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Positive real resolvents and linear passive Hilbert systems*

Ded'icated to R. §. Phi,lli,ps onl lr;is 50th bi,rthd,ay

1. Introiluction

The theory of dissipative operators in Hilbert space has been extensively

developed and applied to a wide variety of problems within recent, years.

While my earlier prediction of [9] that this theory would soon become a

standard part of an advanced mathematical education has not, ;ret been

fulfilled, recent advances make it most likely that this soon will be the

case. Rather than attempting a complete surYey of this rapidly expanding

theory, attention here will be mainly focused on a reinterpretation, believed

to be new at, least in this generality, of a large part, of the existing theory
from the view-point of the so-called »black box» concept familiar in the
mathematics of system engineering. The motivation which led to the point
of view to be presented here stems from a question raised privately by
R,. S. Phillips concerning the reasons why Penzlin and myself were interested

in having a Stieltjes type representation for the resolvents of dissipative

operators in a half-plane (cf. Dolph and Penzlin [10], and Dolph [9]). As a

result of the fact that Phillips in this same conversation also suggested a

way of obtaining a stronger result than those referred to; namely, theorem

4.14 of this paper, it, is now possible not only to provide an answer to his

question which has intrinsic interest in operator theory but also one which
points the way toward a theory of the transient behavior of a class of
linear systems which can be associated w-ith this representation in a natural
way. since many of the irrrportant physical problems of interest today fall
into this class, it is hoped that the discussion here will be provocative and

will eventually lead to the development of a systematic theory of the
transient behavior of continuous linear systems.

To be more specific, the correspondence which exists between the

so-called class of positive real functions (admittance or impedances of linear
passive networks furnish the best knoll-n examples) and the resolvents

of maximal dissipative closed operators in the sense of Phillips [70] (for

* Part of this resoarch has boon supported by a National §oience Foundation Grant.
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precise definition see § 4) will be examined in detail. Interpreting causality
to mean that a linear system cannot show a response before a signal is
applied, the analytical properties possessed by this class of resolvents
makes it possible to generalize the relationship which exists for positive
real functions and linear passive systems in the sense of König and Meixner

[44], Wu [109], and Youla, Castriota and Carlin [f 11]. That is, it will be
shown that to each resolvent, of the subclass of maximal dissipative opera-
tors, which are regularly dissipative in the sense of Kato [39], there exists
an abstract, linear system which is defined in a Hilbert space and which
possesses the additional properties of being invariant under time trans-
lations, causal, passive (and hence dissipative) and conversely, that the
abstract equation of evolution generated by a time invariant regular
dissipative operator has a resolvent, possessing properties analogous to
those of positive real functions. In fact the larger class of resolvents of
maximal dissipative closed operators have properties analogous to positive
real functions and will be termed f,he class of »positive real resolvents».
Wheneyer the associated abstract equation of evolution admits a strict
solution, it will correspondingly be termed a »linear passive Hilbert system».
tr'or precise definition see § 4 and § 5 respectively. In the discussion leading
to these results, & new chatacterization of positive real resolvents will be
derived. 'Ihis characterization is of independent mathematical interest
since it is a partial generalization of the relationship which exists between
a self-adjoint, operator and its resolvent.

The first modern extensiye general theory of linear passive systems
is due to König and Meixner [44] and was the direct result of Meixner's [58]
deduction of the condition of passivity from thermodynamic considerations.
This theory emphasizes continuity properties and does not use the results
of Hilbert space theory for functions in crrntrast to that of Wu [109],
Youla et al [Ill]. The last, named authors, holever, madc an important
addition to the general structure of these theories since they were in fact
able to shorv l,hat Meixner's condition of passivitv \li&s suffieient to
guarantee causality. 'l'heir considcr:ations rvill be extended to thc more
general case treated here in § 5.

In addition to these treatments which, with the exception of work of
König [43], have all been concerned with the scalar Hilbert space theory,
F'ourös and Segal [16] discussed causality for an abstract linear system
within a framework closely related to that which will be treated here.

'l'hey considered a class of inputs and outputs consisting of the pre-Hilbert
spaces of linear sets of ,squa,re integrable functions on a real vector group
to a countable complex Hilbert space 1{. Under reasonable condition they
were able to establish the existence of a »gain function» in their terminology

- a resolvent in ours - such that in terms of the Fourier transform on the
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dual group, the transformed output was related to the transformed input
by simple multiplication. Moreover, for a bounded set of such operators,
inyariant under translation, they were able to proye that causality with
respect to a cone was equivalent to the existence of a bounded analytic
extension ofthe »gain» to the »tube» over the dual ofthe group. An interest-
ing application of their results in combination with the theory of the shift
operator due originally to Beurling [3] and then generalized by Lax [47]
and Halmos [25] has just been made by Lax and Phillips [50], [51].

Here the group will be specialized to the real line and the integral over
the group to the Bochner integral. Also semi-group rather than Fourier
transform methods will be used and in fact it is the analogy which exists
between Laplace transform theory and semi-group theory (cf. Hille and
Phillips [29], and Phillips [71]) which has been the main guide leading to
the theory of positive real resolvents which will be presented here. Within
this framework, the fact that the resolvent has an analytic extension to
a whole half-plane follows readily from known theorems of Sz.-I{agy, Phillips
and Stone - see theorem 4.14. While the author believes that many of the
new results presented here unquestionably have their counterparts in the
Bourös-Segal theory he does not, feel competent to so phrase and prove
them within the more general group context.

The results so far achieved indicate clearly that the analogy between
Laplace transform theory and semi-group theory is capable of much further
exploitation, and it is our firm belief that it contains the seeds of a new
mathematical discipline - the theory of the transient behavior of con-
tinuous linear systems just as the theory of Laplace transformations has
given rise to the theory of the transient behavior of discrete linear systems.

Some ofthe general features and advantages ofsuch a theory are already
apparent from the known examples discussed by Titchmarsh [97], [98],
Friedman [18], Dolph [9], Beck and Nussenzveig l2), I{ussenzveig [62],
[63], and Petzold [68]. In all of these cases it has been possible to continue
the matrix elements formed with the resolvent and elements of compact
support from the original half-plane of analyticity into at least part of the
other half-plane where new complex singularities are then found. These
new singularities, while not part of the spectrum, give rise to the analogue
of the Heaviside expansion theorem for the associated continuous system.
The resulting series expansion is in terms of transient, non-orthogonal
modes, which have no individual existence but which do exist collectively
and yield a representation which appea,rs to have far wider and superior
convergent properties than any other that are known (cf. for example,
the discussion in 163l). Loosely speaking this representation can be said
to represent the »peaks» or »resonances» in the continuous spectrum of the
operator and as already recognized by Heitler [28] - their use facilitates
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many of the calculations in physics where detailed consideration of the

continuous spectra is necessary. In addition, these examples already make

it clear, because of exponential growth associated with the complex singulari-

ties, that it is only matrix elements of the above form that offer any

possibility for continuation within the framework of a Hilbert space theory.

