the form

(5.3) u(t) = S(t—0) u(0) + / S(t—s) f(s) ds .

Conversely, the u(t) given by (5.3) is a strict solution of (5.1) of f(¢) is Hélder
continuous on closed interval [0,T] for w(0) an arbitrary element of H.
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Other sufficient conditions are also known, (cf. e.g., Kato and Tanabe
[40]) and unquestionably somewhat weaker hypotheses will be discovered
in the future. Since the relationship between positive real resolvents and
linear systems of the form (5.1) fails to be exactly parallel to that between
positive real functions and linear passive systems only because of the
necessity for additional hypotheses sufficient to guarantee a solution to
(5.1), an attempt will be made in so far as is now possible to phrase this
relationship independent of any specific additional hypotheses.

To investigate this relationship, let d¢ denote an element of measure
on R' and recall the

Definition 5.1. 4 function f.: R'— H, is measurable if and only if
(f(t) , 9) is Lebesgue measurable on R for every g in H,.

Definition 5.2. 4 function f: R'—>H, s said to be Bochner inte-
grable if and only if it is measurable and

@] dt < .

Rl
The Bochner integral of f is then defined by
(/f(t) at,g) = /(f(t) 9) dt
\Rl ’ Rl

and satisfies

|[row| = [uona.

R

Using the notation of Wilcox [107], recall the
Definition 5.3. The space

L,(R'; H)) = Jf, f measurable and / [If12dt < oo]

J

Rl
1s a Hilbert space with a scalar product
[f. 9] = / (f(&) , g(t)) dt .
Rl

In particular, L,(R'; R') is the usual space of Lebesgue square-integrable
complexvalued functions on the real line R' and this is the space that
ocecurs in the theory of Youla et al [111] and Wu [109].
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Definition 5.4. The space

: d ) l ) df oo
L2=L2(@,R JHy) = \f. fEL(RY Hy) and € LyR M) |

This is a Hilbert space with a scalar product defined by

.- [ df(t) dg(t)\|
{fs9) = /l(f(t),g(t))"i‘(w, _d-t-)( dt .

The following theorem on integration by parts established by Wilcox
[107] will also be needed:
Theorem 5.3. If f, g arein LS, then

/ [(f'#) 5 g@) + (f&) , g’ NI dt = (f(t2) , 9(ts) — (f(t) > 9(8))

for any — oo <t <, < c0.

Henceforth, attention will be restricted to functions either inputs or
outputs which are in the space L3 even though several results would
still be true under somewhat weaker hypotheses. For example, to establish
the fact that the passivity postulate stated below is sufficient to imply
causality, one merely must assume that integrals of the form

/[(f(t) J@) + (FO) s f@)]dt < oo

exist for all s, — oo < s = {,, for functions which have the property that

lim (f(t), f(t)) = ©.

t—>—0

As noted earlier, in the scalar case this is an important generalization
since the above integral can fail to exist for important examples if s = - co.
Here the situation is unclear at this time so that, for simplicity, the results
will be stated for functions in Lg. In any case, should this restriction prove
to limiting, it is a simple matter to check which arguments are still valid.

With this in mind, one has

Definition 5.5. 4 linear relation of the form
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in which w = u(t) and f(t) are functions from the real line to the Hilbert space
L and where A is a time independent operator defined on Ly, will be
sard to be a linear passive Hilbert system if:

(1) The domain D(L) = D(A)N L3 is dense in L, .

(2) The equation Lu =f has a solution in L§ for every [ in L3
(i.e., the range of the operator L contains L3) .

(3) The system is passive in the sense that the inequality

Re / (L(w , 8) ,u(t)dt = 0

—

is valid for all w € L and all s, s=1,.

Since the operator A is independent of £, the above system will also
be obviously invariant under translations in time as is an ordinary linear
passive system.

Theorem 5.4. Any linear passive Hilbert system is causal in the sense
that if f€ LS has the property that f(t) =0 for —oo =t =4, and if
Lu=f then u(t)=0 foral t=t,

To prove this, let Lu, =f, and Lu,=f, for u,, uy in L3. By
linearity and passivity one has

s

0 = Re/ (@ fy + as fo) s (@ uy + ayu,)) dt

—00

s

— P Re / (o2 10) di + |y Re f o ) di

— —®

s

—|—Re{a1d2/(fl,u2)dt—l~dla2/ (fz,ul)dt}

—w —®

s

4 Re / (us 1) dt + |ag? Re / (o s ug) dt

-0

+%a1d2 {/ [(f1 s ue) + (uy, )] dt}

+%dl az{/[(f27ul) + (uq, /1) dt‘l .
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Thus, as in the proof of Cauchy’s inequality, it follows that the passivity
inequality and linearity imply that

s

’ 2 - 1
;/[(fl,uz) + (fz,ul)]dtb = 4Re[/(f1’u1)dt}Re{/(fz’uz)dtJ .

