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Cluster set theorems for arbitrary funetions with applications to
function theory

l. Introd,uction. At first sight a function of which we know no more
than that it has a value at every point of its domain looks rather unpromising
material to work with. There are obvious limitations; but it has been found
that quite striking statements can be made about such functions and if
we select them to fit situations that arise, for example, in the theory of
functions these statements may turn out to be useful theorems. or it may
be that a theorem about an arbitrary function can be significantly sharp-
ened if some condition such as continuity is imposed. rn any case »arbitrar-
iness» is qualified by the properties of the spaces one of which is mapped
into the other by the function. Here we shall for the most part be concerned
with mappings from the real line or the plane disc to the 2-sphere or a
great circle upon it, thus generalising a familiar function - theoretic
situation. The theorems we obtain are inherent in the topology and geom-
etry of the spaces involved and, as J. D. Weston has shown [lg], are
capable of further generalisation by removing restrictions on these spaces.
Important as these developments are we shall not attempt to enter into
them here.

2. The theorems we shall discuss are in terms of cluster sets; but these
are not the only kind of theorems about arbitrary functions that are known.
We denote the functions by f (z) ,lzl <I; f(r) ,0 1r <t; f (p) or
simply /. The cluster set of f at, a point p of the closure of its domain,
which we denote by c(f ,P), is the set of all the rimits of / as the
variable z or u within the domain D of f approaches p in all
possible ways. rn precise terms, c(f , P) , P e D, r&y be defined in either
of the two following equivalent ways:

(a) C(f , P) is the set of points d. of the ru-sphere s into rvhich
w : f(z) or w : f(r) maps D such that there exists a sequence
{2") c D\P satisfVinS 

§ zo: P and lim f ("") : o.

(b) C(f ,P) : n Z^ where X^: f 19,\p) and g" irthe intersection
of D with a neighbourhood ir-pl { d,, or j"_pl ( ö,, d, .| O

€Is n-->@. The open sets 9o, n:1,2,..., thus have p as
their only common interior or frontier point. The bar denotes closure.
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It follows at once from both definitions lhat, c(f , P) is non-empty and,

cl,osed,. The complement el(f , P) is thus always an open set'

we note that if /(z) is defined at P then /(P) does not necessarilv

belongroC(f,P)unless/iscontinucrusatP.Butiff(z)iscontinuous
in the deleted set, D\P then c (f , P) is either a continuum (compact

connected set) or a Ttoint. In the latter case v'e say that C(f , P) is

d,egenerate; and in the former we say that C(f ,P) is total' ot sub-total

according as eCff , P) is emPtY or not'
The cluster set as we have defined il is compilete, being relative to the

entire neighbourhood of P belonging to the domain D. Btt restricted,

cluster sets lthese are sometimes called partial) are important in the theory'

Examples are the rad,ial, cluster set Cn(,f , P) , where D is a disc and P

, poirri of its circumference, defined by restrictirry {z^) to the radius lo P 
'

,ria tU" right and left-hand cluster sets Cn(/, P) and C"(f 
' 
P) ' where luo

,pprou"h"", P from the right (Ieft) for f defined on the real line and

,'r! r, upproaches arg P from below (above) for / defined in a disc and

P a point of the circumference'

SymmetrY theorems

3. In 1907 W. H. Young [19] proved the following theorem'

If f (") is an arb'itrary real funct'ion of the real' oariable r then

(1) t^ f"("): ti* /o(") and' Iim /'(r) : lim fo@) '

where the R and, L signs ilenote li,mits to the ri,ght and, leJt of r respectiuely,

for all, au,lues of r erceptt perhaps for a countable set'

Thisupp",,,tohavebeenthefirsttheoremtobeexplicitlystatedfor
arbitrary 

-functions. 
Young announced it at the meeting of the British

Associaiion held at Leicester in I907. He used to refer to it as the Leicester

theorem. A year later, at the R'ome Congress of 1908' he announced what

he called the Rome theorem [20]. stated in modern notation, this is the

Leicester theorem with (1) replaced by

C"(f,r): Co(f,r)

Young extended his investigations to the plane and to euclidean

a-space i-n a series of papers tI9]-124] extending over twenty years;

but he co,fined himself io ,ral functions and his results passed unnoticed

by eomplex variable analysts (see also [16])'

