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A distortion theorem for functions univalent in an annulus')

1. Let A denote an annulus » < |z < 1, let R denote a ring bound-
ed by |w/ =1 and a continuum [’ in |w| <1, and suppose that R
does not contain the point w = 0. D. Gaier recently proved in [4] the
following theorem.

If w=f(z) maps A conformally onto R so that f(1)=1, then

(1) ) — 2 = Cr

for z€A, where C is an absolute constant. If C, denotes the smallest such
constant C, then 4 = Cy = 12.6.
The aim of this paper is to give the exact value of ;. We do this by

establishing
Theorem 1. If w = f(z) maps A conformally onto R sothat f(1)=1,
then

(2) fz) — 2z < 8r

for z€A . The constant 8 cannot be replaced by any smaller number.2)
Since [f(z) — z| satisfies the maximum principle in 4, (2) will follow
if we can show that
lim sup [f(z) — z| << 8r

2>

for all ¢ on the boundary of A . That is we need only determine how
great the distortion is on each boundary component of A . In this direction
we prove

1) This research was supported by a grant to one of us (F. W. G.) from the U. S.
National Science Foundation, Contract NSF-G-18913.

2) After we had completed the research for this paper, we learned from Professor
Warschawski of a Stanford Technical Report [3] in which Duren and Schiffer consider
the same problem. They use variational methods to identify the function f(z) which
vields maximum distortion in 4 and then show that Cy> 8.

The following two articles have appeared while this paper was in press: DUREN,
P.L.and Scurrrer, M., 4 wvariational method for functions schlicht in an annulus,
Arch. Rat. Mech. Anal. 9, (1962), pp. 260—272, and GAIER, D. and HUCKEMANN,
F., Extremal problems for functions schlicht in an annulus, Arch. Rat. Mech. Anal.
9, (1962), pp. 415—421.



4 Ann. Acad. Scient. Fennica A. 1. 325

Theorem 2. If w= f(z) maps A conformally onto R so that f(1) =1,
then

(3) lim sup |[f(z) — z| < br

and -

(4) sup |f(z) — 2z < 8r.
[z =1

The constants 5 and 8 cannot be replaced by smaller numbers.
The examples which show that 5 and 8 are best possible have the de-
sired asymptotic behaviour as r— 0. That is, for each r, let

1f(z) — =
C,(r) = sup {lim sup f(_)___‘.) ,
FEF \ |z]—>r r
' z) — z|
eyt = s (V=)
fEF \|zj=1 r /

where F is the class of functions f(z) which map 4 onto an R with
f(1)y=1. Then Cy(r) <5, Cur)< 8 and

lim Cy(r) = 5, lim Cy(r) = 8.

r—0 r— 0

2. The constant C, can be decreased if one considers an appropriate
subcelass of rings R . As an example, we have investigated the case where
R is symmetric with respect to the origin.

Theorem 3. If R is symmetric in the origin and if w = f(z) maps A
conformally onto R so that f(1) =1, then

) flz) — 2| < 3r

for z€A . The constant 3 cannot be replaced by any smaller number.
Again it is only necessary to examine what happens on each boundary
component of 4 and hence Theorem 3 is an immediate consequence of
Theorem 4. If R is symmetric in the origin and if w = f(z) maps A
conformally onto R so that f(1) =1, then

(6) lim sup [f(z) — 2| < 3r
lz]|—>r
and
(7) sup |f(z) — 2| < 24/ 2r.
[z]=1

The constant 3 cannot be replaced by any smaller number.
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For each fixed r let Fg denote the class of functions f(z) which map
A onto an R, symmetric in the origin, with f(1) = 1. Then set

flz) — z!
Cy. s (r) = sup <lim sup -f(lr_) ’

f€Fs

R

f(z)_r_‘j 5)

C,, 5 (r) = sup (sup

fEFg VMz|=1
Here () s(r) <3 and
lim C) g(r)=3.

r—20
On the other hand, O, g(r) assumes its maximum value at an r between
0 and 1. We have not obtained an explicit expression for this maximum
and so the bound in (7) is not best possible. Direct computation shows,
however, that up to four decimals
sup Oy s(r) = 2.1736,

0<r<1

and that this value is attained roughly for » == 0.78 .

