
ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

r. MATHEMATICA

325

A DIST O RTI O Nr TI{E,O R E,M
F O R FU}.T CTIONTS UN IVALE,N T

I].t A].t ANINTULUS

tsY

F. W. GEHRING and GUNNAR af HÄTISTNÖM

HELSIN}{I 1963
S U O MA L A IN E N T I E D E A KAT E MIA

koskenoj
Typewritten text
https://doi.org/10.5186/aasfm.1963.325



Communicated September 14, 1962 by F. Nnv.s.Nr,rNNa arrd Or,r,r LnHro

KESKUSI(IRJAPA INO
HtrI-SINI(I 1963



A ilistortion theorem for functions univalent in an annulusl)

1. Let -4 d.enote an annulus r < lzl < I , Iet -E denote a nng bound-

ed by l*l : I and a continuum l- in lwl < I, and suppose Lhat' R

does not contain the point w : 0. D. Gaier recently proved in [a] the

following theorem.
If w:f(z) maps A conformallyonto R sothat lG):\, then

(1) lf(z) - zl { Cr

for ze A , where c is an absolute constant. Il co d,enotes the smallest such

constant C, then 4!Co<12.6.
The aim of this paper is to give the exact' value of Co . \Ve do t'his by

establishing
Theorem 7. If w:f(z) maps A cot$ormttllyonto R sothat "f(1):1,

then

(2) f(") - z'i < 8r

for ze A. The co'itstant 8 cannotbe repilaced,by any srual,ler number.z)

since l/(z) - e j satisfies the maximum principle in A, (2) rvill follow

if we can shou' that
ttTj;, lf@ - zt 18r

for all f on the boundary of A . That is we need only determine how

great the distortion is on each boundary component of A . In this direction

Iire prove
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Theorem2. If w:f(") m,alts A conformall,yonto R sothat "f(l) 
:1,

tlten

(3) Iim sup lf@ - z! <5r
and, 

lzl+r

(4) sup lf@ - zl <8r.
lzl:1

The constants 5 and I cannot be reTtlaced, by srnaller numbers.
The examples which shov, that 5 and 8 are best possible have the de-

sired asymptotic behaviour as r --> 0 . That is, for each r , let'

r l{h\ - zi\
C r1r1 : sup [lim sup !-;-- I ,yetr' 1"1-,, r' /

1 tl@ - zl\
c,(r):::e" \r:i,I, 

=- ) ,

where -F is the class of functions /(z) which map A onto an -E with
/(t) :t. ThenCr(r) 15,Cr(r)(8and

limCr(r) :5, limCr(r) : a.

2. The constant Co can be decreased if one considers an appropriate
suhclass of rings -R . As an example, we have investigated the case where

-tE is symmetric with respect to the origin.
Theorem 3. If R 'is symmetric 'in the origin and, i,f w : f(z) mayts A

conforrnally onto R so that /(l) : | , then

(5) lf@)-z .--3r

Jor ze A . I'he constant 3 cannot be reTilaced' by a,ny smaller number.
Again it is only necessary to examine'lvhat happens on each boundary

comporient of .4 and hence Theorem 3 is an immediate consequence of
Theorem 4. If R is symmetric i,n the origin and, if w : f(z) maps A

confornr,al,ly onta R so lhat /(1) : | , then

(6) limsup \f@ - zl <3r
lzl+t

and,

(7) sup l/(z) - z! < 2t/ir.
lzl-r

Ihe constant 3 cannot be replaced, by any sru,aller number.
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For each fixed r let /s denote the class of functions /(z) which map

-4 onto an R , symmetric in the origin, with /(t) : 1 . Then set'

f rt-.\ -\
C'' 

' 
(r) : s*P (ti'" t'P !1--j_ll

7ei--r\ '; r /

c,,, s (r) :.:T (:ry ,,.,,._ , 
)

/€F5 \lz:1

Here C,,r(r) (3 and

lA''''(') :3'
On the other hand, Cr, r(r) assumes its maximum value at ant r between

0 and l. We have not obtained an explicit expression for this maximum
and so the bound in (7) is not best possible. Direct computation shorvs,

however, that up to four decimals

,111,C,, 
s(r) : 2.1736 ,

and that this value is attained roughiy for r : 0.78.

