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Fixed points in non-normed spaces

1. Differential calculus in locally convex topological vector spaces
which are not normed has been studied by many authors. de Lamadrid
[5] gave a definition of the differential based on the idea of spaces of con-
tinuous mappings. More recently, Fischer [3] gave a different definition
and proved several differential calculus theorems in addition to a fixed
point theorem. The author [2] used the definition of de Lamadrid to prove
the differential calculus theorems. The purpose of this note is to prove a
fixed point theorem which is more general than that of Fischer. It should
be noted that both theorems are relatively simple generalizations of the
theorem of Hildebrandt and Graves [4]').

All notations and definitions, unless otherwise stated are those of
Bourbaki [1].

2. Let X be a locally convex topological vector space, X, an
open neighborhood of 0 in X, z,€X, and f: 2+ X,—>X. Let
k=0. We shall say that the function f satisfies the condition L(k)
if there exists a convex, closed, bounded set B C X, such that =,y
€ 2,4+ X, and y —x € A B implies

fy) —fx) € 2k B.

If X is normable and f is Lipschitz in the ordinary sense with
constant k, then [ satisfies L(k) with the unit sphere taking the
place of B. On the other hand, suppose X is normable and f
satisfies L(k). Let x,y € xy+ X,. If B happens to be smaller
than a sphere, say a line segment, then y — x may not be in any non-
zero multiple of B so that we may not conclude that f is Lipschitz in
the ordinary sense.

Let us now consider the definition given in [3]. Here we say, essentially,
that f satisfies L'(k) if for every seminorm, p, there is a number,
rp, suchthatif x,y € xy+ X, and ply —2x) =1, plx—2) =7p,
then

»(fly) — fx) = kply — ).

1) Added in proof: A sharper form of this theorem has been proved for Banach
spaces by Rolf Nevanlinna [6].
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If L'(k) is satisfied, we can take B to be the set of 2z € X, such
that for all p, p(x) =<r,. This is a closed, convex, bounded set.
If 2,y€xy+X, and y—2 € AB, then ply—2z)=ir,., so
p(fy) — f(®)) = k Ar,. This means that f(y) — f(x) € 2k B.

Thus we have shown that L’(k) == L(k). The converse is false. This
is most easily seen by noting that in the normable case, L’ is equivalent
to the usual Lipschitz condition, while L, as we have seen, is not. It
should also be noted that in locally convex topological vector spaces, L’
implies continuity but L does not.

3. We will now show that a fixed point theorem can be proven using
L instead of L’.
Theorem. Let X be complete. Let f[: xy+ X,—X such that f
satisfies L(k), k<1, with corresponding bounded set B . Let
flxy) —xy € 1 —k)B.

Then there exists a unique x € x,+ B such that f(x) = x .
Proof. We define the sequence (x.) by
X,y = flx,), n=0,1,....
We must show that «, € z, + X, so that f(z,) is defined. Since
BcX,, wehave
2, =f(xy) € Xo+ (1 —k)B C 2y + X, .

Let us assume that a;,...,z, are in 2, + X,, and

n

x,—x € (1—k)B, x, —x,, €' (1—kB.

This assumption is valid for n = 1. Let us prove it for n — 1.
We have,
s — @ = [@) — @) € KT(A—EB = (1 —1)B,
and
Xyg — Xy = Xy — X, +, —2 =LK1 -kB-(1-I")B
Clk"(l—k +1—£k]B=(1—Fk""B.
Hence our agsumptions are valid for all » . In particular. z, € 2, — X,

so that the sequence is well defined.
Further, for any integer m =0,

. [ "
Cngmtl — Ty = Tpnrmpl = Lnym _._ Lpim — Tyim_1 + ... N e U

€ (k" + k4 .+ k)1 — kB C k(1 —k)BCkB.

Hence if ¥V is a convex neighborhood of 0, thereexists u > 0 such
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that wBc V. For = sufficiently large, since kL <1 we have
K*<=up so x,.,.,—x, €V. Thus the sequence (x,) is cauchy
and has a limit, x. Since each =z, isin z,+ B, sois z. In fact.
for each =,

x—uw, €EK"B.

This is so because for all m, =z, ,.,—2, €L"B and k"B is
closed. Thus,

f@) —x, = f@@) — fle,,) € K" B.

Therefore, f(x) is the limit of (x,), ie.. f(x)=x.
Finally let us suppose that y € 2y + B and f(y) =y.
Then

y—x = fly) —fl@) € kB.
This may be repeated to obtain y —a € k"B forall n, or y=u.

4. Corresponding to our fixed point theorem, we have the following
implicit function theorem.
Theorem. Let T be a topological space and

2 T—X,, fi(e(T) + X)) X T—>X

such that, for each t €T, the map f( ,t): xyt) + Xo— X satisfies
the conditions of the previous theorem with k, B independent of t.
Then there exists a unique function x: T —xy(t) + B such that

fla(t) , t) = ().

If x, and f are continuous, then x is continuous.

Proof. The existence and uniqueness of a follows by applying the
previous theorem for each .

Let us suppose that x, and f are continuous. If =,(f) is con-
tinuous, then , ,(f) = f(z,(t) ,t) is the composition of two continuous
functions so it is continuous. Hence x,(t) is continuous for all = .
From the proof of the previous theorem, we have, given a neighborhood of
0,7V, in X, that if =»n is sufficiently large (depending only on
k,B) then () —x(t) € V. Thus the sequence (x,(¢)) converges
uniformly to x(t) so (f) is continuous.
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