3. We establish Theorem 2 in the following way. First the inequality
(3) is an easy consequence of a well known estimate (Lemma 1) for the
maximal diameter of the inrer houndary component /'. The fact that the
constant 5 is Dbest possible follows from an example (Lemma 5) suggested
to us by P. P. Belinsiif Avother result on the moduli of rings (Lemma 2)
shows that the maximum di‘tortion on =z = 1 occurs when [ is a seg-
ment with cne erdpoint at the origin. This extremal mapping can then be
expressed in ternmis of ell'ptic fumctions and the cistortion on z| = 1 com-
puted by means of an aiternating series (Lemma 6). This series yields (4)
as well as an example to show that the constant 8 is best possible.

The proof for Theorem 4 is reduced to the first case by observing that
w?, as a function of 22, induces a mapping of the previous kind. We can
then use the estimates required for the proof of Theorem 2 to deduce (6)
and (7). and an example similar to Belinskii’s shows that the constant 3
is best possible.

We begin with some preliminary remarks on the moduli of rings.

4. Rings. A ring is by definition a doubly-connected domain. Each ring
R can be mapped conformally onto an annulus « < [z <b and the
modulus of R is defined as the conformal invariant

mod R = log P
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A ring R is said to separate two sets B, and £, if E, and E, lie
in different components of the complement of R .

The modulus is monotone in the following sense. If R and R’ are rings
and if R’ separates the boundary components of R, then B’ C R and

(8) mod B’ < mod R .

Equality holds only if R' = R. (See [9]. p. 626.)

We use the following result, due to Grétzsch, to estimate the distortion
on the inner boundary component of 4 . (See [9], pp. 631—633).

Lemma 1. Suppose that 0 <t <1, that R is a ring in |w| << 1 which
separates |w| =1 from the points w =0 and w=te’, and that R, is the
ring bounded by |w| =1 and the segment —t < w < 0. Then

4
(9) mod R < mod R, < log 7
and
' 4
(10) lim (log i mod R1> =0,
t—> 0

We need the following result, essentially due to Mori [6], to obtain an
upper bound for the distortion on the outer boundary of 4 .

Lemma 2. Suppose that B is an arc of |w| = 1 with midpointat w =1,
that S is a ring which separates f from the points w =0 and w= oo,
and that S, 1is the ring bounded by B and the ray — oo <w < 0. Then

(11) mod S < mod S,

and mod S, is a strictly decreasing function of the length of f5 .

Proof. The inequality (11) can be established by means of extremal
lengths. (See, for example, [1], p. 91.) Alternatively we can use the reflec-
tion principle to obtain a conformal mapping z = h(w) of the exterior of
f onto the exterior of the segment — 1 <<z << 0 such that A(cwc)= o
and £(0) =0 > 0. Then S and S; are mapped onto rings R and R,
where R separates the segment — 1 <z <0 from the points z =10
and z == oo, and where §; is the ring bounded by the above segment
and the ray b <z < oo. Then by a theorem due to Teichmiiller ([9], pp.
637—639) we have

mod § = mod B < mod R; = mod S .

The second statement of Lemma 2 is an immediate consequence of the
above mentioned monotoneity property of the modulus.
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5. We require a result on the convergence of conformal mappings of
rings for the examples which show that the constants 5 and 3 in (3) and (6)
are best possible.

Suppose that R is a ring bounded by |w|= 1 and a Jordan curve I’
in |w| <1, that P, ..., P, arefixed points on [I', and that {R.} is a
sequence of rings, bounded by {w| =1 and by continua I’ in |w| <1,
with the following properties:
(a) R c Rn,
(b) I'N R, is contained in the union of m disks with radii 1/ and
centers at P,,..., Pm.