3. We establish 'Iheorem 2 in tlie following u'av. First the inequality
(3) is au easy consequence of a well knorvn estimate (Lemma 1) for the
maximal diarneter of tl:e inner boundary conlpor'.ent 1' . The fact that the

constant 5 is best po.ssible folloil's from an example (Lemma 5) suggested

to us b1, P. P. Belinsl ii Another res'-rlt ol the rnocluli of rings (Lernma 2)

slrorvs that the t.rtaxintittn cli:tortion oir z - | occurs rrlten .f is a seg-

melrt u-ith oue eudltoint at tlie oiigin. Thi,q extrelnal mapping can then be

expressed in ternis of ell-ptic fi.uictions and ihe distortion on ]el : I com-

puted b;,' means of an aiternating series (Lemma 6). This series yields (4)

as well as an example to shor,v that the constant 8 is besi possible.

The proof for 'Xheorem 4 is reduced to the frrst, case by observing that
u)z , as a function of zz , induces a mapping of the previous kind. We can

then use the estimates required for the proof of Theorem 2 to deduce (6)

and (7), and an example similar to Belinskii's shows that the constant 3

is best possible.

We begin with some preliminary remarks on the moduli of rings.

4. Rings. A ri'ng is by definition a doubly-connected domain. Each ring
R can be mapped conformally onto an annulus a < zt' < b and the
modulus of -E is defined as the confbrmal invariant

b
moal A - log

{t



(8)
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A ring fi is said to separate two sets E, and E z if E, arrd E, Iie
in different components of the complement, of -B .

The modulus is monotone in the following sense. If -R and A' are rings
and if .B' separates the boundary components of A, then R' ER arrd

Equality holds only if R' :.8 . (See [9], p. 626.)

We use the following result, due to Grötzsch, to estimate the distortion
on the inner boundary component, of .4. (See [9], pp. 631-635).

Lemmal. Supgtosethat 0<t<L, that R i,sa,ringin lwl<L which
separates lwl:L fromthepoints w:0 and, w:teio, and,that R, 'isthe
ring bounded, by lu;l : I and the segment - t < w I 0 . Then

(e)

e'nd

(10)

4

1,

l'* ("*
4

t
rxod Rr) .=- o

We need the following result, essentially due to Mori [6], to obtain an
upper bound for the distortion on the outer boundary of A.

Lemma 2. Sqtpose that B is an arc of lwl : 1 with mid,point at w - I ,

that S is a ring whi,ch separates p from the poi,nts w:0 and, w : @ ,
and, that S, is the ring bound,ed, by B and, the ray - oo ( w 10 . Then

(rr) mod S<mod .§r

and, mod §, 'is a strictly deueasing function of the length of P .

Proof. The inequality (11) can be established bv means of extremal
lengths. (See, for example, [1], p. 91.) Alternatively v'e can use the reflec-
tion principle t'o obtain a conformal mapping z: h(w) of the exterior of
p onto theexteriorof thesegment -1<z(0 suchthat h(@) :"o
and å(0) :å>0. Then § and,,S, aremappedontorings R and Rr,
where R separatesthesegment -1<-210 fromthepoints z:b
and z: oc , and where B, is the ring bounded by the above segment
and the ray b 1z I co . Then by a theorem due to Teichmiiller ([9], pp.
637-639) we have

The second statement of Lemma 2 is an immediate consequence of the
above mentioned monotoneity property of the modulus.
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5. We require a result on the conYergence of conformal mappings of
rings for the examples v'hich show that the constants 5 and 3 in (3) and (6)

are best possible.