4' What turns out, to be a useful extension of Young,s Rome theorem

to an arbitrary complex function defined in the disc is' however' almost

(2)
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immediate. Denote the unit disc by Lf

set of values & such that for some

8" I arg P (S" ..1, arg P) , we have tim

Theorem l. ?or (Ln arb'itrary ,n"ioi

and its boundary by ?d. Writing
f (r) at P e x is defined as the

sequence tr")cU, lim zn:P,

f ("-) - d.. We can ";;-prove
compler functi,on f (r) def ined in u

(3)

(4)

ercept perltaps for a countable set of poi,nts ei$ e x .

The proof, which also suffices, without any adaptation, to prove Young's
Rome theorem, is simple.

We cover the Riemann sphere § with a succession of nets

-lfr, lc : L,2, . . . , each with a finite number of closed triangular meshes

rrlknt n: L,2,.. ,71k, of diameter < t/k. We arrange these in a

sequence in any convenient way. Call the sequenc. {*}.
For each index j we define the set fi of points eio for which m1

meets C(f , eto) but does not meet Co(f , ei'l) . If eio e Ei, Lhen eiB is
the left-hand end-point of an arc {(r?) such that for et' e 1t101 the cluster
setC(f ,eiu') doesnotmeet, nri; forotherwise mi wouldmeet C*(f ,eto).
Il8) therefore contains no point of Ei. The set Z.; thus consists of
end-points of non-overlapping intervals and is therefore countable. Plainly,
the set -Eo of points ei$ fot: which C(f , "'*)\C^(,f , e'd; is not empty is
the union of the sets Ej, j: t,2,..., and this proves the theorem.

5. Exactly the same argument proves the local symmetry, except
perhaps at a countable set. of the right and left bound,ary cluster sets.

The right hand boundary cluster set Cuo(f , ei8) at e'' is simply the
cluster set defined along the arc of x lo the right of ei$ , ortly, since /
is not necessarily defined at points of x , we use the cluster sets of /
at points of the &rc as the values. Any appearance of sophistication in
this definition is deceptive. Similarly for the left hand boundary cluster
set Cr"(J, e'8; . We then have

Theorem 2. Ior an arbitrary function f (z) i,n, U

cuo(f ,n't) - crr(f , e"') -- c(f , atu)

erce.pt perhaps for a countable set of points eia e x .

Since evidently Cor(f , et") C C"(f , "'") and Cr^(f , e'o) c Co(f , "'')Theorem I is contained in Theorem 2.

It will be seen that Theorems I and 2 and Young's theorems quoted
above depend essentially on the topology of the real line or circumference
of the disc. However, for functions defined in a ball we c&n, by the same
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argument, establish bilateral symmetry of the gl,obal cluster sets and global,

bound,ary cluster sels to the right and left of a meridian, s&y, or parallel of
latitude (Iooking respectively eastwards or northwards, say) except for a

countable set of values of the longitude or latitude. By the global cluster
set to the right of a meridian we mean the union of the cluster sets at
all points of the meridian approached from the right, and similarly for
the other one-sided global cluster sets. Patterns of sy,'mmetry at points
of the spherical boundary of the ball, equality in opposite quadrants
defined b;, the meridian and parallel through the point, for example,
may be shown by an obvious adaptation of Young's method for the plane

[23] to hold except for a set of points of first category on a courrtable

set of meridians or parallels. In contrast, Bagemihl's ambiguous point
theorem for an arbitrary function in the disc is essentially 2-dimensional
and has no analogue in the ball.

Maximality theorems

6. It follows from (a) that the cluster sets at ei'' in the two domains

in t/ lying outside chords intersecting at, eia and to the right and left
of the radius are both maxi,mal, i. e. equal to C(f , eio) , except for a count-
able set of values of 0 . This suggests the question: What can we sa,y

about the cluster set in a small angle Å at ei$ between two chords? To
fix ideas suppose Llnat / is bisected by the radius g. In this situation the
kind of argument by which we proved Theorem I is not available and
the set of points eio e x at which Cr(f , r'u) + C(f , e'n) is no longer
countable but is of first category (v'e shall u'rite this categorl- I) in the
sense of Baire. The theorem l10l is as follorvs:

Theorem 3. Ior an arbitrary function f (z) in, L: and an angl,e A(0)
of any fired, magnitud,e bi,sected by the rudius to ei''

C rtu)(f , ttu) - Cff , e''')(5)

ercept perhaps for a set of points o! category I ott '/. .