Thus one must conclude with Höhler [30] that attempts by schönberg

[7g]-ig1] to perform the corresponding continuation of the resolvent are

incorrect as stated.
This does not, of course, preclude the possibility that the use of a

different space might result in a simpler, conceptually more satisfying

theory. A promising beginning in this direction has apparently been made

by A. Grossman of the Institute for Advanced studyl. while no details are

yet available, he appears to have been able to imbed Hilbert, spaces in a

distribution space large enough to admit functions of exponential growth

and still small enough so that schrödinger's equation still has a unique

solution. Moreover, in this space the resolvent itself can be continued

analytically, and its complex singularities appea,r naturail;, on Riernann

surfaces as in the spherical shell model treated in detail by Petzold [68]

and Nussenzveig [63]. The details should prove most interesting and their

publication is eagerll, au'aited.
Returning to the Hilbert space situation, little if anything is known

in general concerning the possibility of continuing the matrix elements of
the resolvent of a general maximal dissipative closed operator or even of a

self-adjoint operator. Ladyzenskaja [+5] succeeded in carrying out a

continuation for the scattering integral equation associated with a rvave

equation having a potential of compact support but the resulting con-

tinuation was too limited to lead to neu. singularities. For the potential

free wave equation in thlee dimensions Lax and Phillips [50], [51] have

recently succeeded in analyticallv continuing the associated scattering

matrix from one half-plane into a strip in the other halfplane rlrith im-

portant consequences for the decav problern. These Consequences are

sketched in Lax, llorau-etz and Philllps [a9].
Some information concerning u'hen such continuation is not useful has

recentiy been deduced b1- llcKelrel- [ö7]. Ior the class of minimal self-

adjoint extensions of symmetric operators. he rvas able to prove that the

representation of the resolvent of a s1-lnmetric operator in the form of the

projection of a resolvent ofits self-adjoint extension in a half-plane retained

its meaning on an interval of the axis if and onl1- if the resolvent of the

self-adjoint extension could be analytically continued through this interval
and that this, in turn, required it to be continuous and self-adjoint on the

1 Personal conversations with Dr.
also the note added in proof-reference,

A. Grcssman ancl Frofessor B. Zurntno (cf.

p. 33).
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interval. These results imply that the corresponding matrix elements
would be analytic across such an interval and thus could not introduce
the complex singularities necessary for the transient, theory.

Perhaps the most promising attack on the continuation problem of
resolvents within a Hilbert space framework depends on a result of Green-
stein l21l and leads to the independent interesting question of whenis a

generaiized resolution of identity real analytic on an interval of the axis.
The corresponding question involving absolute continuity rather than
analyticity has been the subject of several recent investigations; one of
the most recent being that of Schreiber [83]. fn a form appropriate for
the theory to be developed in this paper, Greenstein's result is as follows:

Theorem 7.7. A necessarA q,nd, sufficient condition thq,t an anal,ytic

functi,on fQ,) with positiae real part, Re /(,1) ) 0 for Re l. > 0, whi.ch
in this region adm,its the representation

f (Å,)

/r
I
I

IU
_ (Ja\

d rn,Q»)
.^1

?, (D /.'

adnxits an analytic continuat,ion through an interaal, a ! Im ), < b i,s tha,t

m(1) be real, ana,lytic for a,l : Im ), in thi,s interaal. When this conclit,ion
is sati,sfded,, the continuat,ion to the regi,on Re .1 < 0 i,s giaen by the relation

l(1) : f(- 1) - 2nrn'(- ),).

(Since the original formulation involved the upper half-plane, the
necessary transformation for the above form is given in Appendix II for
the reader's convenience.)

X'or the continuation problem, the main result to be developed in
this paper is that of theorem 4.14 which implies that the matrix elements
formed by the inner product of the resolvent of a maximal dissipative
closed operator with functions of compact support are preeisely functions
admitting the representation necessary for the application of Greenstein's
theorem. The continuation problem is therefore reduced to the question
of discovering additional conditions sufficient to guarantee that the weight
function involving the generalized resolution of the identity is real analytic.
Llnfortunately, this problem continues to remain open.

The other results to be developed here, however, are of intrinsic interest
since as previously stated they represent a considerable generalization of
the theory of so-called positive real functions as suggested by the corre-
spondence between the theory of Laplace transform and thetheoryof semi-
groups. To initiate this correspondence, consider the system of differential
equation
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p-f

in which p and. f are n dimensional vectors in .8" and A an n x n
constant matrix. A system of this form is general enough to encompass the
equations of linear lumped passive networks. If it is solved by the method
of Laplace transforms under the assumption (for convenience only) that
all initial conditions a;,e zero, then one finds if, for example,

that
F : Qr - l1-rn' .

This relationship, as in the theory of Fourös and Segal [6] is of the
form, the transformed output is equal to the product of an admittance
operator - the resolvent - or »gain» function and the transformed input.
IIow if one uses the formal analogy between Laplace transform theory and

semi-groups and, as in Hille and Phillips [29] page 337, one finds that the
resolvent of the infinitesimal generator is the Laplace transform of the
semi-group operator and conversely that the semi-group operator is obtaina-
ble from the resolvent by inversion of the Laplace integral for a suitable
integration path c. If S(r) denotes the semi-group operator and R^(A)
the resolvent of the generating operator A, t'hen

f
I e-h s1t1 dl : Rt(a) ,

{
lr

'? " 
't J 

e-k R^1A1 il' : s(t) '

Thus one sees easily tnrt tfr" resolvent (A I - a1-r clearly plays the
role of an admittance operator whenever A can be interpreted as the
infinitesimal generator of a semi-group. Actually, although it is somewhat

aside from our main considerations, one can use an observation of my
colleague, W. Root, to the effect that »feedback systems» so fundamental to
our automated society can also be interpreted as the theory ofthe resolvent.

It is even possible to phrase much of the classical mathematical procedures

in this language. X'or example, using this remark, I observed that any

wellset elliptical problem of the form

dp
-:- A
dt

J

v
1

Le +f
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can be so interpreted by constructing the Green's function of

If the associated integral operator is denoted by A again, the solution
to the given problem is of the form

E : 0r 1- tl-r (LAf)

in which the right-hand side is in the canonical form of thefeedbackcircuit
shown in the figure below. Obviously, in this interpretation, the values of
), for which Q,I + 1)-' does not exist - the discrete spectra - must
correspond to regimes of instability. While it will not be pursued here,
the suggestion of W. Root that the entire known theory of feedback systems
be re-examined from the point of view of resolvents and semi-groups is
most suggestive and worthy of further investigation.

Fig. I

Before pursuing in more detail the correspondence suggested by the
above consideration, § 2 u'ill be devoted to a brief sketch of the occurrence
of the »black box» or admittance (or impedance) concepts in physics and
may be omitted either by physicists or by nathematicians who are not
interested in possible applications. § 3 will summarize the properties of
linear passive systems as they occur, for example, in network theory.
§ a will be mainly devoted to a summary of the aspects of the theory of
maximal dissipative closed operators necessary for the ensuing discussion.

§ 5 will discuss some of the less obvious correspondences which exist between
linear passive systems as treated in § 3 and the theory developed in § a.

In particular, the relationship between passivity and causality will be
discussed in Hilbert space for regularly dissipative operators in the sense

of Kato [39]. The påper concludes with two appendices, the first devoted
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to an example of Griffin in which the original method of Dolph and Penzlin

[10] is used to construct an explicit representation of the resolvent of a
dissipative operator and the second given over to the reformulation of
Greenstein's theorem [21] appropriate for the right half-plane.

