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On the completion of uniform spaces

One of the principal results in the theory of uniform spaces is the possi-
bility of imbedding an arbitrary uniform space in a complete uniform space
as a dense subspace. This problem has been treated by Boursaxi ([1], [2])
in two different ways. To the present author it seems that the situation
becomes more lucid, if the construction of Bourbaki is modified by using a
trick of KowaLsky ([3], p. 159). This modification yields the following,
more precise result:

Theorem: For every uniform space E there exists a complete uniform
space E, containing E as a dense subspace, and such that every point
of E—F is T, sepamted from every other point of E. Two complete
spaces E’ and E,, satisfying these conditions, are always wuniformly iso-
morphic and even in such a way that the identity mapping E—E has a
unique extension to a uniform isomorphism El — 1772.

Corollary: For every uniform Ty-space E there exists a complete uni-

form T-space E, containing E as a dense subspace. If E and E are
two complete Ty-spaces, containing E as a dense subspace, then the identity

mapping E—E has a unique extension to a uniform isomorphism E,— H,.

The purpose of this paper is to prove the theorem stated above and
deduce the corollary from it.

If (E,) is a uniform space, v being its uniformity, we denote the
uniform topology of (Z,iv) by 7, and the neighborhood filter of a point
« of the topological space (X, 7,,) by 7,(x). If u isa filter of £ and M
a subset of K, we denote the trace of u in M by u,. The induced uni-
formity of M is, however, denoted by {v,, instead of fwpry . If W is aset
of v and z a point of E, the set of all points y in & such that (x,y) €W
is denoted by W[x].

1. Minimal Cauchy filters. A filter u of a uniform space (¥, v)
called open, if it has a base every set of which is open in the topology ,,.
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It is called a Cauchy filter, if for every set W of tp there exists a set 4
of u such that 4 x4 c W. If u is a Cauchy filter of (#,w), then its
trace U, in an arbitrary subspace (M,tv,) is a Cauchy filter of this
subspace.

A uniform space (Z,tp) is said to be complete, if every Cauchy filter of
(#,mw) is convergent in the uniform topology 7, i.e. if it contains, as a
subfamily, at least one neighborhood filter 7, ().

The family of all Cauchy filters of a uniform space (#,tp) is partially
ordered by inclusion. The maximal element of this partially ordered family
is the filter that consists of all subsets of E, including the empty set O.
We denote this filter by o and call it the zero filter of E. The minimal
elements of the partially ordered family of all Cauchy filters are called
mintmal Cauchy filters. In other words, a Cauchy filter u of (#,) is
minimal, if from the relation v C u it necessarily follows that the Cauchy
filter v is = u. .

Every neighborhood filter 7, (x) is a minimal Cauchy filter and every
minimal Cauchy filter is open. Furthermore, for every Cauchy filter u = o
there exists a unique minimal Cauchy filter v such that v cu. It is
readily seen that if a and b are two minimal Cauchy filters, such that
ANB+# @ for every 4 in a and every B in b, then a = 0. In fact,
the family ¢ ={4UB: 4 €a,B €b} is then a Cauchy filter. satisfving
¢cCa and ¢Cb, and from this it follows that a = ¢ = 0. Finally we
observe that in a complete uniform space (£, 1) the family of all minimal
Cauchy filters coincides with the family of all neighborhood filters 7, ().

2. The construction of E. Let (E.w) be an arbitrary uniform space.
We denote by E the set whose elements are

(a) the points of E,

(b) those minimal Cauchy filters of (£.1) that do not coincide with any

neighborhood filter 7,(2).

We define a mapping ¢ of E onto the family of all minimal Cauchy filters
of (E,w) by setting ¢(z) = 7,(x) for every v in E and ¢(v) =2 for
every x in the class (b).

With every set W of v we associate the set W consisting of all pairs
(x, ¥), for which there exists a set 4 € ¢(x) N ¢(y) such that 44 c IV,
It is easy to see that

— ~ ~
row=vrvnmw

for every pair (V, W) of sets of w. From this it immediately follows that
the family
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W ={W:Wew}

is a base of a filter 1 in E x E. We will show that fo is a uniformity for E.

Since each (p(x) is a Cauchy filter, every pair (z, z) belongs to every set
of the family 2. Thus every set of 2 contains the diagonal of E x E.

From the definition of the sets W it immediately follows that each of
these sets is symmetric.

Finally, let W be an arbitrary set of 9, and let V be a set of v such
that VoV c W. We consider an arbitrary element (z,%) of VoV. If
% is an element of E such that (%,%) and (3, %) belong to V, then there
exists a set 4 in @@)NeE) and a set B in ¢(z) N ¢(y) such that
AXxAcV and Bx BcV. Since ANB belongs to ¢(z) # o,
ANB is non-empty. From this it readily follows that A4 X B C
VoV c W and, consequently,

(AUB) x (AUB)c W,

if W is symmetric. Since, on the other hand, 4 U B belongs to ¢(z) N ¢(y),
the pair (z,%) thus belongs to W, and we have
I7 o I; C W .

The filter 1 is therefore a uniformity for E.