Suppose that R is a ring bounded by lwl: 1 and a Jordan curve -Z'

in lrul { 1, that Pr,...,P* are fixedpoints on -l-, andthat {,8"} is a
sequence of rings, bounded by l*l: I and by continua T* in lwi < L ,

with the following properties:
(a) R c R",
(b) l- O A" is contained in the union of rz disks with radii l/z and

centers at Pr,...,P*.
Lemma g. If R ar?,il R, q,re as aboue anil, if 

" 
: g(w) and, 7: g"(w)

nla,p R and, Rn onto theannuli r<lzl<l and, rn<lzl<l sothat
g(t):9"(r):t, then

Lt:rr- glu;): g(w)',

for each we R, u: I P,;...,P*, where we d,efi,ne g"(w) at eachpoi,nt

wne R(1 l^ as theli,mit of g"(w) a,s w-->wo 'in R.
Proof. Because R c R*, R separates the boundary components of

.8, and hence by (8)
mod.B(mod Rn or rlro

for all z . Next (a) and (b) imply that each point of l- Iies within a distance

2ln of .I-" for large n. By * theorem in l5l ,

mod.rB > rt:,*J, mod.8,,

and hence we have

(12)

(13)

( 14)

lim rn -- r
n-> q.

Let E^ denote the image of f n R. under z : g(u') and let r,r"(z)

d.enote the harmoriic measure of E^ taken rrith respect to A , the annulus

r I zl < | . Since g(zu) is coutinuous in .E , lve call find a sequence of
positive numbers {d,} rvhich converge to 0 such that E" is contained in
the union of nt, arcs of ',2. : r u-ith leugths d, and centers at' g(Pr) , . . . ,

g(P^) . It is easy to see that

)'J;ru',t'l 
: o

foreach zeA.
Now set h,(z) : g"(f (z)), where u : f (z) is the inverse of z : g(w)

Then h^(z) is analvtic and univalent in -4 and

h"(z)

dr

trttL

r
' z--> I
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Since

rn

r

lim
,1,-> @

8,. i

h"(z)

Z
< ?^-r

h"(z)

lJ

h"(z) 
it__l
i-I7. 1

I

mod -B ( Iog +

It "(z\
a

in A, the tu,o constarit theorern (t7] , § 36) applied to

procal yields

and we conclude from

(15)

(13) and (14) that

for zeA.
By reflecting in the circles lz): r and lzl: I, we can extend h.(z)

to be analytic in a domain D", u'here DoCDn+, and D^ contains all
points of 1 whichareatleastatadistance d, fromthepoints g(Pr),...,
g(P^) . For each ho , the functions h"(z) r,vith n ) no form a normal
family in Dno. Since h"1t| : I for all z , (15) implies that

lim lt"(z) : 2

for ze Doo and hencefor ze Å, z * g(Pr),...,g(P*). Thismeansthat
(12) holds for ue R . u'* Pr. , P^, and the proof for Lemma B is
complete.

6. Proof of ?heorem 2 - Iruter bouncl,ary. \1:e turn now to the proof of
Theorem 2. we assume here and in l'hat follorrs that .4 is an annulus
r<lz) <1, that -iB is'aringboundedby iwl :l andacontinuum -l-
in lDl < l, and that .E does not contain the point u : 0 .

Lemma 4. If w : f(z) maps A confornrully onto R so that the outer
bound,ari,es corresponil,, then

(16) ,,i 
l",n lf @ - z! < 5r .

Proof. Let w : teie be one of the points of 1' which lie farthest from
the origin, and let .8, denote the ring bounded by lwl: I and the seg-
ment -t<w10. Then R separates lwl:l from w:A and
1o : teio, and (9) implies that

I
rlog
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Hence t<4r, andsince lrl:r correspondsto f , \rre

lrl-*r lzl-->r

The followirg example, suggested by P.
constant 5 cannot be replaced by any smaller
restrictive hypothesis that f (l) - 1

Lemma 5" F or eaclt, e ) 0 there eyists a
of an A onto a,?L R suclt that .f (l) - 1 ancl

conclude that

5r.