2. The admittance or black box concept in physics

In most physical theories two formulations are usually possible. The
first and most historical approach is based on the concept of causality.
The physical quantity, whether a voltage, a quantum rvave function, an
electromagnetic wave, etc. is assumed known at some definite time (the
initial condition) and then calculated at a later time by means of an
appropriate equation as, for example, Schrödinger's for the quantum
wave problem. The method of calculation is in. essence the method of
semi-groups v'hich often are time dependent (cf. the discussion in Kato
[36], [3S]). In the other formulation, a description of part, of the state of
the system - e. g. all incoming waves - is assumed to be known for all
times and the remaining part of the state of the system - e. g. all outgoing
waves - are then calculated for all times by means of a postulated inter-
action model. The interaction mechanism takes place in a region - the
»black box» - about which usually little is known. In network theory
where this formulation was first developed systematically, the interaction
mechanism is usually represented by an admittance or impedance function
which characterizes the frequency response properties of the netrryork.

The network in turn, if it is causal, can be realized in a number of equivalent
ways, all of which have the same frequency response. In nuclear physics,
the black box »corresponds to the so-called internal region» rvhere the
colliding particles are close together and interact strongly. Because of
the nuclear scale, all real observations must take place essentially at
infinity and thus it is natural that this second formulation u.ould be more
convenient for the discussion of asymptotic properties. The complicated
internal mechanism is replaced by. a boundary condition on the surface
of the internal region and the theor;. inr.oh'es only the asymptotic properties
of the input, and output states of the svstem. and the »admittance» relation
between them.

The usefulness of the »black box» point of vierv has been commented
on by many authors including Heisenberg [26], [27], Wigner [100], Gross

[22], Meixner [60], Zadeh [112], and Falkoff [1a]. Although the last named
author never published a paper corresponding to the following abstract,
his summary is most, succinct and will be quoted:
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»Impeilance Concept'i,n Nuclear Scatteringt»

»The description of the scattering of incident particles by complex

nuclei has much in common with the methods used in describing the

scattering of e ectromagnetic waYes by obstacles or the effects of dis-

continuities in wave guide and transmission line problems. Many of the

general features of both kinds of scattering, e. g. reciprocity conditions,

conservation laws, resonant frequencies and connected formulas may be

established within the framework of a common formalism. In particular,

the familiar impedance concept of electrical network theory has its counter-

part in the 'Iogarithmic derivative' of the wave function for the quantum

mechanical description of the nuclear scattering. Hence all the well-known

properties of the impedance as a function of frequency have immediate

application to the energy dependence of nuclear cross sections' As a further
example of the parallelism, the counterpart of the Breit-Wigner re§onance

formula and the Campbell-tr'oster theorem will be given'»

In the theories of the compound nucleus, these observations have been

used extensively in the .B-matrix theory of wigner-Eisenbud [105] (cf. the

other references to wigner and the review article of Lane and Thomas

[46]), as well as in the Kapur-Peierls l33l formalism (cf. also Peierls [65]
and [67] and the review article by Brown [6]). Bloch [a] has presented a

beautiful unification of these two approaches by introducing a Hamiltonian
containing a singular boundary value operator. Upon its inversion the

wigner-Eisenbud or Kapur-Peierls theory results by a choice of an

appropriate basis in the Hilbert space of the internal region. Finally,
siegert [87] introduced a theory based on radio-active states which is
also closely related to the discussion by Petzold [68]. This theory was

later extend.ed by Humblet [31] by the use of the theory of meromorphic

functions and as such is closely related to the method used by Nussen-

zveig [63].
There are other recent, developments in physics which al.e al§o closely

related to the matter at hand. For example, Regge in [73] and [7a] applied

the well-known (since l9l8) watson transformation (cf. sommerfeld l88l),
a frequently used device in more classical propagation problems, to continue

the orbital momentum j of the radial Schrödinger equation from discrete

integral values to the complex plane. As a result he was able to show that
und.er reasonable conditions, satisfied by most field theoretical potentials,

the scattering amplitude at §ome fixed frequency determined the

potential uniquely whenever it existed. Moreover, for the special class of
time independent potentials which were capable of analytic continuation
into a bounded region in the complex plane, the scattering amplitude
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can be continued to arbitrary large negative values of the eosine of the
§cattering angle and thus for arbitrary large real and positive transmitted
momentum. This ena,bles him to establish the Mandelstam dispersion
relations over a wider range and has led to a better understanding of so-
called shadow states, bound states, and resonances. Many physicists
believe that the successful extensions of his ideas to quantum field theory
hold much promise for the future (cf. Chew [8]).

The attempts at a quantum field theory adequate for unstable particles
also involve ideas and methods which, if successful and rigorous, would
require the existence of a transient theory of continuous systems. As of
1958, of the sixteen known elementary particles all but four were known
to be unstable. Recents attempts at a theory of the unstable particles
are based on a remark of Peierls [66] who suggested that the complex poles
of the so-called »propagator» or resolvent in the second sheet of the Riemann
surface can be used to account for the unstable states in the Lee model.
This problem can also be viewed as a perturbation problem for a Hamil-
tonian with a continuous spectrum having a discrete eigenvalue embedded
in it and the unstable states arise from analytic continuation through the
continuous spectrum (cf. Zumino [113] and [rla] and L6vy [53] and fSal).
This subject is also intimately related to the work of Friedrichs [19], [20],
Rejto [75], and Schwartz [84], who have develope da rigorous theory for
sufficiently weak and smooth perturbations. On the other hand, as Ldvy
has remarked [53]:

»The great advantage of the propagators' method, apart from the fact
that it is 'natural' and independent of the various production mechanisms,
is that it involves only the assumption of a 'field' g but no asymptotic
'free' states into which the particles go when t --> q . . . . »

»Unfortunately, the propagators' method has also a disadvantage:
the Riemann surface in a realistic theory will have an infinite number of
sheets, a new one starting at each yalue ofthe energy corresponding to the
threshold of a new real process. Each of these sheets will contain poles,
and an additional physical principle is necessary to decide which one has
the correct physical meaning in order to represent the complete mass of an
unstable particle.»

All of these theories, whether for networks, compound nucleus, or
unstable particles, make extensive use of the concept of the resolvent
(i. e. the admittance, the propagator, or the Green's function) and the
methods of analytic continuation. The resolvent is, of course, at the heart
of linear applied mathematics since once it, has been constructed, usually
in the appropriate concrete form of an impedance or admittance function
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or as &n integral operator having a Green's function for its kernel, both
the applied mathematician and physicist uses its singularities to obtain
various expansion theorems and completeness relations. fn mathematics
it can be used as a basis for developing the spectral theory for both bounded
and unbounded operators in a Hilbert spaces as in Stone [89] or Achieser
and Glasman [t] and the projection properties associated with its contour
integral over isolated parts of the spectrum not only form the basis for
the rigorous perturbation theories of Sz.-Nagy [90]- [92] and Kato [34], [35]
but represent the basis for an operational calculus of operators in Banach
spaces (cf. e. 9., Riesz and Sz.-I{agy [78], Taylor [95], 1961, and Dunford
[1I]-[13]). Since until very recently, mathematicians concentrated on
self-adjoint problems where the resolvent exists everywhere in the plane
except on the real line (or imaginary axis in semi-group theory), the theory
of analytic continuation has not been systematically combined with the
theory of the resolvent, although as noted in [9], the continuation of the
resolvent from one half-plane to another when possible, usually gives rise
to new phenomenon discussed in § f . To repeat, it is hoped that the dis-
cussion here will stimulate and draw the attention of other mathematicians
to this gap and v'ill cause & new discipiine to emerge.

