Series A

I. MATHEMATICA

328

CHARACTERIZATION

OF THE SET OF VALUES APPROACHED BY A MEROMORPHIC FUNCTION ON SEQUENCES OF JORDAN CURVES

BY

FREDERICK BAGEMIHL

HELSINKI 1963
SUOMALAINEN TIEDEAKATEMIA

Communicated 14 September 1962 by F. Nevanlinna and Olli Lehto

§ 1. Introduction

1. Let Ω denote the extended complex plane (or the Riemann sphere), and let C be the unit circle and D be the open unit disk.

A sequence A of distinct Jordan curves $J_{1}, J_{2}, \ldots, J_{n}, \ldots$ in D will be called an annulation if

1) J_{n} lies in the interior of $J_{n+1}(n=1,2,3, \ldots)$
and
2) given any $\varepsilon>0$, there exists an $n_{0}=n_{0}(\varepsilon)$ such that $n>n_{0}$ implies that J_{n} lies in the region $1-\varepsilon<|z|<1$.

If, furthermore,
3) every J_{n} is a circle with the origin as center, then the sequence A will be called a strict annulation.

Suppose that the function $f(z)$ is meromorphic in D. Then we define the sets $\Theta(f)$ and $\Theta^{\circ}(f)$ as follows: The point $c \in \Omega$ belongs to $\Theta(f)$, resp. $\Theta^{\circ}(f)$, provided that, for some annulation, resp. strict annulation, $A=\left\{J_{n}\right\}$, given any $\varepsilon>0$, there exists an $n_{0}=n_{0}(\varepsilon)$ such that $n>n_{0}$ implies that, for every $z \in J_{n}$, we have $|f(z)-c|<\varepsilon$ or $|1 / f(z)|<\varepsilon$ according as c is finite or the point at infinity. Under these conditions we say that the function f tends to the value c on the annulation A.
2. An immediate consequence of the foregoing definition is that $\Theta^{\circ}(f)$ $\subseteq \Theta(f)$. In $\S 6$ we shall give an example of a function f for which $\Theta^{\circ}(f) \neq$ $\bar{\Theta}(f)$; in fact, we shall show that Θ° and Θ can be prescribed arbitrarily except for the natural restrictions that they be closed sets and that $\Theta^{\circ} \subseteq \Theta$.

The main question that arises at once, however, is: What kind of point sets are Θ° and Θ ? It is again obvious that Θ° and Θ are closed sets. We are going to establish the following characterization:

Theorem 1. Let F be an arbitrary closed subset of Ω. Then there exists a function $f(z)$, meromorphic in D, such that $\Theta^{\circ}(f)=\Theta(f)=F$.

Moreover, if F is not empty, and A is a given annulation, then there exists an f such that $\Theta(f)=F$ and every value $c \in F$ is approached by f on a subannulation of A.

§ 2. Relations between $R(f)$ and $\Theta(f)$

3. It is well known that although a function $f(z)$ that is holomorphic in D cannot tend uniformly to infinity as z approaches C, nevertheless there exist holomorphic functions $f(z)$ in D for which $\{\infty\}=\Theta^{\circ}(f)=$ $\Theta(f)$ (see, e.g., [1]). For any holomorphic function f, we have $\infty \notin R(f)$, where, as is customary, $R(f)$ stands for the range of values of f in D [5, p. 48].

Now suppose that $f(z)$ is meromorphic in D and that $R(f)$ omits at least three values of Ω. Then (see [4, p. 97, Theorem 6] or [5, pp. 52-53]) $\Theta(f)$ is empty if $f(z)$ is not identically constant.

If $R(f)$ omits just two values of Ω, then (see [4, p. 112, Theorem 9, (ii)] or [5, pp. $50-51$, Theorem 1, (ii)]) $f(z)$ possesses at least two asymptotic values, and hence $\Theta(f)$ is empty.