P. Belinskii, shows that the
number, even under the more

conforrual nruppi,ng w -f(r)

(17)

(20)

(21)

lzl-->r

Proof. X'ix 0<€<1. X'oreachsetof positivenumbers t, h and d
with t2+h2<l and d<h, let Rr, Rz and R denote the rings
bounded by l*) : I and by the continua 11 , J", and J^, where .l-,
is the segment - t < w I A, J-, is the rectangle with vertices at w :
*ih and 10 -. - t +ih, and .l' is ILU fz minus the two vertical
segrnents of lengths d with centers at w : t ihl2 . Next let gt(w) ,

gz@) and S@) map Rr, Rz and -B conformally onto the annuli
rr<12)<L, rr<lz)<l and r<lzl<l so that gr(1) :gr!):
s(t): t.

Since mod Ar:log I , (to) implies that l -->t as l-->0, and"rt-4rr
hence 11'e may choose I so that

(18)

By svmmetrY n.e har.e

( 1e)

t > (4 e)rr

9r(o) -. 12,

and it is easy to see that the segrnent joining w : O to u : iä corresponds
under z:gz(w) toanarc of z,: r, whoseleugthtendsto 0 as ä->0.
Since rr-->r1 as h-->0 [5], x-e may choose h sothat

|9 2(ill) g zQ) < tr 1 t

The morlotoneity property (8) and (20) then yield

lg(i,h) - gz\,h)l < tr1 t

the liniits of g(ta) as u -> 0 and

rL{r {rz whence rt ) (1 e)r

Finally Lernrura 3 implies that \r.e may choose d so that

(22) lg(o) - gz(0) i {sryt

where g(0) and g(i,ll) are defined as

u -> ilt, in -8, .
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Now let a denote the arc described as z moYes in the positive sense

along lzl : r from g(0) to g(i,h). By symmetry the angular measure of o

is less tloart n, and we see from (19) - (22) that

(23) 1z-r, <is\h) -s(O)l * lg(o) -r,l<rer,
for zeu. Next let u;:.f(z) denote the inverse of z:g(w). Toeach
point z5 € J- v'ith Im(zoo) ) 0 there corresponds at, least one point eo € a

such that l@) -- wo as z -> zo . In particular if rre take wo : - I , we obtain

lim,lf(z) - zl -- lt * zol >, + rr - lzo- r'rl ) (5 - 6e)rr) (5 -- Jle)r

from (I8), (21) and (23). Replacing e by e/l1 then yields (1?).

7. Proof of Theorem 2 - Outer bounclary. We investigate next the dis-

tortion on the outer boundary of 1 . We consider first the case 'where l-
is a segment with an endpoint at w :0 , and then shorv how the general

problem can be reduced to this special case.

Lemma 6. Suppose that w : fr(z) 'is a conformal, mapping of A onto

aring Rr, bound,ed'bu wl:L cmdthe segm,ent -t<w{a, and,that

,fr(I):t. Then eachpoint z:eiE with 0(p <n correspond,stoapoint
,tD:s.itu ui,th 0<\)<n and,

1p: v+ 42(-- l)', arg(l - v2nr',e-",),

where arg ilenotes the princi,gtal, branch. In particular

(25) 0 <y - I 14 arg(l -re-'n) I 4 atcsin r'
Proof. It is easy to shou' that the restriction of w : fr(z) Lo the upper

half annulus r( lel < l, Im(z) )0 canbeexpressedasthecomposition
of the following mappings:

(26) e :logz, a:sn(ae ,14, *-=:;,

Here log z is the principal branch of the logarithm, sn(a( , fr) is the Jacobi

eltiptic sine function with modulus lc , ar'd

(24)

(27)

\\,rhere

(28)

tt
l^tu I+t'

K Ii'
vlj)

los -<)r

kzsinz §)-'l, cl §

k': (1 k)'t,.

:T

2

J" 
*,

0



If we set z : eiE and us : eiv in (26), we obtain

vi t'an6 : sn(i,a, , k) .

If rve let tn(aE,lc') and am(ag,lt') denote the Jacobi elliptic tangent3)
and amplitude functions 'with modulus lc' , ther.

sn(i,aE ,lt) : i, t'n(ag ,lc') : i tan(am(aE ,lc')) .

(See [2], p.24 or [8], p. 24, and see [10], p. a9a.) Thus we have

(2s) f,:u 1oe,k').