3. Linear passive systems anal positive real lunctions

A linear passive system is universally required to satisfy four conditions.
If -I denotes a suitably chosen class of inputs and O a corresponding
class of outputs and if -L is used to denote the functional operation which
assigns to each element J of I a unique element fo of O, the map
L f : /o is required to be:

l. Linear; i,.e. L(arfr* azf) : atlh+ a,zLfz when ar, a2 d,re

compler numbers;
2. T ranslat'ional inuari,a,nt 'in t'ime ; 'i. e. ,f f , g €

fo, all t then Lf(t-s) - g(t-s) fo, all t;
I and g(t): Lf(t)

for t !to;
4. Pass'i,ae or d,issiltatiae;'i.e. for any f e I w'ith associated, Lf e O,

the cond,ition

R. lLf 
*f d,t. o

_an

must ltold, fo, a, su'itably defineil product r)*»).

forallt(f*
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The closely related concept of a linear scattering system is due to

Meixner f60] and is sometime more conYenient, for some physical problems.

In such a system with corresponding classes I and Or postulates I, 2

and 3 are assumed to hold and postulate 4 is replaced by
4'. Passiaity for scattering sgstems: i.e. for any f e I and, ussociated,

Lf e q, the relation

A. r. 336/9

Lf*Lfdt for0ll tSto

must hold, for a su'i,tablg d,efined' prod,uct »*».

Now as Meixner observed, given the product »*» there is a one-to-one

correspondence between linear passive systems and linear scattering

systems. This results from the fact that the condition of 4' can be written as

Re lfq - Lf(t)1 * [/(,) 1- Lf(t)]dt 
= 

o

sothatif f, Lf areelementsof alinearscatteringsystem,then /-Lf ,

f + L f are elements in a linear passive system and vice Yersa.

According to Meixner [60] and Gross [22] the first t'hree postulates

are due to Duhamel and were also employed by Boltzman' The fourth
postulate has only evolved comparatively recently although an incorrect
form with the upper limit of the integral set equal to plus infinity has

been used for some time in network theory (cf. Wu 1109], Carlin [7]. Oono

[64], and Raisbeck [72]). The correct, form was deduced b]- ]leixner [58]
from thermodynamic considerations and Youla, Castriota and Carlin [111]
not only pointed out (by a counter example) that the plus infinity form may
not be meaningful for even the simplest netrvorks but they were the first
to obtain the important result that postulate 4 - passivity - implies postu-

late 3 - causality. Their argument can be easih. extended to the Hilbert
space situation and this wiII be done in § 5.

Depending on the choices made for the classes I, O and the product
»*» it is possible to derive slightly different theories. Thus to put continuity
properties in the foreground and avoid the complications of generalized

integrals and distribution theory, König and Meixner [44] chose 1 to be

the class of real functions m-times differentiabie on the interval

- oo ( t < a (not necessarily the same interval for each function) and

chose O to be the corresponding class C, with »*» an ordinary product
of two functions. Youla et aI [111] chose 1 and O to be the Lebesque

j_
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space of square-integral ??-component column and row vectors with an
inner product defined by

f(a,b): I a"bdt,
!*

where the bar denotes conjugation and ar the transpose of the column
yector a. Wu [09] made a similar choice while, as already noted in the
introduction, X'ourös and Segal [16] chose 1 and O to be the pre-Hilbert
spa,ces of the linear set of square integrable functions say H on a real
vector group G to a separable complex Hilbert space K with an inner
product defined by

(f , s), (f (s) , s(a))* dn

where the subscripts »ä» and »K» indicate inner products in the respective
space and d,a is the element of Lebesgue me&sure on G. Clearly their
framework includes that of Youla et al [rl1] and Wu [09]. Here a similar
situation will be used in § 5 except attention will be restricted to the real
line and a Bochner integral used.

In terms of these theories by introduction of a Laplace or X'ourier
transform it is possible to establish a relation of the form

/o?') : YQ,) I(^)

where the I, Io are the transforms of f, fo and Y represents the
admittance or »gain» or resolvent. Restricting attention for the moment
to the network case consisting either of lumped reactances (inductances
and capacities) or relaxation elements (resistance and inductance or resist-
ances and capacities) the admittance y(2) is a so-called positive real
function and has the follov-ing properties:

(I) 1f os anal,gti,c i,n the right-half plane ercept gtossi,bly on the 'imagi,nary
aruis;

(2) Re YQ,) > 0 for Re,l > 0 ;

(3) lls real part in the fi,rst quad,rant, wi,th the ercept'ion of the imagi,nary
aris must be positiae;

(4) If it coruesponds to a reactance network, it may haae only simple
pol,es on the i,magi,nary aris;

(5) If ,it coruespond,s to a rel,arat'ion netuork, i,t may haue poles only on

the negatiue real, aru'i,s and, the resid,ues u,t fini,te poles are negatiae real' for RL
networlts and, posi,ti,ae real, for RC netwoilcs.

15
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It may be proved that a positive-real function ad.mits the unique
representation

:
I+J f ic,t 7

. . dp(u),
A ,LO)

where
(a) q(al) is monotonically increasing, odd and bounded,
(b) s(r) : å [e(, + 0) + s(, - 0)] ,

(c) s(* 0) - s(- 0) : 0.
In general q(co), the distribution function, is the sum of a discontinuous

part Qa, 'u,-hich is everywhere constant apart from its utmost denumerable

points of discontinuity, a singular part Q,, which is continuous but has

a derivative : 0 almost everywhere, and an absolutelv continuous part

Qo, having a derivative almost everyw-here. Electrical netr,-orks of the
reactance type have distribution functions of the type 9a, u'hile other
networks of lumped elements have spectral functions which in general

consist of sums of pa and g". Examples have been constructed hov'ever,
where special spectral functions of the singular type occur (cf. Wu and
Pickard [110] ).

While such a complete charactetization of RLC networks of lumped
constants cannot, be given, their admittance are still regular in the right
half-plane and they can possess only simpie poles on the imaginary axis
with positive real residues. Other poles may have any relative position
and multiplicity. For all of these networks, howevet, a knov'ledge of the
real part of the admittance or its reciprocal - the impedance - for )' : i a
completely characterizes I(,i) throughout the entire complex plane in
the sense that one is able to construcf yQ') from a knorvledge of the values

of Re I(,1) alone by use of, for example, the Stieltjes inversion formula.
A detailed derivation of the properties given above can be found in the
books by Bode [5], and Guillemin 123), 124).

One of the most important common results of the theories of Meixner
and König, Youla et al, and Wu is that there is a one-to-one correspondence

between the linear passive systems thev consider and the class of real
positive functions. Thus each linear passive system gives rise to a real
positive function and conversely to each real positive function one ca,n

construct a linear passive system having the same real positive function
for its admittance. The analogous result, for regular dissipative operators
and the more general linear passive system to which they correspond will
be established in § 5.

To conclude this section it should be mentioned that many but not all
of the above properties persist if distributed inductances, capacities and
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resistances are permitted and some even for wave-guide circuits where
the network equations have to be replaced by those of Maxwell. The
interested reader is referred to the papers by Richards [76], [77], Wigner
[101]-[103], and Eränz [I7] where these matters are discussed in detail.
It will be shown that the important properties of analyticity in a half-plane
and rate of growth and representation all have their counterparts for
maximal closed dissipative operators.

4. Closeil maximal dissipative and conservative operators

The derivation of the relations which exist, between the class of closed
maximal dissipative operators in a Hilbert space and an appropriately
defined linear passive system will be carried out in two steps. In this
paragraph attention will be focused on the properties of maximal dissipative
operators alone and the discussion will contain both a summary of published
results and the proof of the new results which are needed. The following
paragraph will relate these results to linear passive systems and discuss

the relation between passivity and causality. The basic definition below
and the theorems 4.1-4.10 are all due to Phillips [70] although the first
was obtained independently by Dolph and Penzlin [10].