If the complement of $R(f)$ consists of the sole value $c \in \Omega$, then either, as in the preceding case, $\Theta(f)$ is empty, or c is an asymptotic value of f, so that if $\Theta(f)$ is not empty, then $\Theta(f)=\{c\}$. For example, let $h(z)=\cos \frac{1}{1-z}$, and set $f(z)$ equal to $h(z), 1 / h(z),(1 / h(z))+b$ according as c is equal to $\infty, 0, b$, where $b \in \Omega-\{0, \infty\}$. Then $f(z)$ is meromorphic in $D, R(f)$ omits the sole value c, and $\Theta(f)$ is emptr. On the other hand, let $h(z)$ be the function described as an infinite product in [2, p. 79], and then define $f(z)$ as in the preceding sentence. The function $f(z)$ is meromorphic in $D, R(f)$ omits the sole value c (cf. [5, p. 75, Remark, $(\mathrm{v})]$), and $\Theta^{\circ}(f)=\Theta(f)=\{c\}$.

The reason for making a distinction between $\Theta^{\circ}(f)$ and $\Theta(f)$ is that. although it may be known for a specific f that $c \in \Theta(f)$, it may be by no means an easy matter to determine whether $c \in \Theta^{\circ}(f)$ - and a strict annulation is, after all, the neatest.

§3. The skeleton S and the continuous function $g(z)$ on S

4. To prove the theorem formulated in § 1 , we shall assume that the given closed subset F of Ω is not empty, because if F is empty, the assertion of the theorem is obviously true.

Let the annulation $A=\left\{J_{n}\right\}$ be given. We shall show that there exists a meromorphic function $f(z)$ in D such that $\Theta(f)=F$ and every value $c \in F$ is approached by f on a subannulation of A; this will prove the second part of the theorem. If we then take A to be a strict annulation, we obtain the first part of the theorem.
5. To accomplish this, we first define a point set S in D, where $S \supset \bigcup_{n=1}^{\infty} J_{n}$. Let a_{00} and a_{10} be distinct points in the interior of J_{1}, and take B_{0}, B_{1} to be mutually exclusive Jordan ares with initial points a_{00} resp. a_{10}, and terminal points 1 resp. - 1 ; we regard the initial points, but not the terminal points, as belonging to these arcs. We further require B_{0} and B_{1} to lie in D, and each of them to intersect every J_{n} in precisely one point, $a_{0 n}$ resp. $a_{1 n}$, so that

$$
B_{0} \cap J_{n}=\left\{a_{0 n}\right\}, \quad B_{1} \cap J_{n}=\left\{a_{1 n}\right\} \quad(n=1,2,3, \ldots) .
$$

We put

$$
S=B_{0} \cup B_{1} \cup\left(\bigcup_{n=1}^{\infty} J_{n}\right)
$$

and call S the skeleton.
6. Our next step is to define a certain continuous function $g(z)$ on S. Whereas the definition of the skeleton depended on the given annulation A, the definition of $g(z)$ depends on the given (nonempty) closed set F.

Suppose that F contains ∞ as an isolated point. Then there exists a finite point $\zeta \notin F$. The image of F under the transformation $z^{\prime}=$ $\frac{1}{z-\zeta}$ is a set F^{\prime} that does not contain ∞. If we can prove that there exists a meromorphic function $h(z)$ in D such that $\Theta(h)=F^{\prime}$ and every value in F^{\prime} is approached by h on a subannulation of A, then the function $f(z)=\frac{1}{h(z)}+\zeta$ is meromorphic in $D, \Theta(f)=F$, and every value in F is approached by f on a subannulation of A. We may therefore assume, in what follows, that F does not contain ∞ as an isolated point.
7. Let

$$
c_{1}, \quad c_{2}, \ldots, c_{n}, \ldots
$$

be an infinite sequence of finite complex numbers in F with the property that $\left\{c_{n}\right\}$ is everywhere dense in F in the sense that every isolated point of F occurs infinitely often as a term of the sequence.

We put

$$
\begin{equation*}
g(z) \equiv c_{n} \quad\left(z \in J_{n} ; n=1,2,3, \ldots\right) \tag{1}
\end{equation*}
$$

For every natural number n, let $A_{j n}(j=0,1)$ be the subarc of B_{i} extending from $a_{j, n-1}$ to $a_{j n}$, including the two end points.