Now we can express the function am(@ , k') by neans of its X'ourier
series as follows:

nO 9 | 2(q')^ lmno\am(@,k'\ r \.):r1y+Ar* sttt\ o i,
v'here by (27)

I nK\q,:exp\_ o):r.
(See [2], p.303, [8], p.20 or [10], p.511.) This. togetherwith (27)and(29),
yields

x r* sin rrlm
111 -qi4 F , ----'El '.1'2^nl

We see that

i --L- 
sin ,,g : i { i ,- r\n rm-2mn) :1{g

k,,t*r'* m -kr\Lot -t' t m

: 
,å t- r)" rm (2,,'^*'- "*)

: i (- t)" arg(I - r2ntr e-ir) ,-Lo'
and hence (24) follows.

n'inally since 0 I V 1z , it is easy to show by elementary geonietry
that arg(l - ,2n*7 u-iv1 is strictly decreasing in z and that

(30) 0 < arg(l - r2n+t e-'r) 3 arc sin r2"+1 .

Thus (25) follows by virtue of a well knou,n theorem on alternating series.

F. W. Gnrrarlrc and GuxNan af lIÄr-,rstnölr, A clistortion theorem 11

t) This function is often denoted as sc(ag , k') "
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We now use Lemmas 2 and 6 to prove the following result which, in
turn, implies (a) of Theorem 2.

Lemma 7. If w:l@ maps A conform,ally onto R so that anctrc d

of lzl : I corresponds to an arc B of lwl : | , then

(31) llength p - length dl < 8 arcsin r.

Proof . We may clearly assume lhat a and p Lrave their midpoints at,

z:l andlo:1. Let y betheimageof a under *:fr("), where

/r(z) is the mapping of Lemma 6. By reflecting in the circles lzl : 1 and

lwl : I we can extend f (z) and f ,(z) t'o he univalenL in r .i lzl < r-' .

Let B denote the ring bounded by a and the continuum consisting

of the circles lzl-r, lzl:r-r plus the segment -r-tSz{.-r.
Then /(z) and fr(z) map B onto rings S and ?, , where rS separates

the arc B from the points w : 0 and w: oo and where 7, is bounded
by 7 and the ray - oo { w I 0. If §1 denotes the ring bounded by B

and the above ray, then (lf) yields

mod?r:mod§(modSr,

and the second part of Lemrna 2 implies that

(32) lengthB{length7.

I{ext let eiE and eiq' denote the upper endpoints of a and y , where
0 ( q, g 12. Then u'e ha'i'e

length B - length a { 2(tp - V) < 8 arcsin r

from (25) and (32). Applying this inequality to the complementary arcs in

lz:I and tal :l gives

length a - length p < 8 arcsin r
and we obtain (31).

Now (a) is an immediate consequence of Lemma 7. For suppose that
w:f(z) maps l conformallyonto B sothat,f(l) :l and f(eiE):eio
where 0 1 rp, @ I 2n. Then Lemma 7 implies that

and hence that

28
Finally \Ye must shorn, that

any smaller number. Fix r )

Lernma 6 and set Vt: arccos

arg(1

constant 8 in (4) cannot be replaced b1'

Then

the
0

r

Te-i,r,) _ arcsin r
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and from Q\ and (30) it follows that

9r - 9r: 4 arcsin r I O(rB),

where eir', : f ,(rr",). Now

w : f (") : siv, 1r1s-;'t', z)

maps ,4 conformally onto a ring -B so that "f(l) : I andf(e2io,) - s2ivr .
Hence

sup l/(z) - zl ) 2 sin(rp, - Vr) : 8r { O(rs) ,
l,l:r

and we see that, for each e )' 0, we can find a mapping /(z) such that

r:TP: l/(') - z) > (8 - e)r '

This completes the proof of Theorem 2.

8. Proof of Theorem 4. We turn now to the case where the ring ,B is
symmetric in the origin. We consider first the following analogue of Lemma 4.