Definition 4.1. Let Ho be a Hilbert space with an'inner prod,uct (f , S) .

A l,i,near operator A with d,omain D(A) is said, to be dissiytatiae if

and, to be marimal, dissipatioe i,f i,t i,s not a proper restr'iction of any other

d,i,ssipatiue operator.
Theorem 4.1. Let A be a d,i,ssi,ltatiae operator and, suppose 1> 0.

Then for S: ),f - Af and, f in D(A) one has ll/li < llgll, or for
R^(A)g : (11 - A1-tg : I onehas ll&^(A)ll = 

rll. Iurther themap

lf ,Afl-ts of thegraph G(A):{f ,Af ;f eD@)cHrxEr) cntothe
range R(I - A) is one-to-one und, bicont'inuous.

Theorem 4.2. Let ), 10 arud, suppose that A 'i,s a il'issipat'iae olterator
wi,th d,ense d,omai,n. Then A 'is mari,mal, dissi,patiue if and, only if the range

RQ,r-A):Ho.
Theorem 4.3. If A 'is matimal d,issipatiue anil, closed, then i,t has a

d,ense d,omain.

Theorem 4.4. If A 'is a marimal, di,ssi'patiue operator with d,ense d,oma'in,

then so is i,ts ad,joint A*.
Theorem 4.5. Let A, be a d,issi,Ttatiae opterator uith dense domain and

set Br: At , Then there erist mq,ri,mal, d,issipatiae olterators A and, B,

2
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ad,joi,nts of each other anil, both haai,ng dense d'oma,ins such thut A > Ao and,

BcBr.
Definition 4.2. An operator A i,s cq,l,led, conseraati,ue if

(Af,f) + (f,Af) == 0 fw feD@)

Theorem 4,6, The operator A 'i,s conseruati,ue if and, only df i, A is sym-
metric. If A i,s conseruat'iue and, murimul, d,issipu,tiue with dense domai'n the

i A is marimal, symmetric. Conuersely, il i A is mail,ntal, symmetric with
d,ense d,omain, then either A or (-A) i.s conseruatiae ancl marimul clissipa-
tiae. Fi,ruall,y A and, A* q,re conseruatiue wi'th d,ense d,omain if and, only i,f
i A is self-ad,joi,nt.

Theorem 4.7. Sup'pose Ao is a closed' con'seraati,ae operator w'ith d,ense

d,omain and, set Ar: -A§. Then each mari,mal d,issipati,ue ertens'i,on, ol Ao

i,s a restriction of Ar.
Theorem 4.8. A necessary and, suffici,erut cond'iti,on for an ogterator A

to generate a strongly continuous semi,-group of contraction operators on Ho

to i,tsel,f is that A be a marimal d,i,ssi,pati,ue operator wi,th d,ense d,omain.

Theorem 4.9. A necessd,rA and, suffi,ci,ent cond,ition for an operator A
to generate a strongl,y cont'inuous sem'i.groupt of isometries is that A be

conseraatiue and, m,ari,mal d,issigtati,ae wi,th d,ense d,omain.

Theorem 4.10. A necessarA and" suffi,ci,ent cond,ition for a conseraati,ue

maximal d,i,ssi,ltati,ue operator wi,th d,ense d,omain to generate a strongly con-

ti,nuous grougt is that i, A be self-ad,joi,nt. In this cq,se the groupt consists of
unitary operators.

While the material will not be needed here for the sake of completeness,
it should be mentioned that some of the above theorems have been generai-
ized by Lumer and Phillips [56] to the semi-inner product Banach spaces

introduced by Lumer [55].
It is well known in the theory of self-adjoint operators in Hilbert space

that the resolution of the identity of the resolvent of a self-adjoint operator
A is the resolution of the identity of the operator A and conversely
(cf. [t] page 182). Partial results of this same sort are possible for maximal
dissipative operators using the improved representation of the resolvent
given in the next theorem following the suggestion of Phillips referred to
in the introduction. Before stating this, recall the

Definition 4.3. A one pararneter family of bound,ed, self-ad,joi,nt opera-

tors I(a) i,n the space Ho is said, to be a generali,zed, resolution in the sense

0r } @2,

18
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Naimark [1] also proved the following:
Theorem afi. If f@) 'i,s an arbi,trorA generali,zeil, resol,ution of the

Hi,lbert spaae Ho, then there erists a larger Hilbert space H which contains

Ho as a subsytace and, there eri,sts an orthogonal resolut'ion of the id,enti,ty

E(r) such that for each f € Ho one has

I(r)f : P E(a)f

where P is the prolect'ion ogterator from H to Ho.

Since the proof of the new representation theorem depends essentially

on theorems due to Sz.-Nagy and Stone, their precise statement is included
for convenience.

Theorem 4.12. (Sz.-Nagy [93].) Let {S(t), , > 0} be a strongly con-

tinuous semi,-groupt of contraction operators on Ho. Then there eri,sts a groult

of uni,tary operators {U(t) , - oo ( , < oo} on a larger Hi,lbert space H
containing Ho as a subspace such that

§(,)/: PU(t)Pf fo, f eH, t)0;

here P is the projecti,on ogterator wi,th range Ho. The space H can be con-

structed, in a minimal fashi,on so that it is spanned, by U(t) f where f is i,n
Ho and, - co ( t < q. In this case, the structure {Ho, U(t) , H} is

determ,i,ned, to wi,thin an 'isomorph,i,sm.

Theorem 4.13. (Stone [s9].) All, wealoly cont'inuous groups of uni,tary
transformat,i,ons in a Hilbert space H ad,mit the spectral representation

r
U(t) : I eil" d, E(a)

!_

where E(r) is a uni,quely iletermineil, resol'uti,on of th,e id,enti,ty.

It is now possible to state and prove the
Theorem 4,14. Let A be a mati,mal, d,issi,patiae and, closed, operatoyi,n

the Hil,bert space Ho. Thenfor any ),, Re i > 0, the resolaent erists andcan
be represented, uni,quely as

R,1A):(rI-A)-': f yg
Ja?'@ - A

where I(a) 'i,s a generalized, resoluti,on of the id,enti,tg and, hence the ltrojection
of orthogonal, resolut'ion of the identity in a space H contai,n'ing Ho a,s a

subspace. Iurther H can be constructed, in a m'inimal fashi,on, and'

2Re(R^(A)f ,f) : (Rr(A)f ,f)+(f ,Rt(A)f) > 0 fo, Re.1> 0.



To establish this result, recall that by definition (Hille and Phillips
[29]) that the resolvent of the semi-group §(f) whose existence is guaranteed
by theorem 4.8 is defined for any f e Ho by

r
Rr(A)f :(11-A)-,f : 

le-^'S(t)fdt.