Suppose the contrary so that the set E of points eib at which
Corr,t(f , "'*) + C(!, e") is of category II. In three steps we shall select a
subset Eo of ,O, also of categorv II and therefore dense in an arc p of x,
in which a certain closed subset To of the 2-sphere § meets C(l , et*)

but is uniforml.v bounded away from f (/(B». These properties are

inconsistent. For, since .Eo is dense in B every point z of U sufficieutly
near to B is contained in a /(O) , ei't e Es, so that /(z) is uniformly
bounded away from ?o which therefore does not meet C(f , e"') for any
e" e P. This contradiction will proye the theorem.
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The selection is carried out as follows.
(i) For any point of E, since Crlr(f ,et") is closed and cC(f ,ei$),

there is a positive number e such that the intersection

c(f , ",") 
n eQl@ff, ett)*,)

is not empty, where C.or*\(f ,e'u)+" is the closed e-neighbourhood of
Crr"r(f ,e"') (in the spherical metric) and € denotes the complement.

lry E" the subset of E for which n+6

C(l , "") 
n eQ lk»ff , e"')*,o)

is not empty. Plainl5r, Ercilrc... e E*c... (a finite number of
these sets may be empty) and

,:Yr".
We can therefore find -l/ such that -E* (and everv set of higher rank)
is of category II.

(ii) To select from E * we now cover § with a finite net of meshes
Tb f 2, . . . , T^ each of diameter less than e*/4. lVe treat the meshes ?
asclosed. Foragiven p 

=m 
let E*,, bethesubset of E* inwhichtheset

T,,n C(f , e'B\n €1C4r,Lf , r'').rr)

is not empty ({. meets C(f , "'u) 
but not Cor,»(f , e'')*u"). Since

E*: 
,"u^E*u

and EN is of categor;, II we can find M {m such that E** is of
category II.

(iii) Finatly we have to select, from E n* . Lel To be any closed subset
of T*. Thenforall ei" eE** the distance of To from Crlry(f ,ei") is
greaterthan 3er/4. Wedefine En*r,e:1,2,..., asthesubset of E**
in which the (spherieal) distance Lf@) , ?o7 of f (z) from 7o satisfies the
inequality lf@),Tå) e*12 for all zeÅ(0), I - 2-c < lzl < l. Again,

Enu, c E**, c... c ilN*rsc...
and

Exm:UExrwq.

Since E ** is of category II we cant rru A
U and therefore dense in some arc § C , .

theorem we have only to put Eo : E Nue .

such that E Nrue is of category
To complete the proof of the



(7)

(8)

Ann. Acad. Scient. Fennicre A. r. 336/8

7. The argument by which we have proved Theorem 3 may be applied
to any angle of fixed magnitude and orientation relative to the radius.
We can specify a countable set of directions and magnitudes so that any
angle with eia as vertex contains one of the angles so specified. We there-
fore have

Theorem 4. Let f (") be an arbitrary function in U . Then ercept
perhaps for a set E of points "" of category I on x ue haae for euery

angle / c U with 
"i8 

as aerteu

oo$ , e'u) - C(f , o'*)

At a point et$ e x\E at which C(f , "t') is total /(a) has the cluster
set property 'w-hich & meromorphic function has al a Plessner poi,nt l9l.
It must be emphasised, however, lbaL Theorem 4 is in no way comparable
with Plessner's well known theorem for meromorphic functions.

8. If we now impose the condition of continuitv on f (z) a quite trivial
change in the proof of Theorem 3, working with C,(t , ,to) instead of
C76(1, eid) gives the following mari,mality theorem l9)

Theorem 5. If f(") 'is continuous in U then

Cr(f , e"')- C(f , e'u)

ercept perhaps for a set of points of category I on .