Now suppose that f;({) = 0 for ¢ =t,. Then this inequality implies that

[Garude =0, 5=,

o
—x0

Choosing f, = w,(¢) in ¢ ={, implies that u;(s) = 0 almost everywhere
for s =t,. This is moreover the only possible response to the input f; .
To verify this one computes and repeats the same argument with u(f)
equal to the difference of two assumed solutions corresponding to the same
input so that fi(f)=0.

Systems satisfying definition (5.6) include those of the following:

Theorem 5.5. The system
m Au = f(t)
considered in the space L3 is a linear passive Hilbert system if A s regularly
dissipative, and its resolvent is a positive real resolvent.

Since A is regularly dissipative and f isin L, a solution will exist
by Kato’s theorem [38], and since A is regularly dissipative, it is maximal
dissipative and closed and hence it will have a positive real resolvent by
the results of § 4. It only remains to verify that the passivity postulate
holds. For this, it is sufficient to compute

(%,U)—-(Au,u) = (f,u).

du
('ll«, —(E)_(u’AQL) = (’Lb,f),

from which, by theorem 5.3, it follows that

(u(s) , u(s)) — /[(A w,u) + (w, 4 w)]dt

L (o 2 [ o ama
= dt,u,+ u, dt, t — [( u’u) T (ua u)]

—0
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The last inequality follows from the fact that the first member of this chain
or relation is positive in virtue of the fact that A, being regularly
dissipative, is maximal dissipative and closed.

Conversely, one has the

Theorem 5.8. Sufficient conditions that a one-parameter family of bounded
operators having a dense range and the representation

(2o}

d F(w)
)» -
o) /m—z

—0

in the region Re A > 0 be the resolvent of a linear passive Hilbert system
are: (1) o(4) be a positive real resolvent; (2) the operator A whose
resolvent s o(1) be regularly dissipative.

This theorem is, of course, an immediate consequence of theorem 4.15
and the discussion of this section once the expression du/dt — A u = f(t)
is formed.

To conclude, it is apparent from the discussion that it is not possible
to state necessary and sufficient conditions at this time.

Appendix I
An application of the Dolph—Penzlin theorem

The following example was worked out by E. Griffin and represents
a case where the procedure of Dolph and Penzlin [10] does lead to a gener-
alized resolution of the identity. In particular, F (o) = I, and the example
is interesting in that one obtains a representation of a two dimensional
operator in terms of L, over the real line. To avoid confusion with the
extension theorem 3.14, the operator will be chosen to have its resolvent
regular in the upper half-plane. Under these circumstances the matrix

(—i 1
4=
satisfies the condition for a dissipative operator in the sense that
A — 4%
23

= ImA4d=<0.

Setting z =2 + ¢y one finds directly
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where D, = 2241z — 1 has zeros in the lower-half z plane at
(— @+ \/,3)/2 so that R(z) is seen to be analytic for Rez >0 in

accordance with the general theory. If U = (:’Z) then

(Rz) U ,U) = ]%“0 ((— n:—z—n:n——n: n) ) (Z) )

—z[m2+ m¥ — (ma +mn) —1 n?

= D,
Using Im (@ + bi)/(c + d i) = ‘2 ZE (@ + d?), it follows that

{(x—yz—zy—{g (x+2x92)‘

[ — | f — 7 mn — 2) |

Im (R() U, U) — {—x(mP + npP) gnern)} (—InP)

The Stieltjes inversions formula can be used to find the generalized
resolution of the identity F(w). Setting y = 0 and proceeding heuristically,
one finds, in differential form:

I a2 —1 x|

I (R@) U U) = 15k | {— o (mf2 4 @) — nw+ w0} (= [nf?)

where |[D? = [Dy@)]? = (a® — 1)> + a*.
Choosing base vectors U, = (1) , Uy= (?) and polarizing, one finds