By Sz.-Nagy theorem it follows that

r
R,.(A)f - le-i'P U(t)f dt,

I
and by Stone's theorem that this in turn is equal to

R^(A) f : I e-t 
ll_a-, 

P E(*) tlat ,

20 Ann. Acad. Scient. Fennicze A. I. 336/e

whence by Fubini's theorem

R^(A)r : 
i{["-,+i@, 

dt]a q n61s

@

f a t@).f
- I t@_ 1'

Since Rr(A) isaresolverin*definedforevery / in Re2>0 and
hence has a range dense in Ho and satisfies the Hilbert relations

R^(A) - R,(A) : - 0-t) Rr(A) R*(A)

thus the theorem is proved. Now by consideration of the adjoint as in 19]
it follows that the representation is unique. Finally, if one sets

g : R,.(A)f ,

(11-A)g:f,
the inequality for dissipative operators implies that

((11 - A)s,s) * (s, Q,I - A) s) > 0

so that
(Rr(A)f ,f)+(f ,Rx(A)f) > o.

fn general the representation given here seems to involve a larger
Hilbert space than that deduced from the original representation of Dolph
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and Penzlin [0]. It is clear from the method of proof here that I (f a) : I,
a property not established for the family of monotone functions used in
the representation given in [f0]; and E. Griffin has found an example
where the monotone family used there fails to reach the identity. However,
when the monotone family, used in the original method of Dolph and
Penzlin [10], is a generalized resolution of the identity then the extension
can be carried out explicitly. An example of this is given in the appen-
dix I. To the best of my knowledge, no one has as yet succeeded in
carrying through a comparable example via the extension which depends
on the theorem of Sz.-Nagy used above.

A precise converse to the above theorem is not known at this time.
One can, however, proye the following:

Theorem 4.15. Let X(r) be a generali,zeil resolution of the i,ilentitg and,

suppose:
(a) The one parameter bouniled, family of operators

e(1) : ryylJ-ia - 7

erists and, has a ilense range for all ), such that Re ), > 0 .

(b) There erists one )"o with Re ro > 0 such that Q%) I : 0 impli,es
that f : O.

(c) The resol,aent equations of Hi,lbert holil,; namely,

aQ) - s@) : - (1- p) e0) sfur) .

Then there erists a mari,mal d,issi,Ttatioe closed, oTterator A whose resolaent
i,s q(),) for Re 2 ) 0 anil rnoreoaer,

2 Re (q(1)/,f) : (p(l)f ,f) + (f , a(l),f) > 0 for Re ]'> 0.

To prove this, one first recalls that the hypotheses (b) and (c) are
sufficient for theorem 4.10 of Stone [89] so that a unique closed linear
operator A will exist and have a resolvent coinciding with q(,1) for every
.X, Re ). > 0. On the other hand, the representation (a) implies that

lip(r,)ll . *-a for Re )"> o.

To obtain this estimate, the recent result of Schreiber's [83] will be used.
He proved that for ary q in L*

l_,,,
d, (? (at) f , s)
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In this expression t I I i* is

the mea,sure d, (F (at) f , g)

the L* normand
Since

V the total variation of

in (p(i) f ,g) itfollowsthatif 1-r{iy

ilpil* : esssup lr' + (a-y)')'t'

so that choosing g - A0) f one has

Re ,i

from lshich the desired estimate follows.
Theorems by X'oias [f 5] for Hilbert spa,ces and Kato [37] for Iocally

sequentially weakly compact Banach spaces imply that the properties of
dense range and the Hille-Yosida criterion are sufficient, to guarantee that
the operator ,4 defined by stone's theorem has a dense domain. In turn, an

operator satisfying the Hille--Yosida criterion and having a dense domain

is the infinitesimal generator of a strongly continuous family of contraction
operators. Finally, theorem 4.8 implies that the operator A must be

maximal dissipative as well as closed' This in turn, as in theorem 4.15

implies Re q(,1) > 0 . The main features of the last two results may be

summarized. in the
Theorem 4.16. a necessary and, sufficient cond,ition that a, one-para-

meter family of bound,ed, operators haui,ng the representation of theorem 4.L5

be the resol,uent of a mari,mal, d,i,ssi4tati,ue operator i,n the half-plune Re )' > 0

i,s that hypotheses of theorem 4.15 hold, for them.

while the statement of this theorem is probably sufficient for most

purposes, it would be ofinterest to have a necessary and sufficient condition

stated in terms of the mea,sure defined by lr(ro) instead of the assurnption

in regard to the resolvent equations.
n'or the sake of completeness, the follou'ing two, as yet unpublished,

theorems of Lebow [52] should be mentioned in this section, rephrased

in the right half-plane of analyticity.
Theorem 4.17. If A is a mari,mal, d,issi,pati,ae closed, operator, then

proper uectors of real, proper aalues of i A are proper uectors of (i,A)* .

Theorem 4.18. If A 'i,s a marimal d,issi,patiue closed, operator,then i' A
has no real res'id,ual' spectrum.

To summarize briefly, this section has demonstrated that the resolvents

of maximal dissipative operators pos§ess properties of regularity and

i
,rt 

-
Y ia )L

I
n'
,rl-

I
--___;,lo o /,1



C. L. I)or,pn, Positive real resolvents and linear passive Hilbert systems 23

representation which are completely analogous to those of the so-called
positive real functions. For this reason, they might be termed »positive
real resolvents» and henceforth in this paper, they will be referred to in
this manner.

Definition 4.4. A one-parameter fami,l,y of bound,ed, operators satisfying
the hypotheses of theorem 4.15 wi,ll be called, a positiue real, resoluent.

5. Positive real resolvents and linear passive Hilbert systems

If A denotes the maximal dissipative closed operator associated with
a positive real resolvent it is natural to associate with it the system

(5.I )

du

d,t

in lyhich tc : u(t) and /(t) are functions from the real line to a Hilbert space

ä and to ask to what extent does this abstract equation of evolution
possess properties analogous to those of linear passive systems.

Since -4 is in general an unbounded operator, the hypothesis lhat' A
is the infinitesimal generator of a strongly continuous semi-group of con-
traction operators is not sufficient to guarantee the existence of a solution
to (5.1) in general (cf. Kato 136l). Several sufficient additional conditions
are, however, known. Thus Phillips [69] proved that (5.1) has a strong
solution in Banach space if .4 satisfies the Hille-Yosida criterion in the
weak form due to him (cf. i36l) provided that /(f) was strongly continuous;
Kato [36] has proved that a solution will exist in a Banach space also if the
conditions on /(f) are replaced by the assumption that /(t) is in the domain
of A for every f and if it is assumed that Af(t) and /(l) are strongly
continuous in f.

For Hilbert sp&ces, the condition that Re (1 % , u) 
= - e (u, a) hold

for some ry ) 0 for A maximal dissipative and closed is also sufficient
to guarantee that, the associated semi-group B(l) will have an exponential
decay so that the solution to (5.1) will be squa,re integrable with /(l).

This addition hypothesis is, of course, the usual required in the Lax-
Nlilgram lemma [48] if / is replaced by (-A).

A somewhat more general sufficient condition of this same type can be

obtained by specializing some recent results of Kato [38], [39] obtained for
equations of the form (5.I) when A is allowed to depend on the time.
Recall that a complex-valued function E(u , a) is called a sesquilinear
form in a Hilbert space ä if for u, u belonging to a linear subset D -
the domain - contained in H, g is linear in u and anti-Iinear in a.
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Also recall that if g is a sesquilinear form the relation V*(u , u) : E(u , u)
defines another sesquilinear form g* - the adjoint form - with domain
D(E*) : D(d. Finally, recall that any sesquilinear form 9 can be

written as

9: ReE+Iniq
with

Res: *@*P*),
Img: i@-q*).

Kato [39] calls a sesquilinear form g regular if:
(a) D(d is dense in H .