Lemma 3. If R and R, are as above and if z = g(w) and z = ga(w)
map R and R. onto the annuli r < |z| <1 and r. < |z| <1 s0 that
g(1) = ga(l) = 1, then
(12) lim ga(w) = g(w)

n—> o

for each w€R, w+# Py, ..., Pn, where we define gn(w) at each point
wy € RN I as the limit of gu(w) as w—w, in E.
Proof. Because R C R,, R separates the boundary components of

R, and hence by (8)
mod R < mod R, or r >,

for all % . Next (a) and (b) imply that each point of I" lies within a distance
2/n of I', forlarge n. By a theorem in [5],

mod R > lim sup mod R, ,

n —> 0

and hence we have

(13) limr, =r.
Let F, denote the image of I'N R, under z = g(x) and let a(2)

denote the harmonic measure of E, taken with respect to 4, the annulus
r < 'zl < 1. Since g(w) is coutinuous in R, we can find a sequence of
positive numbers {d,} which converge to 0 such that E, is contained in
the union of m ares of z = r with lengths d, and centersat g(P;),...,
g(Pn) . It is easy to see that

(14) lim ou(z) = 0

n— %

for each z€ 4 .
Now set hn(z) = ¢gu(f(z)) . where w = f(z) is the inverse of z = g(w).
Then ha(z) is analytic and univalent in 4 and

Tn ‘knz‘
Lglim; &)
r

— -

<1
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for |{| =1 and for ||

=r, (¢FK,. Since

ha(2)
in A, the two constant theorem ([7], § 36) applied to ——— and its reci-

procal yields

Tn }l" Z) |

— p@n(2 < | ( <7 'n(z) ,

r |z
and we conclude from (13) and (14) that
15) li [ nl2)| 1

m =
‘ ol
for z€4 .
By reflecting in the circles |z = r and |z| = 1, we can extend ha(z)

to be analytic in a domain D,, where D,cD,., and D, contains all
points of A which are at least at a distance d, from the points gPy), ...,

g(Pm). For each mn,, the functions #%.(z) with 7% >n, form a normal
family in D, . Since hn(1) = 1 for all n. (15) implies that

for z€D, and hence for z€.1, 23 ¢(P,),....g(Pn) . This means that
(12) holds for w€R. w = P,.... P,. and the proof for Lemma 3 is

complete.

6. Proof of Theorem 2 — Inner boundary. We turn now to the proof of
Theorem 2. We assume here and in what follows that A4 is an annulus
r < |z <1, that R is a ring bounded by 'w =1 and a continuum I’
in |w| <1, and that R does not contain the point u = 0.

Lemma 4. If w = f(z) maps A conformally onto R so that the outer
boundaries correspond, then
(16) lim sup |f(z) — 2| < 5r.

[z|>r

Proof. Let w = te'” be one of the points of I' which lie farthest from
the origin, and let R, denote the ring bounded by |w| =1 and the seg-
ment —¢<<w<0. Then R geparates |w|/=1 from w =0 and
w = te’, and (9) implies that

1 . 4
log7=modR<log7.
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Hence ¢ < 4r, and since |z] = r corresponds to I', we conclude that

lim sup |f(z) — 2| <lim sup [f(z)| +r =1+ r < br.

[z]—>r lz|—>r

The following example, suggested by P. P. Belinskii, shows that the
constant 5 cannot be replaced by any smaller number, even under the more
restrictive hypothesis that f(1) = 1.

Lemma 5. For each &> 0 there exists a conformal mapping w = f(2)
of an A onto an R such that f(1) =1 and

(17) lim sup |f(z) — z| > (6 — &)r.
2] —>r

Proof. Fix 0 < ¢ << 1. For each set of positive numbers ¢, h and d
with # 4+ A <1 and d <h, let R;, R, and R denote the rings
bounded by |w| =1 and by the continua Iy, I'y and I', where I,
is the segment — ¢ < w <0, Iy is the rectangle with vertices at w =
+ih and w= —¢4+¢h, and I is [ UT, minus the two vertical
segments of lengths d with centers at w = 4 ih/2. Next let g¢,(w),
go(w) and g(w) map R;, R, and R conformally onto the annuli
ry <<zl <<l, ry<<lz/ <<l and r<<|z|]<<1 so that g¢,(1)=g,(1) =
g(l)y =1.