We set

$$
g(z) \equiv c_{1} \quad\left(z \in A_{01} \cup A_{11}\right)
$$

For every $n>1$, consider c_{n} and c_{n-1}. If $c_{n}=c_{n-1}$, we put

$$
\begin{equation*}
g(z) \equiv c_{n} \quad\left(z \in A_{0 n} \cup A_{1 n}\right) . \tag{2}
\end{equation*}
$$

But if $c_{n} \neq c_{n-1}$, we take the circle whose diameter is the rectilinear segment joining c_{n} and c_{n-1}, and denote one of the semicircular arcs of this circle extending from c_{n-1} to c_{n}, including the end points, by $A_{0 n}^{*}$, and the other one, also extending from c_{n-1} to c_{n}, by $A_{1 n}^{*}$. We now define $g(z)$ on $A_{j n}(j=0,1)$ to be a homeomorphism of $A_{j n}$ onto $A_{j n}^{*}$ such that $g\left(a_{j, n-1}\right)=c_{n-1}$ and $g\left(a_{j n}\right)=c_{n}$.

This completes the definition of $g(z)$ on $S ; g(z)$ is obviously a continuous function on S.

§ 4. The relation between $g(z)$ and $f(z)$

8. For every natural number n, choose a point $b_{j n}(j=0,1)$ on B_{j} between $a_{j n}$ and $a_{j, n+1}$, and let $B_{j n}$ be the subarc of B_{j} that extends from $b_{j, n-1}$ to $b_{j n}$, including the end points, where we set $b_{j 0}=$ $a_{j 0}$. Then put

$$
\begin{equation*}
S_{n}=B_{0 n} \cup B_{1 n} \cup J_{n} \quad(n=1,2,3, \ldots) \tag{3}
\end{equation*}
$$

We propose to demonstrate in $\S 5$ the existence of a meromorphic function $f(z)$ in D, with no poles on the skeleton, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{z \in S_{n}}|f(z)-g(z)|=0 . \tag{4}
\end{equation*}
$$

9. Suppose for a moment that this has already been accomplished. We wish to show how the conclusion of our theorem follows.

We first prove that $F \subseteq \Theta(f)$. Let $c \in F$. Then there exists an infinite subsequence $\left\{c_{n_{k}}\right\}$ of c_{n} such that $\lim _{k \rightarrow \infty} c_{n_{k}}=c$. Let $\varepsilon>0$ be given. If c is finite, then there exists a $k_{1}=k_{1}(\varepsilon)$ such that, for every $k>k_{1}$,

$$
\begin{equation*}
\left|c_{n_{k}}-c\right|<\frac{\varepsilon}{2} . \tag{5}
\end{equation*}
$$

According to (1), for every $z \in J_{n_{k}}$ we have

$$
\begin{equation*}
g(z) \equiv c_{n_{k}} \tag{6}
\end{equation*}
$$

It follows from (5) and (6) that, for every $k>k_{1}$,

$$
\begin{equation*}
|g(z)-c|<\frac{\varepsilon}{2} \quad\left(z \in J_{n_{k}}\right) . \tag{7}
\end{equation*}
$$

By (3) and (4) there exists a $k_{2}=k_{2}(\varepsilon)$ such that, for every $k>k_{2}$,

$$
\begin{equation*}
|f(z)-g(z)|<\frac{\varepsilon}{2} \quad\left(z \in J_{n_{k}}\right) \tag{8}
\end{equation*}
$$

Now for every $k>\max \left(k_{1}, k_{2}\right)$, (8) and (7) yield

$$
\begin{equation*}
|f(z)-c|<\varepsilon \quad\left(z \in J_{n_{k}}\right) \tag{9}
\end{equation*}
$$

This implies that $f(z)$ tends to c along the subannulation $\left\{J_{n_{k}}\right\}$ of A. In case $c=\infty$, replace inequalities (5), (7), (8), (9) by $\left|c_{n_{k}}\right|>\frac{2}{\varepsilon}$, $|g(z)|>\frac{2}{\varepsilon},|f(z)-g(z)|<\frac{1}{\varepsilon},\left|\frac{1}{f(z)}\right|<\varepsilon$.
10. It remains to be proved that $\Theta(f) \subseteq F$. This is accomplished by showing that if $c \notin F$ then $c \notin \Theta(f)$.