(b) Re g is closed, (Re E)* : Re g , a11d non-negative in the sense

that there exists a constant *) 0 such that ReE@,u)>a(u,u).
(") There exists a pl 0 suchthat

(5.2) llm E@ , u)l < p Re q@ , u) .

Kato then proved the following:
Theorem 5.7. Let g be a regular sesquil,'inear form. Then there is a

unique cl,oseil,, maxi,mal d,issi,pati,ae ogterator (-B) wi,th d,omain D(B) c D(E)
such that

V@,u): (Bu,a) for ueD@) and, aeD@).

(-B) is called the regular dissipative operator associated with the regular
sesquilinear form g . Similarly (-B*) is the maximal dissipative operator
associated with g*, where q(u , a) : (u , B* a) for u e D@) and
u e D(B*) and D(B*) c D(d .

Sufficient conditions for a closed maximal dissipative operator (-B)
to be regular dissipatiye &re not, known, but Kato [39] has shown that if
the inequalify @.2) holds for P < l, then (-B) is regularly dissipative.

Specializing theorems I and III of Kato [38], one can now conclude by
identifying (-B) with ,4 in equation (5.1) that the following is true:

Theorem 5.2. If S(t) i,s the sem'i-group of strongl,y continuous con-

traction operators generated, by the regular di,ssipati'ue operator A, then if
f@ is continuous in t, any strong solut'i,on o/ (5.t) must be enpressible

in the form

s(r-s)/(s) ds(5.3) .{

Conaersely, the u(t) giaenbg (5.3) ds a strict solut'i,on of (5.I) if f@ is Höld,er

conti,nuous on closed, interaal l0,Tl for u(0) an arbitrarg el,ement of H.



C. L. Dor-,pn, Positive real resolvents ancl linear passive Hilbert svstems 25

Other sufficient conditions are also known, (cf. e. g., Kato and Tanabe
[a0]) and unquestionably somewhat weaker hypotheses will be discovered
in the future. since the relationship between positive real resolvents and
linear systems of the form (5.1)fails to be exactly parallei to that between
positive real functions and linear passive systems oniy because of the
necessity for additional hypotheses sufficient to guarantee a solution to
(5.I), an attempt will be made in so far as is now possible to phrase this
relationship independent of any specific additional hypotheses.

To investigate this relationship, Iet dt denote an element of measure
on -Er and recall the

Definition 5.1. A function f : RL --> Ho ,is measurabl,e if and only if
(f(t) , g) ,i,s Lebesgue measurabl,e on RL for euery g i,n Ho.

Definition 5.2. A function f : RL --> Ho is said, to be Bochneri,nte-
grable df and, only i,f it is measurabl,e and,

The Bocltnerintegral of f ,is tlten defined, by

Ir

arLd sat'isf ies

In't I i/(,) | dt

IJsing the notation of Wilcox [107], recall the
Definition 5.3. The spq,ce

i

ill
i

:l
R1

R1

I ' 
t J rrrv( /,: Lr'r ct' 

J
*]

'i,s a fl'ilbert spa,ce u)i,th a, scalar product

lf ,sl (f (t) , s(t)) d,t

In particular, Lr(Rr; -81) is the usual space of Lebesgue square-integrable
complexvalued functions on the real line RL and this is the space that
occurs in the theory of Youla et al [lf I] and Wu [109].
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Definition 5.4"

rd'
Li: Lr\rk,R'

space

(

-:.- It,f e Lr(R',Ho) and
df+€
d,t

The

, är) Lr(R','r) 
l

The folLowirg theorem on

[107] will also be needed:

Theorern5.3. If f,g are

t"
/'
I

I lff'(t) , s(t)) + (f(t) ,

{,

Thi,s ,is n, Hilbert space wi,th a scalar product defined by

(r,s ): I{(r$),s(t)) 
+ (#,T.)l d,t

duLu : - - Au : f@ 1

dt

integration by parts established by Wilcox

in Lg, then

for any - co ( tr.i t, < a.
Henceforth, attention will be restricted to functions either inputs or

outputs which are in the space Lg even though several results would
still be true under somewhat weaker hypotheses. X'or example, to establish
the fact that the passivity postulate stated below is sufficient to imply
causaiity, one merely must, assume that integrals of the form

;
l*ntttl ,f(t)) + (f'(t) , f'(t)))dt < a

existfor all s, -oo { s { lo, forfunctionsrvhichhavethepropertythat

,tim 
(/(,) ,/(f)) : 0.

As noted earlier, in the scalar case this is an important generalization
since the above integral can fail to exist for important examples if s : * oo.

Here the situation is unclear at this time so that, for simplicity, the results
will be stated for functions in L!r. In any case, should this restriction prove
to iimiting, it is a simple matter to check rvhich arguments are still valid.

With this in mind, one has
Detinition 5.5. A li,near rel,ation of the form
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i,nwhich u: u(t) anil, f(t) arefunct'i,onsfromthereal,li'netotheHi,lbertspace
Lf; and, where A is a time 'i,nd'epend,ent operator d,efineil on Lr, wi,ll be

said, to be a l,'i,near passioe Hilbert system if :
(r) The d,omai,n D(L) : D@) n Lg is d,ense iru Lz.
(2) The equat'ion L u : f has a soluti,on 'in L! for eaery f i,rt Lg

(i,. e., the range of the operator L contains L!) .

(3) The system is passiue in the sense that the i,nequal,ity

_,"
I

B"e I @@,t),u(t))dt > 0

-J*

is tsal,i,it for all u e L! and, all § , s ( fo .

Since the operator ,4 is independent of l, the above system will also

be obviously invariant under translations in time as is an ordinary linear
passive system.

Theorem 5.4. Any l'inear passi,ae Hilbert system, 'is causal' 'in the sense

thatif f e Lg has the prolterty that f(t):O for -cn<t{to andif
Lu:f then u(t):0 for al,l t{t,

To prove this, let Lur:/, and L'tt,:f, fo, 'tL1 ,112 in L!. By
linearity and passivity one has

J^

r
ut) dt + iarlz Re I (f ,,u) dt

I
a,/

s
n
I

drez I ff,
It'/

-@

ti
+ R* I atdz I (fr,uz) dt +LJ

(f, ,

(f, , u)

, Let) dt

,j
d,t + larl'Fl" J 

(f ,

-a

++ a,dz{l t(,å

-:

++d,a,l lur,,

, uz) dt

, uz) + (u, ,f ,)) otl

u)+ (ur,/r)l drl.



Thus, as in the proof of Cauchy's inequality, it follows that the passivity
inequality and linearity imply that

| [ir,,uz) * (f,,u,))o,l'=n*" i f <f,,u,t"] 
""1 | u,,*,t o,f .

t.t - i LJ

No*-*oppose that fr(t) :0 for I 
=;: 

Then this ,rr"nrlrrr, implies that
1

I (fr,ur)dt: O, sSfo.
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Choosing f ,: ur(t) in f { fo implies that zr(s) : 0 ahnost everywhere

for s { fo . This is moreoyer the only possible response to the input /r .

To verify this one computes and repeats the same argument with zr(f)

equal to the difference of two assumed solutions corresponding to the same

input so that Å(l) : O .

Systems satisfying definition (5.6) include those of the following:
Theorem 5.5, The sYstem

y - au : f(t)dt

consid,ered, i,n the sltace Lf i,s a linear ptq,ss'iae Hilbert system if A is regularly

d,issi,pat'iue, and, i,ts resolaent i,s a positi,ae real resol,aent.

since /4 is regularly dissipative and / is in Ii, a solution rvill exist
by Kato's theorem [38], and since ,4 is regularly dissipative, it is maximal

dissipative and closed and hence it vrill have a positive real resolvent by
the results of § a. It only remains to verify that the passivity postulate

holds. X'or this, it is sufficient to compute

ldu \
\*,")-(ou,u): (f ,u).