3. E as a subspace of E. We consider the trace o of the uniformity
foin £ x E. Let W be a set of w. If (z,y) belongs to W N (B x E),
then there exists a set 4 in ¢(x) N @y) = 7,(*) N 7,(y) such that
A X A cW. The points z and y then belong to 4 and, consequently,
(®, y) belongs to A x A c W. Thus we have

(1) WNE < E)cW

for every set W in .

Conversely, let (z,y) be an arbitrary element of . Since 7,(x) and
7,(y) are Cauchy filters, there exists a set 4 in 7,(r) and a set B in
7,(y) such that 4 x ACW and B x BCW. For an arbitrary
element (u,v) of 4 X B we then get (u,x)€A4A x ACW,(x,y) €W
and (y,v) € B x BCc W and, consequently, (u,v) € W3. We thus see
that 4 x B € W3 and therefore

(AU B) x (AU B)cC W3,

Yt wois symmetric. Since 4 U B € 7,(z) N 7,(y), the pair (x,y) there-
fore belongs to W3. This indicates that
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(2) WecWwin (E x E)

for every symmetric set W in fv. From the relations (1) and (2) it finally
follows that vz =i, and (E,iv) is thus a subspace of (E’, D).
Now we show that £ is dense in (&, 75 ). In order to do this we con-

sider an arbitrary symmetric set W of v and an arbitrary point z of E.
Since ¢(z) is a Cauchy filter of (X, ), there exists a set 4 of this filter
satisfying 4 X A € W. Since z is not the zero filter, the set A is non-
empty. Let @ be a point of 4. From the Cauchy filter ¢(a) = 7,(a) we
choose a set B such that B X B C W. For an arbitrary element (u, v)
of 4 x B we then get (u,a) €A x AcCW and (a,v) €EB X BCW
and, consequently, (u,v) € W2. From this it follows, as before, that

(AUB) x (AUB)c W2,

Since 4 U B € ¢(z) N ¢(a), the pair (z, @) thus belongs to 2. Therefore
we have

WAFINE + O,

which shows that E is dense in (E, ).

4. The completeness of E. In this section we first prove the following
lemma, which will primarily be used in section 6, but which will also to some

extent shorten the proof of the completeness of E:

Lemma: If M is a dense subspace of a uniform space E, then a—- ay
8 a one-to-one mapping from the family of all minimal Cauchy filters of E
onto the family of all minimal Cauchy filters of M.

Let first a be a minimal Cauchy filter of E. Then a, is a Cauchy filter
in M and there exists, consequently, a minimal Cauchy filter u of M for
which u Ca,,. Let 1 be the filter of K, with u as a base. If 4 were a
set of a, such that 4 N M would not belong to u, then 4 could not
belong to 1, and thus u N a were a Cauchy filter of £ properly contained
in the minimal Cauchy filter a. This contradiction shows that u = ay,
and thus the trace in M of every minimal Cauchy filter of £ is a minimal
Cauchy filter of M.

Conversely, let 11 be a minimal Cauchy filter of M. This filter u is a
base of a Cauchy filter u in E. Let v be a minimal Cauchy filter of £
such that p € u. Then we have v, C 1y = u and therefore v, = u,
since b, is a Cauchy filter and 1 is minimal. Thus every minimal Cauchy
filter of M is the trace of at least one minimal Cauchy filter of E.
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At last we see that if a and b are two minimal Cauchy filters of K
such that ap = by, (# 0 since M is dense), then every set of a intersects
every set of b and, consequently, a =b. Our lemma is proved.

In order to prove that (E’ , 0) is complete, we consider an arbitrary non-
zero Cauchy filter 1t of (¥, v). We have to show that there exists at least

one point x of E such that 75 (%) C il Since there exists a minimal
Cauchy filter § satisfying § C i, we may assume that i is a minimal
Cauchy filter. From our lemma it then follows that the trace ug of u is

a minimal Cauchy filter of (#,w). Let z be a point of E such that
@(*) = liyz. We show that
(3) T = 75 (2) .

Since 1 and 7y (%) are minimal Cauchy filters, the assertion is proved,
if we show that every set of 1l intersects every set of 73 (z). To see this we

consider an arbitrary set 4 of 11 and an arbitrary set W of . Let V
and U be symmetric sets of v such that V2C W and U3 cC V. Since B

is dense in (&, ), we can choose a point x from U[z] N E. From the
relation (z,x) € U it follows that there exists a set B in ) N ¢(x) =
1y N 7, (x) satisfying B x Bc U. Since both ANE and B belong
to the non-zero filter {ig, their intersection AN B is non-empty. If y
is a point of AN B, then by (2)

@y €EBxBcUcCUCV.
From this and from (z,z) € UcV it then follows that
@,y)€EVoV W,

j.e. that y € W[Z]. This shows that the intersection W[z N A is non-
void and thus the equation (3) holds. From this equation it finally follows

that i converges to z, and thus (£, n) is complete.

