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Cluster set theorems for arbitrary functions with applications to
function theory

1. Introduction. At first sight a function of which we know no more
than that it has a value at every point of its domain looks rather unpromising
material to work with. There are obvious limitations; but it has been found
that quite striking statements can be made about such functions and if
we select them to fit situations that arise, for example, in the theory of
functions these statements may turn out to be useful theorems. Or it may
be that a theorem about an arbitrary function can be significantly sharp-
ened if some condition such as continuity is imposed. In any case »arbitrar-
iness» is qualified by the properties of the spaces one of which is mapped
into the other by the function. Here we shall for the most part be concerned
with mappings from the real line or the plane disc to the 2-sphere or a
great circle upon it, thus generalising a familiar function — theoretic
situation. The theorems we obtain are inherent in the topology and geom-
etry of the spaces involved and, as J. D. Weston has shown [18], are
capable of further generalisation by removing restrictions on these spaces.
Important as these developments are we shall not attempt to enter into
them here.

2. The theorems we shall discuss are in terms of cluster sets; but these
are not the only kind of theorems about arbitrary functions that are known.
We denote the functions by f(z), [z| <1; f@),0<a<1; f(P) or
simply f. The cluster set of f at a point P of the closure of its domain,
which we denote by C(f, P), is the set of all the limits of [ as the
variable z or « within the domain D of f approaches P in all
possible ways. In precise terms, C(f,P), P € D, may be defined in either
of the two following equivalent ways:

(@) O(f, P) is the set of points « of the w-sphere S into which
w=f(z) or w=fx) maps D such that there exists a sequence
{2} © D\P satisfying lim z, = P and lim f(z,) = «.

n-—> o n—> o

(b) C(f,P)=nN A, where dn = f(DON\P) and 2, is the intersection
of D with a neighbourhood |»—P|<6,, or z—P| <, , 6y O
as n—> . The open sets £),, n=1,2,..., thus have P as

their only common interior or frontier point. The bar denotes closure.
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Tt follows at once from both definitions that C(f, P) is non-empty and
closed. The complement CC(f, P) is thus always an open set.

We note that if f(z) is defined at P then f(£) does not necessarily
belong to C(f, P) unless f is continuous at P. But if f(z) is continuous
in the deleted set D\P then C(f,P) is either a continuum (compact
connected set) or a point. In the latter case we say that C(f,P) is
degenerate; and in the former we say that C(f,P) is total or sub-total
according as CC(f, P) is empty or not.

The cluster set as we have defined it is complete, being relative to the
entire neighbourhood of P belonging to the domain D. But restricted
cluster sets (these are sometimes called partial) are important in the theory.
Examples are the radial cluster set C,(f, P), where D is a disc and P
a point of its circumference, defined by restricting {z.} to the radius to P,
and the right and left-hand cluster sets Cg( f,P) and Ci(f,P), where z,
approaches P from the right (left) for f defined on the real line and
arg z, approaches arg P from below (above) for f defined in a disc and
P a point of the circumference.

Symmetry theorems

3. In 1907 W. H. Young [19] proved the following theorem.
If f(x) is an arbitrary real function of the real variable x then

(1) m fo(@) = lim fale)  and  lim fy(0) = lim fx() .

where the B and L signs denote limits to the right and left of x respectively,
for all values of x except perhaps for a countable set.

This appears to have been the first theorem to be explicitly stated for
arbitrary functions. Young announced it at the meeting of the British
Association held at Leicester in 1907. He used to refer to it as the Leicester
theorem. A year later, at the Rome Congress of 1908, he announced what
he called the Rome theorem [20]. Stated in modern notation, this is the
Leicester theorem with (1) replaced by

(2) OL(f: 'L') = CR(fv l') .

Young extended his investigations to the plane and to euclidean
n-space in a series of papers [19]—[24] extending over twenty years;
but he confined himself to real functions and his results passed unnoticed
by complex variable analysts (see also [16]).