If c is finite, it is a positive distance d from the nonempty closed set F. Suppose that $c \in \Theta(f)$. Then there exists an annulation $A^{*}=\left\{J_{n}^{*}\right\}$ on which $f(z)$ tends to c. Take $\varepsilon=\frac{d \sqrt{2}}{2 \sqrt{2}+4}$. According to (4), (3), and (1), there exists an n_{0} such that, for every $n>n_{0}$,

$$
\begin{equation*}
|f(z)-g(z)|<\varepsilon \quad\left(z \in S_{n}\right) \tag{10}
\end{equation*}
$$

and hence, in particular,

$$
\begin{equation*}
\left|f(z)-c_{n}\right|<\varepsilon \quad\left(z \in J_{n}\right) \tag{11}
\end{equation*}
$$

Let δ be the positive distance between $J_{n_{0}+1}$ and C. By 2) in the definition of annulation, there exists an m_{1} such that J_{m}^{*} lies in the region $1-\delta<|z|<1$ for every $m>m_{1}$. There also exists an m_{2} such that, for every $m>m_{2}$,

$$
\begin{equation*}
|f(z)-c|<\varepsilon \quad\left(z \in J_{m}^{*}\right) \tag{12}
\end{equation*}
$$

If $m_{0}=\max \left(m_{1}, m_{2}\right)$, then $m>m_{0}$ implies that J_{m}^{*} intersects no J_{n} with $n>n_{0}$, for otherwise it would follow from (11) and (12) that $\left|c-c_{n}\right|<d \frac{2 \sqrt{2}}{2 \sqrt{2}+4}<d$, contradicting the definition of d. Therefore there exists an $n_{1}>n_{0}$ such that $J_{n_{1}}$ is in the interior of J_{m}^{*} and J_{m}^{*} is in the interior of $J_{n_{1}+1}$. Consequently J_{m}^{*} intersects $A_{0, n_{1}+1}$ in at least one (interior) point t_{0} and $A_{1, n_{1}+1}$ in at least one point t_{1}. Let

$$
g\left(t_{j}\right)=t_{j}^{*} \quad(j=0,1)
$$

11. Suppose first that $c_{n_{1}} \neq c_{n_{1}+1}$. It then follows from the definition of $g(z)$ that

$$
\begin{equation*}
t_{j}^{*} \in A_{j, n_{1}+1}^{*} \quad(j=0,1) \tag{13}
\end{equation*}
$$

In view of (3) and (10) for $n=n_{1}, n_{1}+1$, we have

$$
\begin{equation*}
\left|f\left(t_{j}\right)-t_{j}^{*}\right|<\varepsilon \quad(j=0,1) \tag{14}
\end{equation*}
$$

From (12), for $z=t_{j}(j=0,1)$, and (14), we obtain

$$
\begin{equation*}
\left|t_{j}^{*}-c\right|<2 \varepsilon \quad(j=0,1) \tag{15}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|t_{0}^{*}-t_{1}^{*}\right|<4 \varepsilon=d \frac{4 \sqrt{2}}{2 \sqrt{2}+4} \tag{16}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left|t_{j}^{*}-c_{n_{1}}\right|>d-2 \varepsilon \quad(j=0,1) \tag{17}
\end{equation*}
$$

because otherwise, in view of (15), we should have $\left|c-c_{n_{1}}\right|<d$, contrary to the definition of d. Likewise we must have

$$
\begin{equation*}
\left|t_{j}^{*}-c_{n_{1}+1}\right|>d-2 \varepsilon \quad(j=0,1) \tag{18}
\end{equation*}
$$

Because of (17), (18), and (13), $\left|c_{n_{1}}-c_{n_{1}+1}\right|>(d-2 \varepsilon) \sqrt{2}$ and

$$
\begin{equation*}
\left|t_{0}^{*}-t_{1}^{*}\right|>(d-2 \varepsilon) \sqrt{2} . \tag{19}
\end{equation*}
$$