I rl,u\

\",A)-@,Au): (u,f),

from which, by theorem 5.3, it follows that

(zr(s) , tc(s)) ,u) + (u,Au)ldt

,at
I

I l(A%,u)+
J L\'^

-@s

f
I

2 Re I @(u) , u,) dt
J

a
/r
I

I l(Au
J
-**

f lldu, It_
_00

t
lr

-r*"J

")*(*,#)1"

(f (t) , u(t)) d,t :

(u,Au)ldt
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The last inequality foilows from the fact that the first member of this chain
or relation is positive in virtue of the fact that A, being regularly
dissipative, is maximal dissipative and closed.

Conversely, one has the
Theorem 5.6. Suffici,ent cond,it,ions thq,t a one-pqrarneter familg of bound,ed,

operators haaing a il,ense range and, the representat,ion

a(1\: f atr*l
J*i* - ).

i,n the region Re ,1 > 0 be the resolaent of a l,inear passiae Hi,l,bert sgstem
are: (l) S(r) be a positi,oe real, resol,aent; (2) the operatar A whose
resolaent is A(,1) be regularly d,issipatiue.

This theorem is, of course, an immediate consequence of theorem 4.15
and the discussion of this section once the expression d,uld,t - A u : f(t)
is formed.

To conclude, it is apparent from the discussion that it is not possible
to state necessary and sufficient conditions at this time.

Appendix I
An application ot the Dolph-Penzlin theorem

The following example was worked out by E. Griffin and represents
a case where the procedure of Dolph and Penzlin [10] does lead to a gener-
alized resolution of the identity. fn particular, -E ( co) : 1, and the example
is interesting in that one obtains a representation of a two dimensional
operator in terms of L, over the real line. To avoid confusion with the
extension theorem 3.14, the operator will be chosen to have its resolvent
regular in the upper half-plane. Under these circumstances the matrix

/-;. r\A:l " -l
\10)

satisfies the condition for a dissipative operator in the sense that

o 
=!.: rm A<0.
21,

Setting z : r *,i A one finds directly

i-z -1 \(-r -@+4)
Do
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where Do : zz + 'i z I has zeros

(- i * {7112 so that R(*) is seen

accordance rvith the general theory. If

Im (R(z) [i , U)

The Stieltjes inversions formula can be

resolution of the identity F (*). Setting y - 0

one finds, in differential form:

rm (R(*) u , u) : d* \{:"'*,*t, + tnt)

in the lower-ha1f

to be analytic for

\nl

z plane

Rez)0
ab

in

: n'uo

\

;,( (- *1-*,; : ,*\ ,(,:,)\
z ll?tllz + lnl') (rn it + m n) - i lniz

:ou'i f o' + dl)' it follows that

y 1) (x+2*Y)
+ lnl') - (mfi + mn)\ (- lni\i

form

l, *' I @ iDi') r I

\r l@ lDi') 1l

(: 

"{E;il)r.

(r-y2
{- r (iml'

Do

where lDl' : lDo@)l' : (*'- t)z { 12 .

choosing base vector. * : (å) , ,, : (l) and polarizing, one finds

I
Im (R(r) Ur ,Ur) : W

frz lfr

-r 0

used to find the generaLtzed

and proceeding heuristically,

r1
(mrt + mn)) (- lnl') l

12

,fr

iDlr

tDi'',

Thus the matrix has the

(n iDi') t

(n lDn)

td; tDi) I td; iDi) )
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Iin

how

the

orthogona

gral. To s

T15-t«) '

,luated by

lD l) are c

since

0,

even integ
ample

w
e and eval
ne obtains

The functions " I ({i Wtl and L I d;
Lr(- co , @) . The orthogonality follow,s at once

lr t \ f r
[p, 'tlt) - J tD1,d* -

since one is integrating an odd frr;;r, over art
that they are properly normalizod, consider for ex

@co

f 1 tf d,t

-*.o

lf dt

_cO

This contour can be closed in the lou.er half-plan
calculus of residues to the obvious poles so that o

CO

l'I
J , tdt

2i
2 (e-inlo ninl6) @-t'tu + ei'16) n-inl6

_ 2i
*_ ,u

_ "rrru 
+ 

"_r,ru _ f
t/z

A similar calculation shows that

fP
J "plrdt: 

t'
It is now possible ,o ,rO"ä R@) in Lr(- *, oo) by mapping

Ur- 
-._, 

L-r--> 

-.

- YnlDl ' lnlDl
If one defines M to be the subspace spanned by the above function,

it is also easy to see that for any f in M

" f lf.4tz dt
(R(z)f ,f) : I 'r; .

J



For this it suffices to compute (R(z) U1 , U) . Thus, for example,

i tz itt
(R(z) Ur, [Jr) : J " Vrl, t, - A

-* 

"r-,u 
,-rn,, e-inlo eials z: itrGt re -;r {s e e,,re - d: - Do

Similarly,

i tdt 1

(R(z) U, , (J r) : (R(z) U, , (Jr) : t 

-

@ 
!* n lol'Q - z) Do'

f at ilz
(R(z)ur,uz): J;plr(t_z): - D,

Thus one recovers th" o"iginal'resolvent from this embedding. Moreover,

it follows that the operator -F''(l) represents the projection of the interval
(- o , .o) onto (-.o , l) and that extended operator of the matrix A,

say ,4+ is simply multiplication by l.
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ApPenilix II
A theorem of §reenstein for the right half-plane

In [21], Greenstein proved:
Theorem A.ll, If g(z) i,s gi,aen bY

ia,,rt
s(z) : J -;, Im s@)>0 for Im z> 0 .

where y(t) * * *;: d,istributi,on normalized, by

Z(-oo) :0, y(t-0):Y(t), -@<t<o,
then g(z) can be conti,nued, Q,cross (a , b) i,nto the lower half-plane if and' only

il y(t) 'is real, analyti,c'i,n (a ,b). If y(t) is real, analgtic'i,n (a,b) thenthe

cont'i,nuat'i,on ol S@) across (a , b) i,s giaen by

g(z) : g(Z) + 2ni,y'(z) .

To translate this result to the right-half plane, given /(z) a function

suchthat Re/(z)>0 for Rez;0, choose

g(z) : i,f(-iz), s : it, m(s) : Y(-ds)
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the representation for g(z) implies that

i- o m(s)

-!*s 
1'z

or, if 7 - iz, s - iu, u real, that

fam@)
f(1) - It\"t 

!-11 1'

Assumi.tg continuation possible, it follows

Re,i>0.

that

i m'e D - y'(z) for Im z

so that the above continuation formula becomes

Note added in proof-reference (25 May 1963)

To page 6: A preprint by A. Grossman entitled »Nested Hilbert spaces in
quantum mechanics. I» is now available from tho Institute for Advanced Study,
Princeton (N.J.). The author's abstract is as follows: »A nested Hilbert space is
a pair of lIilbort spaces Ho, Hr, each of which is in a cortain sense identified
with a dense subset of the other.» (As in tho Friedrichs' extension of semi-bounded
operators; C. L. D.) »Those structures are used here to study analytic continuation
into 'unphysical sheets' and to discuss non-normalizable states of quantum-mechani-
cal system,»
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