By the same process of selection as in the proof of Theorem 3 we
obtain a set, Eo dense in an &rc P c x in which ?o meets C(f , eto) b*
is uniformly bounded away from f (, "to), 

et" e to, l.-2-Q < r < l. By
the continuity of f(z) these properties are inconsistent and the theorem
is proved.

Theorems 3 and 5 are special cases of more general results proved by
essentially the same arguments tgl-t101.

Applications

9. An obvious application of Theorem 5 rvas to Caratheodory's problem
of determining the distribution of the four kinds of prime ends which
correspond under a conformal mapping of L'r: onto a simply connected
domain, not necessarily Jordan, to points of z. The correspondence is
l:l and tlne impressi,on of the prime end corresponding to a point ei$ ex
under a conformal mapping /(z) is the cluster set C(f , e'u) . If ), is any
pathin U terminatingat e'8 thenplainly C,.(f ,e"')eC$,ei'). Apoint
of C(f , et") which belongs to every cluster set C,.(l, r'u) is a principal,
point of the prime end in question. Points of C(f , e'u) which are not,



E. F. Cor,l,rxcwooD, Cluster set theorems for arbitrarv functions

principal are subsid,i,ary. The set II(f , "'o) of principal points of the
prime end is either degenerate, in which case the point is accessible
from inside U and is the sole accessible point of the prime end, or is
a continuum, in which case there are no accessible points of the prime end.

A prime end is of the fi,rst kind, if it consists of a single (necessarily)
accessible point so that C(f , "t") is degenerate. It is of the second, kind,
if it has one (accessible) principal point and an infinity of subsidiary points;
of the third, kind, if it has no subsidiary points and an infinity of principal
points; and of the fourth lcind, if it has an infinity of both principal and
subsidiary points. We denote these four classes of prime ends by
8r,8r,6r,8n, and the corresponding sets on x by er, €2, €s. €4.

It was proved by Lindelöf that for any conformal m,appi,ng f (z) ancl

any po'int ei$

(9) Cn(f , e'8) : II(f , e'B) .

Combining (8) with (9) we see that

II (f , e"') - C(f , etu)(10)

ercept perhaps for a set of points eia of category I on x. The points for
which (I0) is satisfied are precisely the points e, U e, corresponding to
d,tl 8, so that the complementary sets e, l) en in x and 6,U c9n in the
metric space of prime ends, the metric being, for example, the chordal
distance between corresponding points of x, are both of category I. This
result is one of the keys to the solution of the distribution problem the
implications of which have been described elsewhere [9] and need not
be repeated here.

10. A recent refinement of the distribution problem concerns the
relative frequency of asymmetrical prime ends. There can be no asymmetry
about a prime end of the first or third kind. But a prime end of the second
or fourth kind is asymmetrical if its right and left wings are not, identical,
which is equivalent to saying that Co(f , etu) + Cr(f , et'). This question is
solved by Theorem 1, which is so fundamental as to be valid for an arbitrary
function. It shows that the asymmetrical prime ends of any domain are
actually countable; and examples show that they may be infinite in number
and their corresponding points dense on z [1].

11. Unlike the symmetry theorems I and 2 the maximality theorems 3,

4 and 5 may be immediately extended to functions defined in a three-dimen-
sional ball, where now A(P) will denote a cone having P, a point of the
spherical boundary of the ball, as its vertex and the radius to this point
as its axis. The 2-sphere being a complete metric spa,ce, the Baire categorv
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theorem is again applicable and the arguments used to prove Theorem 3,

with onl5r the obvious verbal changes, give
Theorem 6. For an arbitrary functi,on f whi,ch maps the uni,t ball into

3-space we haue

(11) Co<rtff , P) : C(f , P)

except perhalts for a set of points P of category I on the spheri,cal' bound,ary

S of the ball.
The definitions of the cluster sets featuring in this theorem are obvious.
Similarly, if / is continuous in the ball and Cn$ , P) is the radial

cluster set at P we have
Theorem 7. If the function f i,s continuous i,n the uni,t ball, tken,

(r2) c,(.J , P) : C$ , P)

except perhalts for a set of poi,nts P of category I on S.
This last result is a special case of a general theorem of \Yeston's on

cluster sets of mappings from one topological space to another. For an
abstract theory of cluster sets in a general topological setting u'e refer to
\Veston [18].