According to (16) and (19),

$$
(d-2 \varepsilon) \sqrt{2}<d \frac{4 \sqrt{2}}{2 \sqrt{2}+4}
$$

which implies that $\varepsilon>\frac{d \sqrt{2}}{2 \sqrt{2}+4}$, contrary to our choice of ε. Hence, if $c_{n_{1}} \neq c_{n_{1}+1}$, then $c \notin \Theta(f)$.
12. Suppose next that $c_{n_{1}}=c_{n_{1}+1}$. It then follows from (2) that

$$
t_{j}^{*}=c_{n_{1}+1} \quad(j=0,1)
$$

and from (3) and (10) that

$$
\begin{equation*}
\left|f\left(t_{j}\right)-c_{n_{1}+1}\right|<\varepsilon \quad(j=0,1) \tag{20}
\end{equation*}
$$

On the other hand, (12) implies that

$$
\begin{equation*}
\left|f\left(t_{j}\right)-c\right|<\varepsilon \quad(j=0,1) \tag{21}
\end{equation*}
$$

From (20) and (21) we infer that $\left|c-c_{n_{1}+1}\right|<2 \varepsilon<d$, contradicting the definition of d, and hence $c \notin \Theta(f)$.

This disposes of the case that c is finite.
13. Now suppose that $c=\infty$. Then F is a bounded set. It follows from this and the way in which $g(z)$ was defined, that $g(z)$ is a bounded function on S, and (4) now implies that $c \notin \Theta(f)$.

§5. The construction of $f(z)$

14. To complete the proof of the theorem all, that remains is the demonstration of the existence of a function $f(z)$, meromorphic in D, satisfying (4). This is accomplished by means of approximation and interpolation by rational functions. We use a modification of a method devised in [3].

Let K_{0} be a Jordan curve in the interior of J_{1} having no point in common with $B_{01} \cup B_{11}$. For every natural number n, let K_{n} be a Jordan curve containing J_{n} in its interior and contained in the interior of J_{n+1}, such that

$$
K_{n} \cap A_{0, n+1}=\left\{b_{0 n}\right\}, \quad K_{n} \cap A_{1, n+1}=\left\{b_{1 n}\right\} .
$$

Denote by $D_{n}(n=0,1,2, \ldots)$ the set of all points lying either on K_{n} or in the interior of K_{n}, and put

$$
\begin{equation*}
E_{n}=D_{n} \cup S_{n+1} \tag{22}
\end{equation*}
$$

15. We now define, by induction on n, a function $\varphi_{n}(z)$ on E_{n} and a rational function $r_{n}(z)$.

Let

$$
\varphi_{0}(z)= \begin{cases}0, & z \in D_{0} \\ g(z), & z \in S_{1}\end{cases}
$$

The function $\varphi_{0}(z)$ is evidently continuous on E_{0} and holomorphic at all interior points of E_{0}. Because of the nature of E_{0}, there exists (cf. [6, pp. 260-261, 313]) a rational function $r_{0}(z)$ with no poles on $D_{0} \cup S$, such that

$$
\left|r_{0}(z)-\varphi_{0}(z)\right|<1 \quad\left(z \in E_{0}\right)
$$

and

$$
r_{0}\left(b_{j 1}\right)=g\left(b_{j 1}\right) \quad(j=0,1)
$$

Now suppose that $n>0$ and that rational functions $r_{0}(z), r_{1}(z), \ldots$, $r_{n-1}(z)$ have been determined so that $r_{0}(z)+r_{1}(z)+\ldots+r_{n-1}(z)$ has no poles on S and

$$
\begin{equation*}
r_{n-1}\left(b_{j n}\right)=g\left(b_{j n}\right)-\left[r_{0}\left(b_{j n}\right)+r_{1}\left(b_{j n}\right)+\ldots+r_{n-2}\left(b_{j n}\right)\right] \quad(j=0,1), \tag{23}
\end{equation*}
$$ where the expression in brackets is missing in case $n=1$.