4. What turns out to be a useful extension of Young’s Rome theorem
to an arbitrary complex function defined in the disc is, however, almost
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immediate. Denote the unit disc by U and its boundary by ». Writing
zn = 1 €' the right (left) cluster set of f(z) at P € is defined as the
set of values « such that for some sequence {z,}C U, lim z, =P,

n-—>w

bt arg P (9n } arg P), we have lim f(z.) = «. We can now prove

n-> o

Theorem 1. For an arbitrary real or complex function f(z) defined in U

(3) CR(fa eiﬂ) = OL(f7 em) = C(f: eiz?)

except perhaps for a countable set of points € € x .

The proof, which also suffices, without any adaptation, to prove Young’s
Rome theorem, is simple.

We cover the Riemann sphere S with a succession of nets
N, k=1,2,..., each with a finite number of closed triangular meshes
M, n =12, ...,n, of diameter << 1l/k. We arrange these in a
sequence in any convenient way. Call the sequence {my}.

For each index j we define the set B; of points ¢ for which m;
meets C(f, ¢”) but does not meet Cy(f,e”). If ¢? € E;, then ¢ is
the left-hand end-point of an arc I;(9) such that for ¢ € I;() the cluster
set C(f, ¢") does not meet m;; for otherwise m; would meet Ci(f,€”).
I;(9) therefore contains no point of E;. The set E; thus consists of
end-points of non-overlapping intervals and is therefore countable. Plainly,
the set Ey of points ¢ for which C(f, ¢”)\ Cg(f, ¢) is not empty is
the union of the sets E;, j=1,2,..., and this proves the theorem.

5. Exactly the same argument proves the local symmetry, except
perhaps at a countable set. of the right and left boundary cluster sets.
The right hand boundary cluster set Cpg(f, e”) at ¢’ is simply the
cluster set defined along the arc of x to the right of ¢, only, since f
is not necessarily defined at points of x», we use the cluster sets of f
at points cf the arc as the values. Any appearance of sophistication in
this definition is deceptive. Similarly for the left hand boundary cluster
set Cy(f,¢”). We then have

Theorem 2. For an arbitrary function f(z) in U

() Cor(f » €”) = Cpulf , €7) = C(f , &)

except perhaps for a countable set of points €' € x.

Since evidently Cp(f, €’) € CL(f,€”) and Cgr(f,e?) € Cx(f, &)
Theorem 1 is contained in Theorem 2.

It will be seen that Theorems 1 and 2 and Young’s theorems quoted
above depend essentially on the topology of the real line or circumference
of the disc. However, for functions defined in a ball we can, by the same
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argument, establish bilateral symmetry of the global cluster sets and global
boundary cluster sets to the right and left of a meridian, say, or parallel of
latitude (looking respectively eastwards or northwards, say) except for a
countable set of values of the longitude or latitude. By the global cluster
set to the right of a meridian we mean the union of the cluster sets at
all points of the meridian approached from the right, and similarly for
the other one-sided global cluster sets. Patterns of symmetry at points
of the spherical boundary of the ball, equality in opposite quadrants
defined by the meridian and parallel through the point. for example,
may be shown by an obvious adaptation of Young’s method for the plane
[23] to hold except for a set of points of first category on a countable
set of meridians or parallels. In contrast, Bagemihl’s ambiguous point
theorem for an arbitrary function in the disc is essentially 2-dimensional
and has no analogue in the ball.

Maximality theorems

6. It follows from (4) that the cluster sets at ¢ in the two domains
in U lying outside chords intersecting at ¢ and to the right and left
of the radius are both maximal, i.e. equal to C(f, ¢”), except for a count-
able set of values of ¢ . This suggests the question: What can we say
about the cluster set in a small angle A at e’ between two chords? To
fix ideas suppose that A is bisected by the radius ¢. In this situation the
kind of argument by which we proved Theorem 1 is not available and
the set of points e €x at which C,(f,€e"”) = C(f,¢”) is no longer
countable but is of first category (we shall write this category I) in the
sense of Baire. The theorem [10] is as follows:

Theorem 3. For an arbitrary function f(z) in U and an angle A(9)
of any fixed magnitude bisected by the radius to ¢’

(5) Cyp(f, €% = C(f . €e")

except perhaps for a set of points of category I on x.