1 t

Since mod R, = log —l , (10) implies that Zﬂ —1 as t—0, and

hence we may choose ¢ so that

(18) t> (4 — &)y .

By symmetry we have

(19) g2(0) = 1y,

and it is easy to see that the segment joining w = 0 to w = ih corresponds
under z = g,(w) toan arc of z = r, whose length tendsto 0 as A—>0.
Since r,—7; as A—0 [5]. we may choose % so that

(20) 92(ih) — g,(0) <ery, ry < (14 &)ry.

The monotoneity property (8) and (20) then yield

(21) <71 < 7Ty whence ry> (1 —¢r.
Finally Lemma 3 implies that we may choose d so that

(22) 9(0) — g5(0)] < ery, 9(ih) — ga(ih)| < ery,

where ¢(0) and g(ih) are defined as the limits of g(w) as w—>0 and
w—1ih in R,.
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Now let « denote the arc described as z moves in the positive sense
along z| = r from ¢(0) to g(ik). By symmetry the angular measure of «
is less than z, and we see from (19) — (22) that

(23) 2 — | < glih) — g(0)] + lg(0) — 7y] < Bery

for z€a. Next let w = f(z) denote the inverse of z = g(w). To each
point w, €I with Im(w,) > 0 there corresponds at least one point z, €«

such that f(z) — w, as z—z, . In particular if we take w, = — ¢ . we obtain
Hm [f(z) —z| = [t + 2zl =t 41y — l2g — 71, > (5 — be)ry > (5 — Tle)r

from (18), (21) and (23). Replacing ¢ by ¢/11 then yields (17).

7. Proof of Theorem 2 — Outer boundary. We investigate next the dis-
tortion on the outer boundary of A . We consider first the case where [’
is a segment with an endpoint at w = 0, and then show how the general
problem can be reduced to this special case.

Lemma 6. Suppose that w = f,(z) is a conformal mapping of A onto
a ring Ry, bounded by |w| =1 and the segment —t <w <0, and that
f11) = 1. Then each point z = € with 0 < ¢ <7 corresponds to a point
w=¢Y with 0 <y <zm and

0
(24) =g+ 4> (— 1) arg(l — "),

n=0
where arg denotes the principal branch. In particular
(25) 0<yp—q¢g<4arg(l —re™™) < 4 arcsin 7.
Proof. Tt is easy to show that the restriction of w = f,(z) to the upper

half annulus » < [z| < 1, Im(z) > 0 can be expressed as the composition

of the following mappings:
i 1 +ow
(26) (=1logz, w=sn(l,k), w= FpN
Here log z is the principal branch of the logarithm, sn(al, k) is the Jacobi
elliptic sine function with modulus £, and

, L1t K K

(27) =11 ar:l—l—:*;,
og ~

where

(28) l K — K(k) = / (1 — kxsin2f)" dp

0

lK/ = K(k,) s k= (]_ — kZ)'/z .



F. W. GerrING and GUNNAR af HALLSTROM, A distortion theorem 11

If we set z = ¢ and w = ¢ in (26), we obtain
¢ tan % = sn(tag , k) .
If we let tn(ap, k') and am(ag , k') denote the Jacobi elliptic tangent 3)
and amplitude functions with modulus £, then
sn(iag , k) = @ tn(ag , k') = ¢ tan(am(ag , £')) .
(See [2], p. 24 or [8], p. 24, and see [10], p. 494.) Thus we have

(29) % = am(agp , k') .
Now we can express the function am(@, k') by means of its Fourier

series as follows:

70 @ 1 2(¢)"™ [ ' ma@
am(@ , k') = Yd _!_mzl — _;_(q(;’)z'" sin ( V& ) ,
where by (27)
) akK )
q - exp (— KI / = 7‘

(See [2], p. 303, [8], p. 20 or [10], p. 511.) This, together with (27) and (29),
yields
™ sin mg

2m

g 3l

m

1L+
We see that

sin mg

0 T el
Y S S e =R

6im(p)

I
8
-
|
—
=
3
—
=
1™
*A
&)
S
_,
t
E
I
S

I
ur
3

I
P8
—
l
-
~
8
g
=
—
|
=
[
=
F
-
N
1
j

3
II
)

and hence (24) follows.
Finally since 0 << ¢ <z, it is easy to show by elementary geometry
that arg(l — »*"™' ¢7) is strictly decreasing in » and that

(30) 0 < arg(1 — r" =) < aro sin 7741

Thus (25) follows by virtue of a well known theorem on alternating series.

3) This function is often denoted as sc(agp , k') .
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We now use Lemmas 2 and 6 to prove the following result which, in
turn, implies (4) of Theorem 2.

Lemma 7. If w = f(z) maps A conformally onto R so that an arc «
of |zl = 1 corresponds to an arc f§ of |w| =1, then

(31) llength p — length «| < 8 arcsin r .

Proof. We may clearly assume that ¢ and p have their midpoints at
z=1 and w=1. Let » be the image of « under w = f,(z), where
f1(z) is the mapping of Lemma 6. By reflecting in the circles |z = 1 and
lw] =1 we can extend f(z) and fi(z) to be univalent in » < [z| <771,

Let B denote the ring bounded by ¢ and the continuum consisting
of the circles |z| =1r, |z| =771 plus the segment —r 1<z —r.
Then f(z) and f;(z) map B onto rings S and 7, where S separates
the arc 8 from the points w = 0 and w = oo and where 7'; is bounded
by 7 and theray — oo <w < 0. If S; denotes the ring bounded by f
and the above ray, then (11) yields

mod 7'; = mod S < mod S, ,
and the second part of Lemma 2 implies that
(32) length g < length » .
Next let ¢“ and ¢ denote the upper endpoints of ¢ and y, where
0<¢, w<<a. Then we have
length § — length « < 2(y — ¢) << 8 arcsin r
from (25) and (32). Applying this inequality to the complementary arcs in
[zl =1 and |w| =1 gives
length ¢ — length g <C 8 arcsin 7
and we obtain (31).
Now (4) is an immediate consequence of Lemma 7. For suppose that

w = f(z) maps A conformally onto R so that f(1) =1 and f(e') =¢"
where 0 < ¢ ,0 << 2x. Then Lemma 7 implies that

O — ¢| << 8 arcsin r
and hence that

1O — o 0 — ¢
| ﬂgSSin' 8£<8'r.

If(€'%) — €7 = 2 sin

<
P4

Finally we must show that the constant 8 in (4) cannot be replaced by
any smaller number. Fix », 0<r <1, let f(z) be the mapping of
Lemma 6 and set ¢, = arccos r . Then

arg(l — re”'") = arcsin r
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and from (24) and (30) it follows that
Y, — @1 = 4 arcsinr -+ O(13)
where ¢ = f,(¢") . Now
W= ) = e 2)
maps A conformally onto aring R so that f(1) =1 and f(¢*"1) = ¢%+ .,
Hence

sup [f(z) — 2| = 2sin(y; — ¢1) = 8 + O(®) ,

js]=1
and we see that, for each ¢ > 0, we can find a mapping f(z) such that

sup [f(z) — 2z > (8 — &)r.

[#]=1

This completes the proof of Theorem 2.

8. Proof of Theorem 4. We turn now to the case where the ring R is
symmetric in the origin. We consider first the following analogue of Lemma 4.
Lemma 8. If R s symmetric in the origin and if w = f(z) maps A con-
formally onto R so that the outer boundaries correspond, then
(33) lim sup [f(z) — 2| < 3r.