Let

$$
\varphi_{n}(z)= \begin{cases}0, & z \in D_{n} \tag{24}\\ g(z)-\left[r_{0}(z)+r_{1}(z)+\ldots+r_{n-1}(z)\right], & z \in S_{n+1}\end{cases}
$$

It follows from (23), (24), and (25) that $\psi_{n}(z)$ is continuous on E_{n} and holomorphic at all interior points of E_{n}. As before, there exists a rational function $r_{n}(z)$ with no poles on $D_{n} \cup S$, such that

$$
\begin{equation*}
\left|r_{n}(z)-\varphi_{n}(z)\right|<\frac{1}{2^{n}} \quad\left(z \in E_{n}\right) \tag{26}
\end{equation*}
$$

and
$r_{n}\left(b_{j, n+1}\right)=g\left(b_{j, n+1}\right)-\left[r_{0}\left(b_{j, n+1}\right)+r_{1}\left(b_{j, n+1}\right)+\ldots+r_{n-1}\left(b_{j, n+1}\right)\right](j=0,1)$.
This completes the induction.
16. Set

$$
f(z)=\sum_{n=0}^{\infty} r_{n}(z)
$$

Suppose that $z \in D_{n}$. It follows from (24) and (26) that

$$
\begin{equation*}
\left|r_{n+k}(z)\right|<\frac{1}{2^{n+k}} \quad(k=0,1,2, \ldots) \tag{27}
\end{equation*}
$$

Since $r_{n+k}(z)(k=0,1,2, \ldots)$ is holomorphic on D_{n}, (27) implies that $\sum_{k=0}^{\infty} r_{n+k}(z)$ is holomorphic in the interior of D_{n}, and hence $f(z)$ is meromorphic in the interior of D_{n}. Every point of D, however, is in the interior of D_{n} for some value of n; this is so because of 2) in the definition of annulation, and because of the way in which K_{n} was defined. Hence, $f(z)$ is meromorphic in D.
17. Let $z \in S_{n}$, where $n>1$. Then by (26) and (22), we have

$$
\begin{equation*}
\left|r_{n-1}(z)-\varphi_{n-1}(z)\right\rangle<\frac{1}{2^{n-1}} \tag{28}
\end{equation*}
$$

According to (25),

$$
\begin{equation*}
\varphi_{n-1}(z)=g(z)-\left[r_{0}(z)+r_{1}(z)+\ldots+r_{n-2}(z)\right] \tag{29}
\end{equation*}
$$

Combining (28) and (29), we obtain

$$
\begin{equation*}
\left|r_{0}(z)+r_{1}(z)+\ldots+r_{n-1}(z)-g(z)\right|<\frac{1}{2^{n-1}} \tag{30}
\end{equation*}
$$

Now (30), (27), and the definition of $f(z)$ yield

$$
\begin{aligned}
\mid f(z) & -g(z) \mid \\
& \leqq\left|r_{0}(z)+r_{1}(z)+\ldots+r_{n-1}(z)-g(z)\right|+\left|r_{n}(z)\right|+\left|r_{n+1}(z)\right|+\ldots \\
& <\sum_{m=n-1}^{\infty} \frac{1}{2^{m}}
\end{aligned}
$$

which implies (4).

§6. A function $f(z)$ with prescribed $\Theta^{\circ}(f)$ and $\Theta(f)$

18. As we remarked in $\S 1$, for every function $f(z)$ that is meromorphic in $D, \Theta^{\circ}(f)$ and $\Theta(f)$ are closed subsets of Ω such that $\Theta^{\circ}(f) \subseteq \Theta(f)$. We are going to show that Θ° and Θ are subject to no further restrictions. Specifically, we shall prove the following:

Theorem 2. Let F and F_{0} be closed subsets of Ω such that $F_{0} \subseteq F$. Then there exists a function $f(z)$, meromorphic in D, such that $\Theta^{\circ}(f)=F_{0}$ and $\Theta(f)=F$.
19. If $F_{0}=F$, then Theorem 2 reduces to the first part of Theorem 1. We shall therefore assume that $F_{0} \subset F$.