Suppose the contrary so that the set E of points e at which
Cao)f ey # O(f, ¢”) is of category II. In three steps we shall select a
subset E, of K, also of category IT and therefore dense in an arc § of x,
in which a certain closed subset 7, of the 2-sphere S meets C(f,¢")
but is uniformly bounded away from f(4(#)). These properties are
inconsistent. For, since E, is dense in f every point z of U sufficieutly
near to B is contained in a A(9), ¢ € E,. so that f(z) is uniformly
bounded away from 7, which therefore does not meet C(f,¢”) for any
¢'” € p. This contradiction will prove the theorem.
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The selection is carried out as follows.
(i) For any point of E, since C ) (f,e”) is closed and < C(f, €”),
there is a positive number ¢ such that the intersection

C(f. ") N C(Cyp)(f s €)1

is not empty, where C,,(f,¢"),, is the closed e-neighbourhood of
Cup(f,€’) (in the spherical metric) and (¢ denotes the complement.

Choose a sequence & > ¢, > ...> & > ..., lime =0, and denote
by E, the subset of £ for which ne
C(f’ ei’l)) n CD(CA(I'?)(f’ eiﬂ)-i—sn)
is not empty. Plainly, E,cE,c...cE,c... (a finite number of
these sets may be empty) and
E=UE,.

n

We can therefore find I such that £, (and every set of higher rank)
is of category II.

(ii) To select from E, we now cover S with a finite net of meshes
T, Ty, ..., Tn each of diameter less than ey/4. We treat the meshes 7'
as closed. For a given u = m let Ey, be the subset of E, in which the set

T,.NC(f, €N @(CJ(&)(fa ew)+£x)
is not empty (7, meets C(f,e”) but not C,.(f. em)‘feN). Since
Ey= U E,

nSm
and Ky is of category II we can find M < m such that E,, is of
category II.

(iii) Finally we have to select from Ky, . Let 7T, be any closed subset
of Ty . Then forall ¢’ € Eyy, the distance of T, from C,,(f,€”) is
greater than 3ey/4. Wedefine Eyy,,q=1,2,..., as the subset of Ey,,
in which the (spherical) distance [f(z),T,] of f(z) from 7T, satisfies the
inequality [f(z),7T,] > ex/2 for all z€A4(F), 1 —277<|z] < 1. Again,

Exvi CEyy:Coo . CEyyCun
and

Exy=UE NMq
9
Since Hy,, is of category IT we can find @ such that Ky, is of category
II and therefore dense in some arc § C x. To complete the proof of the
theorem we have only to put E; = Eyy, .
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7. The argument by which we have proved Theorem 3 may be applied
to any angle of fixed magnitude and orientation relative to the radius.
We can specify a countable set of directions and magnitudes so that any
angle with ¢” as vertex contains one of the angles so specified. We there-
fore have

Theorem 4. Let f(z) be an arbitrary function in U . Then except
perhaps for a set E of points € of category I on » we have for every
angle A c U with €7 as vertex

(7) OA(fa eiﬁ) - O(f’ eiﬁ) .

At a point ¢ € x\E at which C(f,¢") is total f(z) has the cluster
set property which a meromorphic function has at a Plessner point [9].
It must be emphasised, however, that Theorem 4 is in no way comparable
with Plessner’s well known theorem for meromorphic functions.

8. If we now impose the condition of continuity on f(z) a quite trivial
change in the proof of Theorem 3, working with C (f,¢") instead of
Cun(f ¢'?) gives the following maximality theorem [9] ) '

Theorem 5. If f(z) is continuous in U then

(8) Cg(f? eiﬂ) = O(f’ eiﬂ)

except perhaps for a set of points of category I on x.

By the same process of selection as in the proof of Theorem 3 we
obtain a set K, dense in an arc § C % in which 7, meets C(f, ¢”) but
is uniformly bounded away from f(re?), ¢’ € E,, 1—27¢ <r <1. By
the continuity of f(z) these properties are inconsistent and the theorem
is proved.