Proof. Set w* = u? and z* = 22. Then it is easy to see that w = f(z)
induces a conformal mapping u* = f*(z*) of 72 < z* < 1 onto a ring R*,
bounded by |w* =1 and a continuum /™ in [w* < 1. Again R*
does not contain the origin, and if we let w = ¢’ denote one of the points
of I' which lie farthest from the origin, then R* separates |w*| =1
from w* = 0 and w* = £*¢%°, If we apply (9) to R*, we conclude that
t < 2r and hence that

lim sup |f(z) — 2| <limsup |[f(z)] +r=1¢-+7 < 3r.
|z |—>r lz]—>r

The following example shows that the constant 3 in (33) cannot be re-
placed by any smaller number even under the more restrictive hypothesis
that f(1) = 1.

Lemma 9. For each &> 0 there exists a conformal mapping w = f(z)
of an A onto an R, which is symmetric in the origin, such that f(1) = 1
and
(34) lim sup |f(z) — z| > (3 — &)r.

lz|—>r

Proof. Fix 0 < e < 1. For each set of positive numbers ¢, & and d

with # + h* <1 and d <h, let I} denote the segment — ¢t < w <t,
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I', the rectangle with verticesat w =1t 4 ih and w= —1t-=+ th, and I’
the continuum which consists of 1", U I", minus the two vertical segments
of lengths d with centers at w = 4 (¢ + ih/2) . Next let R, R, and R
denote the rings bounded by |w| =1 and by Iy, [, and I", and let
gi(w), go(w) and g(w) map these rings conformally onto the annuli
rp<lzl <1, ry<lz] <1 and r<jz/ <1 so that g,(1)= gs(1) =

H=1.
. )By setting w* = w? and z* = 2? and arguing as in the proof of Lemma
8, we can apply (10) to show that _t71 —1 as t—>0. and hence we may
choose ¢ so that
(35) t> (2 — ey .

By symmetry we have

(36) galt) = 15,

and as in the proof of Lemma 5. we may choose % so that

(37) ga(t) — go(t +ih) <ery, ry, < (14 &)ry.
The monotoneity property and (37) then yield

(38) ry <7 <<r, whence r; > (1L —eé)r.

Finally Lemma 3 implies we may choose d so that

(39)  g(t) — go(t), < ery, gt + ih) — go(t + k)| < ery,

where again g(t) and g(¢ - ik) are defined as the limits of g(w) as w—t
and w—t-+ ik in R,.
Now let « denote the arc described as z moves in the positive sense

along |zl =r from g(t) to g(t + k). Then the angular measure of «
is less than = and we see from (36) — (39) that

(40) 2=y < gt + k) — g(B)] + lg(t) — 7y < Sery

for 2€a. Next let w = f(z) denote the inverse of z = g(w). To each
point w, € I' with Im(wy) > 0 there corresponds at least one point z, €«
such that f(z) —w, as z—>z,. If we choose w, = — ¢, we obtain

lim |f(z) —z| =t + 2z =t +r,— zg—713 >3 — 6e)ry > (3 — 9e)r

from (35), (38) and (40). Replacing ¢ by &/9 then yields (34).

If we apply Lemma 7 to the mapping w* = f*(z*), defined in the
proof of Lemma 8, we obtain the following upper bound for the distortion
on the outer boundary of 4 .
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Lemma 10. If R s symmetric in the origin and if w = f(z) maps A4
conformally onto R so that an arc « of |z| =1 corresponds to an arc f of
lw| =1, then

(41) flength f — length ¢| < 4 arcsin 72.
In particular if f(1) = 1, then (41) implies that
f(e'") — €7 < 4 sin(arcsin 72) = 472

for 0 < ¢ << 27. Hence (7) follows for r < 1/ v/ 2, and since (7) clearly
holds when » > 1/ V2, the proof for Theorem 4 is complete.
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