As in § 2.6, we may assume that F does not contain ∞ as an isolated point.

If F contains ∞, but not as an isolated point, whereas F_{0} contains ∞ as an isolated point, we can reduce this case to the case that neither F nor F_{0} contains ∞ as an isolated point by taking a finite point $\zeta \notin F_{0}$ such that ζ is not an isolated point of F and proceeding as in § 2.6.
20. We define an annulation A and, in case F_{0} is not empty, a subannulation A_{0}, as follows.

Let

$$
0<\alpha_{0}<\alpha_{1}<\ldots<\alpha_{n-1}<\alpha_{n}<\ldots<1
$$

and

$$
\lim _{n \rightarrow \infty} \alpha_{n}=1
$$

Put

$$
\beta_{n}=\frac{\alpha_{n-1}+\alpha_{n}}{2} \quad(n=1,2,3, \ldots)
$$

If F_{0} is not empty, we take $J_{2 n-1}(n=1,2,3, \ldots)$ to be the circle with center at the origin and radius $\beta_{2 n-1}$, and $J_{2 n}(n=1,2,3, \ldots)$ to be the ellipse whose major axis extends from $\alpha_{2 n} e^{\frac{-\pi i}{4}}$ to $\alpha_{2 n} e^{\frac{3 \pi i}{4}}$ and whose minor axis extends from $\alpha_{2 n-1} e^{\frac{\pi i}{4}}$ to $\alpha_{2 n-1} e^{\frac{5 \pi i}{4}}$. We then set

$$
A=\left\{J_{n}\right\}, \quad A_{0}=\left\{J_{2 n-1}\right\} \quad(n=1,2,3, \ldots)
$$

In case F_{0} is empty, we set

$$
A=\left\{J_{2 n}\right\} \quad(n=1,2,3, \ldots) .
$$

21. Our next step is the definition of a skeleton S.

Let $\beta_{0}=\frac{\alpha_{0}}{2}$, and denote by B_{0} resp. B_{1} the rectilinear segment extending from β_{0} resp. $-\beta_{0}$ to 1 resp. -1 ; the initial point is included, the terminal point not.

We take $T_{0,2 n-1}$ resp. $T_{1,2 n-1}(n=1,2,3, \ldots)$ to be the closed rectilinear segment extending from $\beta_{2 n-1} e^{\frac{\pi i}{4}}$ resp. $\beta_{2 n-1} e^{\frac{5 \pi i}{4}}$ to $\beta_{2 n-2} e^{\frac{\pi i}{4}}$ resp. $\beta_{2 n-2} e^{\frac{5 \pi i}{4}}$; we similarly define $T_{0,2 n}$ resp. $T_{1,2 n}(n=1,2,3, \ldots)$ to extend from $\beta_{2 n} e^{\frac{3 \pi i}{4}}$ resp. $\beta_{2 n} e^{\frac{-\pi i}{4}}$ to $\beta_{2 n-1} e^{\frac{3 \pi i}{4}}$ resp. $\beta_{2 n-1} e^{\frac{-\pi i}{4}}$.

If F_{0} is not empty, put

$$
S=B_{0} \cup B_{1} \cup\left(\bigcup_{n=1}^{\infty} J_{n}\right) \cup\left(\bigcup_{n=1}^{\infty} T_{0 n}\right) \cup\left(\bigcup_{n=1}^{\infty} T_{1 n}\right) .
$$

In case F_{0} is empty, set

$$
S=B_{0} \cup B_{1} \cup\left(\bigcup_{n=1}^{\infty} J_{2 n}\right) \cup\left(\bigcup_{n=1}^{\infty} T_{0 n}\right) \cup\left(\bigcup_{n=1}^{\infty} T_{1 n}\right)
$$

22. We now show how to define a continuous function $g(z)$ on S.

In case F_{0} is not empty, we take

$$
c_{1}, \quad c_{3}, \quad c_{5}, \ldots, \quad c_{2 n-1}, \ldots
$$

to be an infinite sequence of finite complex numbers in F_{0} such that $\left\{c_{2 n-1}\right\}$ is everywhere dense in F_{0}, and we let

$$
c_{2}, \quad c_{4}, \quad c_{6}, \ldots, c_{2 n}, \ldots
$$

be a similar sequence in $F-F_{0}$ that is everywhere dense in $F-F_{0}$.