0/
1 |2 . 22
__Lx—ll R
. . x
Im (R(@) Uy, Uy) = Im (R(@) Uy, U)) = 55,
1
Im (R(x) Uy, Uy) = \7[2

Thus the matrix has the form

_ (2@ |DP) z[(xD?)
(Im (R(z) U;, U;) = (x [ (@ |D]?) 1/(= [Diz))

_ (%] (V= D)) ~ D = D)
e !D!))(x/wn D) 1/ W= D).
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The functions =/ % n [D]) and 1/(\/ - |[D|) are orthogonal in
L,(— o, ©). The orthogonality follows at once since

(IDI,[D[ /lD,qu— 0

since one is integrating an odd function over an even integral. To show
that they are properly normalized, consider for example

o0 ee]

f 1 1/ dt
n}])[zdt:f{ 1

—o —

(o]

1 / dt
= . (t _ ei:(/G) (t . —11/6) (t + 6”/6)(t + e_i_.”6) .

This contour can be closed in the lower half-plane and evaluated by the
calculus of residues to the obvious poles so that one obtains

ee]

[
njDFt

— 279
= B (e_in/6 _ ei.-z/G) (e—i:z/6 + ei,-r,/ﬁ) e_i,-,/s
2
+ ) (_ ei.—z,’6 o e_i.-r/G) (_ ei,—z;‘6 ‘1\_ e_i:z/‘()) ei.—u‘6
ein/6 + e_i,—[/éy
= = 1.

V3

A similar calculation shows that

It is now possible to inbed R(z) in L,(— oo, o) by mapping

x } 1
VD’ Ve Va |D|

If one defines M to be the subspace spanned by the above function,
it is also easy to see that for any f in M

U, —

; t)[2 dt

— Zz

—x0
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For this it suffices to compute (R(z) U;, U;) . Thus, for example,

(oo}

2 dt
(R(z) Uy, Uy) = / < DR —2)

—00

ei:t/6 e—i:z/3 e—i:z/ﬁ ei:{/3 2
B V3 (e — 2) + V3 (— &6 — z) - —1—)_0'
Similarly,
RV U 2 / tdt 1
((2) 1,U2):( (z)UZ’Ul): nlD\z(t—z):_E,’
dt 1+ 2z
(R(z)UzaUz):/;m:_ Dy

— 0

Thus one recovers the original resolvent from this embedding. Moreover,
it follows that the operator F(t) represents the projection of the interval
(—o0, ) onto (—oo,t) and that extended operator of the matrix A,
say AT is simply multiplication by ¢ .

Appendix II

A theorem of Greenstein for the right half-plane

In [21], Greenstein proved:
Theorem A.Il. If g(z) is given by
dy(t)
g(z) = PR Im g(z) >0 for Im 2> 0,

where y(t) is a mass distribution normalized by
y(—ow) = 0, yt —0) = y(t), —oo<t< ©,

then g¢(z) can be continued across (a , b) into the lower half-plane if and only
if y(t) is real analytic in (a,b). If y(t) is real analytic in (a, b) then the
continuation of g(z) across (a,Db) is given by
9(z) = 9@&) +27iy'(2) -
To translate this result to the right-half plane, given f(z) a function
such that Re f(z) >0 for Rez> 0, choose

gz) = if(—t2), s = 1it, m(s) = p(—18)
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the representation for ¢(z) implies that

10

if(—iz) = i/dm(s)

) s—1z
or, if A= —142z,s=1tu, u real, that
A /dm(u) Rel>0
f()_ u—"}.’ (5] > .

—0

Assuming continuation possible, it follows that
im'(—2) = y'(2) for ITmz < 0and Rei <0,

so that the above continuation formula becomes

fQ) = —f(—2) — 2am'(— 2) for Rei < 0.

Note added in proof-reference (25 May 1963)

To page 6: A preprint by A. Grossman entitled »Nested Hilbert spaces in
quantum mechanics. I» is now available from the Institute for Advanced Study,
Princeton (N.J.). The author’s abstract is as follows: »A nested Hilbert space is
a pair of Hilbert spaces H,, H,, each of which is in a certain sense identified
with a dense subset of the other.» (As in the Friedrichs’ extension of semi-bounded
operators; C. L.D.) »These structures are used here to study analytic continuation
into 'unphysical sheets’ and to discuss non-normalizable states of quantum-mechani-
cal system.»
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