Theorems 3 and 5 are special cases of more general results proved by
essentially the same arguments [9]—[10].

Applications

9. An obvious application of Theorem 5 was to Caratheodory’s problem
of determining the distribution of the four kinds of prime ends which
correspond under a conformal mapping of U onto a simply connected
domain, not necessarily Jordan, to points of x. The correspondence is
1:1 and the impression of the prime end corresponding to a point ¢ € x
under a conformal mapping f(z) is the cluster set C(f,¢”). If 1 isany
pathin U terminating at ¢’ then plainly C,(f, ¢”) € C(f.¢”). A point
of CO(f,¢”) which belongs to every cluster set C,(f, ) is a principal
point of the prime end in question. Points of C(f,¢”) which are not
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principal are subsidiary. The set II(f,e”) of principal points of the
prime end is either degenerate, in which case the point is accessible
from inside U and is the sole accessible point of the prime end, or is
a continuum, in which case there are no accessible points of the prime end.

A prime end is of the first kind if it consists of a single (necessarily)
accessible point so that C(f,¢”) is degenerate. It is of the second kind
if it has one (accessible) principal point and an infinity of subsidiary points;
of the third kind if it has no subsidiary points and an infinity of principal
points; and of the fourth kind if it has an infinity of both principal and
subsidiary points. We denote these four classes of prime ends by
&, G, G, &, and the corresponding sets on % by e, e, €5, €.

It was proved by Lindeldf that for any conformal mapping f(z) and
any point "

(9) Cf, ") =1II(f,€”).
Combining (8) with (9) we see that
(10) I(f, ¢%) = O(f , ¢)

except perhaps for a set of points € of category I on . The points for
which (10) is satisfied are precisely the points ¢ Ue; corresponding to
&, U &, so that the complementary sets e, Ue, in x and &, U &, in the
metric space of prime ends, the metric being, for example, the chordal
distance between corresponding points of », are both of category I. This
result is one of the keys to the solution of the distribution problem the
implications of which have been described elsewhere [9] and need not
be repeated here.

10. A recent refinement of the distribution problem concerns the
relative frequency of asymmetrical prime ends. There can be no asymmetry
about a prime end of the first or third kind. But a prime end of the second
or fourth kind is asymmetrical if its right and left wings are not identical,
which is equivalent to saying that Ci(f, €’) % C,(f, ¢”). This question is
solved by Theorem 1, which is so fundamental as to be valid for an arbitrary
function. It shows that the asymmetrical prime ends of any domain are
actually countable; and examples show that they may be infinite in number
and their corresponding points dense on x [11].

11. Unlike the symmetry theorems 1 and 2 the maximality theorems 3,
4 and 5 may be immediately extended to functions defined in a three-dimen-
sional ball, where now A(P) will denote a cone having P, a point of the
spherical boundary of the ball, as its vertex and the radius to this point
as its axis. The 2-sphere being a complete metric space, the Baire category
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theorem is again applicable and the arguments used to prove Theorem 3,
with only the obvious verbal changes, give

Theorem 6. For an arbitrary function f which maps the unit ball into
3-space we have

(11) OA(P)(f: P) = C(f P)

except perhaps for a set of points P of category I on the spherical boundary
S of the ball.

The definitions of the cluster sets featuring in this theorem are obvious.

Similarly, if f is continuous in the ball and C,(f, P) is the radial
cluster set at P we have

Theorem 7. If the function f s continuous in the unit ball, then

(12) CAf,P)=C(f.P)

cxcept perhaps for a set of points P of category [ on S.

This last result is a special case of a general theorem of Weston’s on
cluster sets of mappings from one topological space to another. For an
abstract theory of cluster sets in a general topological setting we refer to
Weston [18].

Theorem 7, being sufficiently fundamental to be valid for any con-
tinuous function is applicable, for example, to quasiconformal mappings

of the ball in space.

