ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $S_{eries} \ A$

I. MATHEMATICA

335

SOME APPROXIMATION THEOREMS FOR NORMAL FUNCTIONS

 $\mathbf{B}\mathbf{Y}$

FREDERICK BAGEMIHL

HELSINKI 1963 SUOMALAINEN TIEDEAKATEMIA

.

https://doi.org/10.5186/aasfm.1963.335

Communicated 9 April 1963 by P. J. MYRBERG and OLLI LEHTO

KESKUSKIRJAPAINO HELSINKI 1963

.

Some approximation theorems for normal functions ¹)

1. Suppose that f(z) is a nonconstant normal meromorphic function (see [2, p. 86]) in the open unit disk D. We are going to show, among other things, that if the set A(f) of asymptotic values of f is of harmonic measure zero, then there exists a set S of points on the unit circle Γ , where S is both of Lebesgue measure 2π and a residual set in the sense of Baire category, with the following property: the function f(z) approximates every complex value arbitrarily closely on every continuous curve in Dthat intersects Γ in a point of S at an angle different from zero.

This generalizes in several directions certain classical results of P. J. Myrberg ([3], [4]). (A very special case to which our theorem applies is that of the elliptic modular function.)

2. We denote by Ω the extended complex plane. If z and z' are points of D, then $\varrho(z, z')$ is the non-Euclidean hyperbolic distance between them. A Stolz angle with vertex $\zeta \in \Gamma$ will be called a Stolz angle at ζ . By an arc at $\zeta \in \Gamma$ we mean a continuous curve $\Lambda : z = z(t)$ $(0 \leq t < 1)$ such that |z(t)| < 1 for $0 \leq t < 1$ and $\lim_{t \to 1} z(t) = \zeta$. A terminal subarc of an arc Λ at ζ is a subarc of Λ of the form z = z(t) $(t_0 \leq t < 1)$, where $0 \leq t_0 < 1$. By an admissible arc at ζ we mean an arc at ζ having a tangent at ζ different from the tangent to Γ at ζ . If f(z) is meromorphic in D, and $\zeta \in \Gamma$, the cluster set of f at ζ , or on a Stolz angle Λ at ζ , is denoted by $C_{\Lambda}(f, \zeta)$, respectively. We write $C_{\mathcal{A}}(f, \zeta) = \bigcup_{A} C_{A}(f, \zeta)$, where the union is taken over all Stolz angles Λ at ζ . We define $\Pi_T(f, \zeta) = \bigcap_A C_A(f, \zeta)$, where the intersection

¹) Presented at the Conference on the Theory of Functions of a Single Complex Variable, Mathematisches Forschungsinstitut, Oberwolfach, Germany, March 25, 1963.

is taken over all admissible arcs Λ at ζ . The set of points $\zeta \in \Gamma$ such that $C_{\Lambda}(f,\zeta) = C_{\Lambda'}(f,\zeta)$ for every pair of Stolz angles Λ, Λ' at ζ is called K(f). (The set K(f) is always a residual subset of Γ of measure 2π [2, p. 68].)

3. Our theorems are based upon the following general

Lemma. Let f(z) be a normal meromorphic function in D, and suppose that $\zeta \in K(f)$. Then $\Pi_T(f, \zeta) = C_{\mathcal{H}}(f, \zeta)$.

Proof: Suppose that $\omega \in \Pi_T(f, \zeta)$. Then $\omega \in C_A(f, \zeta)$ for every admissible arc Λ at ζ . Since Λ intersects Γ at a nonzero angle, there exists a Stolz angle Λ at ζ containing a terminal subarc of Λ . Clearly $C_A(f, \zeta) \subseteq C_A(f, \zeta)$, so that $\omega \in C_{\mathscr{H}}(f, \zeta)$.

Now suppose that $\omega \in C_{\mathcal{J}}(f, \zeta)$. Let Λ be any admissible arc at ζ . Since $\zeta \in K(f)$, we have $\omega \in C_{\mathcal{A}}(f, \zeta)$ for every Stolz angle Λ at ζ , and hence there exists a sequence of points $\{z'_n\}$ in D, where $\lim_{n \to \infty} z'_n = \zeta$ and $\lim_{n \to \infty} f(z'_n) = \omega$, such that, for an appropriate sequence of points $\{z_n\}$ on Λ with $\lim_{n \to \infty} z_n = \zeta$, we have $\lim_{n \to \infty} \varrho(z_n, z'_n) = 0$. From the fact that f(z) is a normal meromorphic function in D, we infer [1, p. 10, Lemma 1] that $\lim_{n \to \infty} f(z_n) = \omega$, and hence $\omega \in C_{\Lambda}(f, \zeta)$. This holds for an arbitrary admissible arc Λ at ζ , and therefore $\omega \in \Pi_T(f, \zeta)$.

4. Theorem 1. Let f(z) be a nonconstant normal meromorphic function in D, and suppose that A(f) is of harmonic measure zero. Then there exists a residual subset S of Γ of measure 2π such that, for every $\zeta \in S$, $\Pi_T(f, \zeta) = \Omega$.

Proof: According to Plessner's theorem [2, p. 70], almost every point of Γ is either a Fatou point or a Plessner point of f. The set of Fatou points of f, however, must be of measure zero, otherwise Privalov's theorem [2, p. 72] would imply a contradiction to the fact that f is nonconstant and A(f) is of harmonic measure zero. Hence, the set I(f) of Plessner points of f is of measure 2π . It follows [2, p. 65] that I(f) is also a residual subset of Γ . If $\zeta \in I(f)$, then $C_{\mathcal{A}}(f, \zeta) = \Omega$, and since $I(f) \subseteq K(f)$, our Lemma yields $\Pi_T(f, \zeta) = C_{\mathcal{A}}(f, \zeta)$. Setting S = I(f), we obtain Theorem 1.

A set of linear measure zero may be of positive harmonic measure [2, p. 7]. In case A(f) is known merely to be of linear measure zero, we have nevertheless the following result.

Theorem 2. Let f(z) be a nonconstant normal meromorphic function in D, and suppose that A(f) is of linear measure zero. Then there exists a residual subset R of Γ such that, for every $\zeta \in R$, $\Pi_T(f, \zeta) = \Omega$.

Proof: Since f(z) is nonconstant and A(f) is of linear measure zero, we have $C(f, \zeta) = \Omega$ for every $\zeta \in \Gamma$ [2, p. 51]. It follows [2, III, § 3] that I(f) is a residual subset of Γ . As in the proof of Theorem 1, $\zeta \in I(f)$ implies that $\Pi_T(f, \zeta) = \Omega$, and setting R = I(f), we obtain Theorem 2.

Wayne State University Detroit, Michigan, U.S.A.

References

- F. BAGEMIHL and W. SEIDEL, Sequential and continuous limits of meromorphic functions.- Ann. Acad. Sci. Fennicæ A I 280 (1960), 1-17.
- [2] K. NOSHIRO, Cluster sets.- Berlin, 1960.
- [3] P. J. MYRBERG, Ein Satz über die fuchsschen Gruppen und seine Anwendung in der Funktionentheorie.- Ann. Acad. Sci. Fennicæ A 32 (1929) No. 9, 1-35.
- [4] -»- Ein Approximationssatz für die fuchsschen Gruppen.- Acta Math. 57 (1931), 389-409.