5. The postulate 7,. Let (z,y) be an element of E x E belonging to
every set W. For every set W of i it then exists aset M of ¢(@) N ¢(y)
satisfying M x M c W. This shows that the family

¢={AUB:4€g@),BEyy)}

is a Cauchy filter in (&, ). Since it is included in both ¢(z) and (),
we have thus ¢(x) = ¢ = ¢(y). Therefore we see that if (z,y) is a pair of

elements of £ for which @(Z) # (), then there always exists a set W of
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fo such that (%,7) € W. The set W[&] is then a neighborhood of z that
does not contain y. This indicates that every point of B — E is T,-
separated from every other point of E.

6. The uniqueness of the ecompletion. Let now (177, ) and (E’, ) be
two completions of (X, iv) satisfying the conditions of our theorem. Let 2

be an arbitrary point of E. Then the trace 75 (x)g of 75 (x) is, according
to the lemma of section 4, a minimal Cauchy filter of (). After this,

the same lemma shows that 75 (z)g is the trace in £ of a minimal Cauchy
filter i of (&, ). Since (£, D) is complete, there exists a point # of £
such that i = 7;(z). Thus we see that with every point Z of E we can
associate a point z of B in such a way that

(4) Tﬁ; (x)E - Tm (',2‘)

A ~

If, in particular, z lies in E, we may obviously suppose that z = Z.
Now we consider the mapping f: (1) — (E,®) defined by

f@) =3 .
If % isin E — E, then Z isin E—FE In fact, if Z were in E, then

A
75 (%)g = ™ (9’5\)15 = 75 (% )g

and, consequently, 73 (%) = v;(z). This is a contradiction, however, since
the points of E— E are T,-separated from other points of (E, ). If
Z is an arbitrary point of - E, then 7;(%)g is a minimal Cauchy filter
of (F,) and, as a consequence, there exists a point 2 of E such that

75 @) = 73 (@) -

By (4) we then have 7 (f( x)) 74 (), ie. f(z) = z. Since f is the iden-
tlty in B,z belongs to £ — E. This shows that f is a mapping from
E—FE onto § — E. Finally we observe that if f(z) = f(y). then

5 (@) = 13 (f(2))g = % (f@)e = 50 W)

and, consequently, 73 (¢) = 75 (y). From this it follows, if  and % belong
to B — E, that & =%. This indicates that f is a one-to-one mapping
from K — E onto E — E. Since it coincides in E with the identity

mapping, it is thus a one-to-one map from E onto K.
Next we prove that f is a uniform isomorphism. Because of the sym-

metry it suffices to show that f is uniformly continuous. Let W be an
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arbitrary symmetric set of 1. Since the restriction f|E : (E, ) — (E D)
is uniformly continuous, there exists a set W in v such that

(5) WSN(E x E)yc .
We consider an arbltrary point (z,y) of W. From (4) it follows that there
exists a symmetric set V of o such that ¥ c W and

(6) VIEINECWf@INE, VIZINE c W@ NE .

Since E is dense in E, we can choose a point z from V[x] NE and a
point y from V[y] N E. From the relations (z, ), (¥, y) € VcW and
(x,y) € W it follows that (x,y) € W3 and therefore, by (5), that (z, y) € .
On the other hand, by (6) x € W [f(®)] and y € W[f )], ie. (f(z), x) € W

and (y, f(y)) € W and, consequently, (f(z),f(y)) € V3. Thus we see that
from (Z,%) € W it always follows that ( f(®), f(7)) € . This proves that f
is a uniform isomorphism, as we wished to show.

We have seen that the identity mappmg 7 (E i) — (E,w) can be
extended to a uniform isomorphism f: (K, )— (E 10). It remains to be
shown that this extension is unique. In order to see this, we suppose that
g: (B, %)— (B, ) is another such extension and that f(&) # g(x). Then
the points f(z) and ¢(z) belong to E—E and, as a consequence, 74 (f(Z))
# 15 (9(2)). From this it follows, since the neighborhood filters are minimal
Cauchy filters, that there exist disjoint sets 4 € 75 (f()) and Be 75(9(2)).
On the other hand, we see that, since f and g are continuous, there exists
a nelghborhood U of % such that S U c 4 and g(U) c B. Since E is
dense in K, we can choose a point z from UNE. Then the point
x = f(x) = g(x) belongs to f(ff) n g(ﬁ) and, consequently, to AnB.
This contradiction shows that f is unique.

7. Proof of the corollary. Now we suppose that (E,w) is a uniform
Ty-space and show that then (E,19) is a T,y-space, too. We have seen above

that every point of E — E is T,-separated from every other point of E.
Thus we only have to consider two points @ and y, both belonging to
E. If they are not T-separated, then 73 (x) = 73 (y) and, consequently,
75 (®)g = 75 (¥)g- On the other hand, since both 75 (2)z and 7,(x) are
minimal Cauchy filters in (#,1w) and since every set of the former filter
intersects every set of the latter filter (at x), we see that 75 (x)p = 7,(2)
and, likewise, 73(y)g = 7,(y). Thus 7,(x) = 7,(y), from which it finally
follows, since (£,v) is a T -space, that a = y. This completes the proof
of the corollary.
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