Theorem 7, being sufficiently fundamental to be valid for any con-
tinuous function is applicable, for example, to quasiconformal mappings
of the ball in spa,ce.

L2. Let D(f) denote the set of points of x for which Cr(f, et9) is
degenerate, i. e. litrr- .f (r etq) exists. We denote this limit by f ("'u); and

following Doob [12] we may call g@to) : C(f , ei']1 the cluster boundary
function for f. The following theorem is due to Weniaminoff [17].

If f(") is amalyti,c and,bound,ed,i,n U and if x cD(J), then C(f ,"t')
is d,egenerate at eaery point of x at which f (ei9) is continuous and' hence

ei| is a point of conti,nuity of F@tu).
Weniaminoff also proves (his Lemma I in [7]) that if x c D(f) then

for an analytic function (evidently in fact for a continuous function)

/(e'') is of Baire class I and so, by a theorem of Baire, its discontinuities
are a set of category I. tr'rom this it follorvs, b5z the theorem of Weniaminoff
quoted above. that

If f@ i,s analytic and, bound,ed, in u- qnd if x c D(f) , then f (ei") being

of Bai,re class 7 is pto'i,ntwise d,iscontinuous on x, haui,ng a resid,ual set of
points of conti,nui,ty on x which are also gtoints of continuity oY .> 1etq1 .

Theorem 5 enables us to generalise this theorem bydroppingtherequire-
ments thaf f @) be bounded or analytic. It is enough thaf f @) should be

continuous.

A. I. :t3618
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Suppose then that /(z) is continuous in [/ and that x c D(l). Then,
by Theorem 5, C(f , e") is degenerate on a residual set i. e. the comple-
ment of a set of category I on ?.t. But a point at which C(f , e")
is degenerate is a point of eontinuity of both f @") and f(eto). Thus
bolh ,V@t&) and f (eto) are pointwise discontinuous and the set of dis-
continuities is in each case of category I. By a 'well known theorem the
set of points of continuity of a single valued function is a Gu (Hausdorff
[13], p. 251). The same argument shows that the points of continuity of
5@'o) and f(et$) are both of type Gö. A precisely similar argument
applies to a function continuous in the ball and so u'e have

Theorem 8. If the function f is continu,ous in the d,'isc (or the ball) and, if
x c D(f) (or § c D(/)) then the cluster bound,ary function F@")
Gf e), P € §) is pointwise iliscontinuous on x (on §) and, the set of its
discontinui,t'ies is an I " of category I.

13. We denote by fn$,A) theset l@"), e'B eO177cA, of radial
limits of /(z) on an arc A c x. The following theorem (proved in [8]),
related to Theorem 8, is also a consequence of Theorem 5.

Theorem 9. If f (") is meromorphic i,n U and, D(f) is of category II
on some arc A c x , then either lr(f , A) i,s of gtosi,tiae li,near meqsure or

f@ : constant.
This result is considerably stronger than an earlier theorem of Privalov

([15], pp. 231-232), The conclusion on the measure of ln(f ,.4) depends
upon a lemma of M. L. Cartwright's on meromorphic functions so that the
theorem is deeper than the much more general Theorem 8.

Interior theorems

14. For the purpose of function-theoretic applications we fix our
attention, in considering an arbitrary function, on its properties at the
boundary of its domain of definition since it is only there that the regularity
of an analytic function breaks down. There are, however, properties of an
arbitrary function within its domain which are of independent interest.
These are of the kind first brought to light by W. H. Young for real functions
and further studied by H. Blumberg 121-U).Variants of them, or some
of them, are very easily proved by the methods of this paper for complex
functions and for more general mappings.