12. Let D(f) denote the set of points of % for which C,(f, ¢’) s

degenerate, i.e. lim f(r ¢’) exists. We denote this limit by f(¢”); and
r—1

following Doob [12] we may call F (¢7) = C(f, ¢”) the cluster boundary

function for f. The following theorem is due to Weniaminoff [17].

If f(z) is analytic and bounded in U and if = € D(f), then C(f.e”)
is degenerate at every point of x at which f(e'’) is continuous and hence
¢’ is a point of continuity of F (¢).

Weniaminoff also proves (his Lemma 1 in [17]) that if » € D(f) then
for an analytic function (evidently in fact for a continuous function)
f(e"”) is of Baire class 1 and so, by a theorem of Baire, its discontinuities
are a set of category I. From this it follows, by the theorem of Weniaminoff
quoted above, that

If f(z) is analytic and bounded in U and if » C D(f), then f(e”’) being
of Baire class 1 is pointwise discontinuous on =, having a residual set of
points of continuity on x which are also points of continwity of # (€").

Theorem 5 enables us to generalise this theorem by dropping the require-
ments that f(z) be bounded or analytic. It is enough that f(z) should be
continuous.
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Suppose then that f(z) is continuous in U and that » € D(f). Then,
by Theorem 5, C(f,e™”) is degenerate on a residual set i.e. the comple-
ment of a set of category I on x. But a point at which C(f, e?)
is degenerate is a point of continuity of both £ (¢”) and f(e’). Thus
both # (¢) and f(e'”) are pointwise discontinuous and the set of dis-
continuities is in each case of category I. By a well known theorem the
set of points of continuity of a single valued function is a @, (Hausdorff
[13], p. 251). The same argument shows that the points of continuity of
F(e’) and f(e'’) are both of type G,. A precisely similar argument
applies to a function continuous in the ball and so we have

Theorem 8. If the function f is continuous in the disc (or the ball) and if
x C D(f) (or S cD(f)) then the cluster boundary function F (¢)
(F(P), P €8) is pointwise discontinuous on » (on S) and the set of its
discontinuities is an F_ of category I.

13. We denote by I,(f, A) theset f(e”), ¢ € D(f)c A, of radial
limits of f(z) on an arc A Cx. The following theorem (proved in [8]),
related to Theorem 8, is also a consequence of Theorem 5.

Theorem 9. If f(z) is meromorphic in U and D(f) is of category 11
on some arc A Cx, then either I ,(f,A) is of positive linear measure or
f(z) = constant.

This result is considerably stronger than an earlier theorem of Privalov
([15], pp. 231—232), The conclusion on the measure of I'(f, 4) depends
upon a lemma of M. L. Cartwright’s on meromorphic functions so that the
theorem is deeper than the much more general Theorem 8.

Interior theorems

14. For the purpose of function-theoretic applications we fix our
attention, in considering an arbitrary function, on its properties at the
boundary of its domain of definition since it is only there that the regularity
of an analytic function breaks down. There are, however, properties of an
arbitrary function within its domain which are of independent interest.
These are of the kind first brought to light by W. H. Young for real functions
and further studied by H. Blumberg [2]—[7]. Variants of them, or some
of them, are very easily proved by the methods of this paper for complex
functions and for more general mappings.

Let f(z) be an arbitrary function defined in a plane domain D which
it maps into the 2-sphere S (or into the complete euclidean n-space) and
let P be a point of D. We prove
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Theorem 10. If f(z) is an arbitrary function mapping D into S
then f(P) € O(f, P) forall P in D except perhaps for a set which is at
most countable.