If F_{0} is empty, we consider merely a sequence

$$
c_{2}, \quad c_{4}, \quad c_{6}, \ldots, \quad c_{2 n}, \ldots
$$

in F that is everywhere dense in F.
If F_{0} is not empty, set

$$
\begin{aligned}
& g(z)= \begin{cases}c_{2 n-1}, & z \in J_{2 n-1} \cup T_{0,2 n-1} \cup T_{1,2 n-1} \cup T_{0,2 n} \cup T_{1,2 n}: \\
c_{2 n}, & z \in J_{2 n} ;\end{cases} \\
& (n=1,2,3, \ldots) .
\end{aligned}
$$

But if F_{0} is empty, put

$$
g(z)= \begin{cases}0, & z \in \bigcup_{n=1}^{\infty} T_{0 n} ; \\ 1, & z \in \bigcup_{n=1}^{\infty} T_{1 n} ; \\ c_{2 n}, & z \in J_{2 n} \quad(n=1,2,3, \ldots) .\end{cases}
$$

On the segments of B_{0} and B_{1} where $g(z)$ has not yet been defined, we define $g(z)$ by means of homeomorphisms like those described in $\S 2.7$, and thus obtain a continuous function $g(z)$ on S.
23. Now it is not difficult to see that a function $f(z)$, meromorphic in D, can be constructed after the pattern of $\S 5$ so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{\substack{\alpha_{n}<|z|<\alpha_{n+1} \\ z \in S}}|f(z)-g(z)|=0 . \tag{31}
\end{equation*}
$$

If F_{0} is empty, then clearly $\Theta(f)=F$. Furthermore, $\Theta^{\circ}(f)$ is empty, because every circle Q in D with the origin as center and a sufficiently large radius, intersects both $T_{0 n}$ and $T_{1 n}$ for a suitable n. By the definition of $g(z)$ on $T_{j n}$, it follows from (31) that every Q sufficiently near C contains a point at which $f(z)$ is very close to zero as well as a point at which $f(z)$ is very close to one, and hence $f(z)$ cannot tend to a limit on any sequence of such circles Q tending to C.

If F_{0} is not empty, it is again clear that $\Theta(f)=F$, and that every value $c \in F_{0}$ is approached by f on the annulation A_{0}. The way in which $g(z)$ was defined on $T_{j n}$ in this case evidently guarantees that no value in the complement of F_{0} can be approached by f on a sequence of circles Q with the origin as center and tending to C, and hence $\Theta^{\circ}(f)=F_{0}$.
24. Remark. We have also succeeded in characterizing the well-known sets $\Phi\left(f, e^{i \theta}\right)$ and $\Phi(f)$ for a function $f(z)$ meromorphic in D. Our results in this direction will appear elsewhere (Math. Z. 80 (1962), 230-238).

References

[1] Bagemihl, F., Erdös, P., and Seidel, W.: Sur quelques propriétés frontières des fonctions holomorphes définies par certains produits dans le cercle-unité. Ann. Sci. École Norm. Sup. (3) 70 (1953), 135-147.
[2] Bagemihl, F., and Seidel, W.: Some remarks on boundary behavior of analytic and meromorphic functions. - Nagoya Math. J. 9 (1955), 79-85.
[3] Bagemihl, F., and Seidel, W.: Spiral and other asymptotic paths, and paths of complete indetermination, of analytic and meromorphic functions. - Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1251-1258.
[4] Collingwood, E. F., and Cartwright, M. L.: Boundary theorems for a function meromorphic in the unit circle. - Acta Math. 87 (1952), 83-146.
[5] Noshiro, K.: Cluster sets. - Berlin, 1960.
[6] Walsh, J. L.: Interpolation and approximation by rational functions in the complex domain. - 3rd ed., Providence, 1960.

Wayne State University
Detroit, Michigan, U.S.A.