Let f (z) be an arbitrary function defined in a plane domain D which
it maps into the 2-sphere § (or into the complete euclidean z-space) and
let P be a point of. D. We prove

11
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Theorem 10. If f@ is an arbitrary function m,apping D into §
then f (P) e C(f , P) for al,l, P in D ercegtt perhaps for a set uhich 'is at

most countable.
The proof follows familiar lines. E is now the set of points P e D

inwhich fe)eC$,P) sothat,forall PeE thereisapositive e such

that the distance lfe),C(f ,P)l of /(P) from C(f ,P) (in any a,ppro-

priate metric) exceeds e . Given a decreasing sequence {e"} , Iim t. : 0 ,

t. is the set such that n+ 6

so that E, C E, C

(13)

lfg),c(f ,P)l> €n

Cil*c and

Let Tr,Tr,...,T^n be afinite triangulation on ,S whose meshes are

all of diameter less lhan e^f 4; and Let E^* be the subset of E^ at every

point of which /(P) € Tr, lr {mn. Then eYetY En, is an isolated set.

Forsupposeapoint Po of Eno, tobealimitpointof a,sequenceof points

P,e Ent" so that C(f ,P) meets T, Then the distanee of f(Po) from
C(f , Po) is less than e^f 4, contrary to the definition of Z, which contains

Enp. Thus every set 8,, is countable; hence E.: U 8,, is countable

and consequently E : U E. is countable, which proYes the theorem.
In the case of a function of a real variable D is a segment of the real

line and exactly the same argument applies and the exceptional set is
again countable. The theorem is also true for an arbitrary mapping into
any complete metric spa,ce.

This theorem generalises a theorem of Young's (Theorem I of [21] and
2" on page 5 of. l22l). It is also easy, by our general method, to prove a

rather stronger result of Blumberg's (Theorem I of [3]) which he proved

for real functions but which is also valid for an arbitrary mapping into §
(or into any complete metric space). He introduces the notion of dense

approach to a value of the function. The definition is as follows. The function

/ is said to be d,ensely approached, ut the poi,nt P if for ever;r e > 0 there
e-rists a neighbourhood G(P, e) of P such that the points of this neigh-

bourhood for which

lf(z) ,f(P)l < e

are dense in G(P , e). With this definition v'e have

Theorem 11. If f (") 'is an a,rbitrary function mapping D 'into ,S

(or any complete metr'i,c space) then the set of ltoi,nts at uhich the ualue of f
is d,ensely approached, 'i,s resid,ual in D.

The set of dense approach is of course a subset of the set for which

fe)e Cff,P) whose complement is countable. Now let E be thesetin
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D at which f (P) is not densely approached. For a given €n t where

again {e,} is a decreasing sequence tending to zero, we denote by E" the
subset of E such that every neighbourhood of P e E" contains a

domairr in which the distance from f @) fo /(z) exceeds e". Evidently,
Drc ErC .. . C E^c. . . arrd E : U E^. Repeating the triangulations
T1 ,T2,...,T^o, the meshes being all of diameter .--e"f4, the set -8,,
is again the subset of Dn in which f(P) eT&, p {mn. If now the
theorem is false the set E of exceptional points is of category II and it
follows as before that there exist za : N and F : M such that Z** is

of category II and therefore dense in a domain G c D. Let Po be a point
of GllE**. At every other point of GO E** andat Po itself f e T*
so that the distance of /(Pr) from f(z), ze Gl E**, is less Lhan e*f4
and so there is no sequence of domains having Po as a limit point in
which the distance from f(Pr)fo /(z) exceeds ery: Since PoeEN this is
a contradiction and the theorem is proved.

Coneluiling remarks

15. The earlier literature on arbitrary functions, which is quite consider-

able, ryas concerned exclusively with the interior theory. Sufficient
references to trace this theory back to its sources are given in the list of
references at the end of this paper. The more recent work has been almost
as heavily biassed towards boundary theory owing to the discovery, largely
through the development of the theory of cluster sets, of applications in
the theory of functions and allied fields. The interior theory has, however,

also attracted attention as has the extension of the theory to general

topological spaces. The lack of a unifying idea, namely that of the cluster
,set, or of an accepted terminology and trotation hampered development
for a long time. As has been shown here the descriptive theory may be

handled very easily by a uniform method rvhich is applicable to very
general situations. The part of the theory which we have not touched on

is the metrical part to which both Young and Blumberg contributed, but
this, again, was an interior theory not immediately applicable to boundary
problems. The list of recent pepers is confined to those actually referred
to and is not complete.

Lilburn Tower
Alnwick, England
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