The proof follows familiar lines. E is now the set of points P €D
in which f(P) € O(f, P) so that for all P € E there is a positive ¢ such
that the distance [f(P), C(f,P)] of f(P) from C(f.P) (in any appro-
priate metric) exceeds ¢. Given a decreasing sequence {e.}. lim & = 0,

E, is the set such that n— o
Lf(P),C(f, P)] > &
so that K, cE,c...cE,C... and
(13) E =UE,.
Let T, Ty, ..., Tw: be a finite triangulation on S whose meshes are

all of diameter less than ¢,/4; and let E,, be the subset of E, at every
point of which f(P)€T,, u = mn. Then every E, is an isolated set.
For suppose a point P, of E,, to be a limit point of a sequence of points
P,€E,, sothat C(f, Py meets T,. Then the distance of f(P,) from
C(f, Py) is less than e./4, contrary to the definition of £, which contains
E,, . Thus every set K, is countable; hence K, = UE, is countable
and consequently K = U E, is countable, which proves the theorem.

In the case of a function of a real variable D is a segment of the real
line and exactly the same argument applies and the exceptional set is
again countable. The theorem is also true for an arbitrary mapping into
any complete metric space.

This theorem generalises a theorem of Young’s (Theorem 1 of [21] and
2° on page 5 of [22]). It is also easy, by our general method, to prove a
rather stronger result of Blumberg’s (Theorem 1 of [3]) which he proved
for real functions but which is also valid for an arbitrary mapping into S
(or into any complete metric space). He introduces the notion of dense
approach to a value of the function. The definition is as follows. The function
f is said to be densely approached at the point P if for every &> 0 there
eists a neighbourhood G(P,¢) of P such that the points of this neigh-
bourhood for which

[f(z) , f(P)] < e

are dense in G(P,&). With this definition we have

Theorem 11. If f(z) s an arbitrary function mapping D into S
(or any complete metric space) then the set of points at which the value of f
is densely approached is residual in D.

The set of dense approach is of course a subset of the set for which
f(P) €C(f, P) whose complement is countable. Now let £ be the set in
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D at which f(P) is not densely approached. For a given e&., where
again {e.} is a decreasing sequence tending to zero, we denote by K. the
subset of E such that every neighbourhood of P € E, contains a
domain in which the distance from f(P) to f(z) exceeds e&,. Evidently,
E,cE,c...cE,c... and E =UE,. Repeating the triangulations
T,.T,,...,Tw, the meshes being all of diameter < e./4, theset £,
is again the subset of K, in which f(P)€T,, u=mn. If now the
theorem is false the set K of exceptional points is of category II and it
follows as before that there exist n = N and u = M such that Ey,, is
of category II and therefore dense in a domain G € D. Let P, be a point
of G N Eyy. At every other point of G'N Ey, and at P, itself f€ 7T,
so that the distance of f(P,) from f(z), z € G N Ky, , is less than ey/4
and so there is no sequence of domains having P, as a limit point in
which the distance from f(P,) to f(z) exceeds ey: Since Pj € Ey this is
a contradiction and the theorem is proved.

Concluding remarks

15. The earlier literature on arbitrary functions, which is quite consider-
able, was concerned exclusively with the interior theory. Sufficient
references to trace this theory back to its sources are given in the list of
references at the end of this paper. The more recent work has been almost
as heavily biassed towards boundary theory owing to the discovery, largely
through the development of the theory of cluster sets, of applications in
the theory of functions and allied fields. The interior theory has, however,
also attracted attention as has the extension of the theory to general
topological spaces. The lack of a unifying idea, namely that of the cluster
set, or of an accepted terminology and notation hampered development
for a long time. As has been shown here the descriptive theory may be
handled very easily by a uniform method which is applicable to very
general situations. The part of the theory which we have not touched on
is the metrical part to which both Young and Blumberg contributed, but
this, again, was an interior theory not immediately applicable to boundary
problems. The list of recent papers is confined to those actually referred
to and is not complete.

Lilburn Tower
Alnwick, England



References

[1] BacEMIHL, F.: Curvilinear cluster sets of arbitrary functions. - Proc. Nat. Acad.
Sci. U.S.A. 41, 1955, pp. 379—382.

[2] BLumBERG, H.: A theorem on semi-continuous functions. - Bull. Amer. Math.
Soc. 24, 1918, pp. 381—383.

[3] —»— New properties of all real functions. - Trans. Amer. Math. Soc. 24, 1923,
pp. 113—128.