Lemma 8. Il R 'is symmetric'in the origin and, if * : f (") maps A con-

formally onto R so that the outer bound,aries corresponil,, then,

(33) t',T 
1",, lf@ - zl < 3r '

Proof . Set, rc,* : u2 and zx : 22. Then it is easy to see that, w : f (")
induces a conformal mapping u* : f*(zx) of r2 < ir*]< I onto a ring .E* ,

bounded by )w*l : I and a continuum l* in izc'xl < I . Again -B*
does not contain the origin, and if u-e let w : teie denote one of the points
of l- which lie farthest from the origin, then l?* separates lto*l : t
from w* : 0 and ry* - 5z"2io. If we apply (9) to -B* , we conclude that
t < 2r and hence that

lim sup lf@ - zl ( lim sup l/(z)i * r : t { r I 3r .

lz l+r lzl+r
The following example shows that the constant 3 in (33) cannot, be re-

placed by any smaller number even under the more restrictive hypothesis
that /(1): I.

Lemma 9. For each e)0 there erists a conformalm,apping w:f(")
of an A onto an R , which is syrnmetric i,n the origin, such that /(1) : 1

and,

(34) 
|äylll(r)-z >(3-e)r.

Proof. Fix 0(e(I. X'oreachsetof positivenumbers t, h and d,

with t2+h2< I and d<h, let.Z-, denotethesegment -t{w{t,
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T, lhe rectanglewithverticesat w:t+i,h and w- --t+ih, and -l-

the continuum u,'hich consists of J-, U J-, minus the two vertical segments

of Iengths d with centers at' w : + (, + ihl2) . Next let Rr, R, and 'E
d'enote the rings bounded by lwl : I and by J-1 ' J-, and l'' and let'

glw) , gz(tn) and S(u)) map these rings conforrnally ont'o the annuli

rr<lzl<L, rr<lzl<L and r<lzl<L so that 7rQ):920):
g(1) - I .

By setting x,o* - 1fr2

8, tve can apply (10) to

choose f so that

(35) t>(2-t)rt.

By symmetry we havo

(36) ez(t) : r, ,

and as in the proof of Lemma 5, rr'e maY choose ft so that

(37) lSr(t) - gz$ -l ilt) < e r, , rz I (t * e)rr.

The monotoneity property and (37) tlien yield

(38) r._<r <r2 rrhence ri ) (1 - e)r.

I'inally Lemma 3 implies \\-e may choose d so that

(3e) is\ - sr(t) ;-er1, 's(t I ih) - 7z(t + ih)l <erl,
where agait g(t) a:nd g(t { ih) are defined as the limits of g(w) as w-->t
alnd w->, + ih in R,.

Norv let a denote the arc described as z moYes in the positive sense

along lzi: r from g(/) to g(t + ih) . Then the angular measure of a

is less than z and xre see from (36) - (39) t'hat

(40) l" - r,l S ls\ | ih) - s\)l * 1s(t) - r,l 1ler.^

for zea. Next let w:f(") denote the inverse of z:g(w). Toeach

point ,ra, € J- with Im(uo) >> 0 there corresponds at least one point zo € a

such that f(")--rwo as z--+zo. If we choose uo: - f , u'e obtain

1im,1f@) - zl : lt * zo1> t + rr-'.zo - rr ) (3 - 6e)r, ; (3- 9e)r

from (35), (38) and (40). Reptacing e b5' e/9 then yields (3a).

If we apply Lemma 7 to the mapping w*:f*(z*), defined in the

proof of Lemma 8, we obtain the following upper bound for the distortion

on the outer boundary of A.

and zx : zz and
t

arguing as in the proof of Lemma

1 as f -+ 0 . and hence we may
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Lemma 10. If R i,s symmetric 'in, tlte origin and, if w : f (z) maps A
conformally onto R so that an arc a of lzl : I corresponds to an arc p of
lwl: L , then

(41) llength p - length dl < 4 arcsin r2 .

In particular if /(1) : I , then (41) implies that

lf @'*) - e'*l 14 sin(arcsin 12) : 4rz

for 0 ( E <2xr. Hence (7) fotlowsfor r ( Il {n, andsince (7) clearly
holds when r > llt/i , tt" proof for Theorem 4 is complete.
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