[4] —»— A theorem on arbitrary functions of two variables with applications. -
Fund. Math. 16, 1930, pp. 17—24.

[5] —»— The measurable boundaries of an arbitrary function. - Acta Math. 65,
1935, pp. 263—282.

[6] —»— Exceptional sets. - Fund. Math. 32, 1939, pp. 3—32.

[7] —»— Arbitrary point transformations. - Duke Math. J. 11, 1944, pp. 671 —685.

[8] CarTwrIGHT, M. L., and E. F. Corrixgwoop: The radial limits of functions
meromorphic in a circular disc. - Math. Z. 76, 1961, pp. 404—410.

[9] CorLiNGwoOD, E. F.: Cluster sets and prime ends. - Proceedings of the Interna-
tional Colloquium on the Theory of Functions, Helsinki 1957, Suoma-
lainen Tiedeakatemia, Helsinki, 1958. = Ann. Acad. Scient. Fennica
A. 1. 250/6, 1958.

[10] —»— Cluster sets of arbitrary functions. - Proc. Nat. Acad. Sci. U.S.A. 46,
1960, pp. 1236—1242.

[11] Coruingwoop, E. F., and G. PIRANTAN: Asymmetric prime ends. - Math. Ann.
144, 1961, pp. 59— 63.

[12] Doos, J. L.: The boundary values of analytic functions. - Trans. Amer. Math.
Soc. 35, 1933, pp. 418—451.

[13] HausporFF, F.: Mengenlehre. - 2nd ed., Goschens Lehrbiicherei 1. 7, Walter
de Gruyter & Co., Berlin/Leipzig, 1927.

[14] PIraNIAN, G.: Ambiguous points of a function continuous inside a sphere. -
Michigan Math. J. 4, 1957, pp. 151 —152.

[15] Priwarow, I. I.. Randeigenschaften analytischer Funktionen. - Hochschul-
biicher fur Mathematik 25, Deutscher Verlag der Wissenschaften, Berlin,
1956.

[16] TaNNER, R. C. H.: La symétrie locale des fonctions et ensembles arbitraires. -
Enseignement Math. 8, 1962, pp. 192—194.

[17] WENIAMINOFF, V.: Sur un probléme de la représentation conforme de M. Cara-
théodory. - Rec. Math. 31, 1922, pp. 91—-93.

[18] WEsTON, J. D.: Some theorems on cluster sets. - J. London Math. Soc. 33, 1958,
pp. 435—441.

[19] Youne, W. H.: On the distinction of right and left at points of discontinuity. -
Quart. J. Pure Appl. Math. 39, 1908, pp. 67—83.

[20] —»— On some applications of semi-continuous functions. - Atti del IV Con-
gresso Internazionale dei Matematici (Roma 1908) II, Roma, 1909,
pp. 49—60.



E. F. CoLLingwoop, Cluster set theorems for arbitrary functions 15

[21] Youne, W. H.: On the discontinuities of a function of one or more real variables. -
Proc. London. Math. Soc. (2) 8, 1909, pp. 117—124.

[22] —»— La symétrie de structure des fonctions de variables réelles. - Bull. Sci.
Math. 52, 1928, pp. 265—280.

[23] Young, W. H., and G. Ch. You~a: On the internal structure of a set of points
in any number of dimensions. - Proc. London Math. Soc. (2) 16, 1917,
pp. 337—354.

[24] —»— -—»— On the inherently crystalline structure of a function of any number
of variables. - Proc. London Math. Soc. (2) 17, 1918, pp. 1—16.

Printed August 1963.



	IMG_20160817_0001
	IMG_20160817_0002
	IMG_20160817_0003
	IMG_20160817_0004
	IMG_20160817_0005
	IMG_20160817_0006
	IMG_20160817_0007
	IMG_20160817_0008
	IMG_20160817_0009
	IMG_20160817_0010
	IMG_20160817_0011
	IMG_20160817_0012
	IMG_20160817_0013
	IMG_20160817_0014
	IMG_20160817_0015

