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On the characters of the finite unitary groups

This paper is an attempt to extend the remarkable results of GREEN [6]
on the characters of the finite general linear groups to the finite unitary
groups. It seems highly probable that the system of irreducible characters of
the finite unitary group U(n, ¢?) coincides with the system of classfunctions
what we have called irreducible C-functions. These functions are obtained
from the irreducible characters of the general linear group GL(n, q¢) by the
simple formal change that ¢ is everywhere replaced by — ¢. From the
results of Green it follows immediately that the C-functions form an ortho-
normal basis for the vector space (with the usual inner product) of the class-
functions of U(n, ¢?). However, it seems to be more difficult to prove that
these functions are characters of U(n, ¢%). We have tried to attack this
question by using Brauer’s fundamental characterization of characters [1]
and we give some results in this direction in §§ 3—5. In §§ 6—7 we verify our
conjecture to be true in the cases n = 2,3 and we also give complete tables
of the conjugacy classes and characters.

I wish to express my gratitude to Prof. R. Bravkr for discussions
concerning this problem and to Prof. G. E. WaLL for sending me a large
unpublished manuscript in which he solves the conjugacy class problem for
all the classical groups. His results were of great assistance to me.

1. Let ¥ = GF(¢®) be the finite field consisting of ¢*> elements, where
g is a power of a prime p. For « € we write ¢ = . Then « is called
the conjugate of a. We shall also consider the yuniversal field F* = GF(¢™™)
for some fixed n. Then we shall always regard the roots of polynomials
over 3 of degree = n as elements of F*. By @ we denote a fixed iso-
morphism of the multiplicative group of F* into the multiplicative group
of the field of complex numbers. Let V, be an n-dimensional vector space
over § with a non-degenerate scalar product f:V, x V,—§ satisfying
the conditions (for X, X,, X,, YV, Y, Y, € V., 1 €F)

f(X1‘|‘X27Y)=f(X1: Y)‘f‘f(Xz,Y),
JX, Y+ Y)=fX,T)+fX,T,),

JX, Y) = f(X, ¥)
1 _
W f(X, 2Y) = 2f(X,Y)
f(Y, X) =f(X,7Y)

f(X,Y)=0 forevery YEV,=>X=0.
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The group of all non-singular matrices with elements in GF(¢), or
equivalently, the group of all non-singular linear transformations of an
n-dimensional vector space over GF(¢') onto itself, is called the general
linear group and is denoted by GL(n, ¢'). Then the group of unitary trans-
formations (with respect to f) of V, is defined by

U, =U(n,q?) ={GE€CL(n,q?) | f(G Y)N)=f(X,Y) forall X, YE€TV,}.

We denote by g(n,q¢') and wu(n,q* the number of elements in GL(n, ¢)
and ., respectively. As is well known (see e.g. [2])

n

g, q) = ¢ T (¢ — 1),

i=1
atn ) = ¢+ TT (6 = (= 10).

Considering g(n, x) as a polynomial in & we can write

(2) u(m, q*) = (= 1gn, —q.

We can choose a basis {X;} (¢ =1,2,...,n) of V,, which we call the
standard basis, such that

o 0, if {47,
JX, Xj) = o
1, if i=yj;
and also a basis {Y} (1 = 1,2, ..., %), which we call the hyperbolic basis,

so that

0, if i+j#£n+1,

S, Yy) = o

1, if t4+j=n-+1.
(See [2].) If we take the standard basis, then a matrix M corresponds to a
unitary transformation if and only if M M* = M*M =1 (M* denoting
the conjugate transpose of M). If we speak of unitary matrices without
explicitly mentioning the basis, then we always mean the standard basis.

If 7 and y are complex valued class functions on 1., we define the

scalar product

1

(,y) = wn ) GEZH 2(G) (@)

= (=1 ) ale) x(e) yle) ,
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where in the latter sum (— 1)* ¢(c) is the order of the centralizer of an
element of 1, belonging to the class ¢, and the summation is over all
classes ¢. We also put

b= (s %)

the norm of y. By a character (or generalized character) we mean a class-
tunction on 11, which can be written in the form

(3) Ayt Qoo + - Wy
where 5, %o, - - -, y; are theirreducible characters of U, and ay.a,,.... @

are arbitrary integers. If all the integers «; are non-negative, then we call
(3) a proper character. As is well known, a character y isirreducible if and
only if ||y|| =1 and y(1) > 0; and two irreducible characters y and o
are distinct if and only if (y,y) = 0.

If § is a subgroup of 1, and u is a character of §, by a classical
theorem of Frobenius, the classfunction »* on 1, defined by

1
PR = 5 X w(TCT™),

TET,
where G € 11, is arbitrary, % isthe number of elementsin §, and y, (X) =
p(X), if X€9, and yp,(X)=0, if X €9, is a character of 1, andis

called the character induced by .

We use the following notations of Green [6]. Let 2 = {[;.l,,....[,} be
P
a partition of a positive integer n = »' [, into the p parts §;, =1, = ...

i=1
=1,>0. Let I =k,=... =k >0 be the parts of the partition
conjugate to 2 and put k,_, = 0. Then we write

=y om, = Lhi(k+1);
D (x) =1—a)(l—2?)...(1—2a). if r=1; Py(x)=1;

2 b
k(2 ,2) = @, _,(x); a,(v) = he }—1 sti—kwl (w) ;

{24 :x} = the formal Schur function in the infinity of variables 1, z, 22, . ..

- x12+2ls+... 'I_'_l (1 . xlr—ls—-r+S) [ﬁ ®IT+P_r (x)]—l .

I<r<s=<p

Let o be another partition of »n, which we write in the form

n
o={1n22. ), m=Yin.
i=1

Then we denote
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zez1r171!2r272!“-nr"7'n!5 wgzrllrz!.“r"!;
c,(@)=(x— 1)1 (@ —1)2...(a" — 1) ;

e (@)=(1—2)1 (1l —a) ... (1—2a") .

Q

If 2, %, ..., A are partitions such that Zl (4l =14, let g7, ..

»> s

be the Hall polynomial, and

Q@) = D Gi1sy..sy @) k(2 @) k(g @) . . k(2 s ),

1=

the sum being over all rows of partitions such that 7,,..., 4, are parti-

tions of 1; 4, N A are partitions of 2, etc.

r1+re

2. Let
fity =t +a t*7F ..+ oa,

be an arbitrary monic polynomial over  with a4 7 0. Then we write

f) =a;t (@ t* + @t 1)

Definition 1. We say that a monic polynomial g(t) over §F is U-
irreducible, if either g(t) is irreducible and g(f) = g(f), or g(t) = f(t) f(t),
where f(t) is irreducible and f(t) # f(t).

Lemma 1. A monic polynomial g(t) over § is U-irreducible if and only
if g(t) = g(t) and g(t) cannot be written in the form g(t) = g, (t) g5 (%), where
g, (t) and g,(t) are non-constant polynomials over & such that g, (t) = g, (t)
and gy (t) = g5 (t). If g(t) is U-irreducible, then it is irreducible if and only if
its degree is odd.

Proof. The first sentence is clear. The second one follows from [3],
Lemma 2.

Let & be the set of U-irreducible polynomials over F, excepting the
polynomial ¢. Write d(f) for the degree of f € SF . Suppose y € F*. Then
there is a unique U-irreducible polynomial f having y as aroot and we put
d(y) = d(f)-

Let f be a U-irreducible polynomial of degree d and let y be a root of
f. Then it is easy to see that

_ 2 _pd—1
4) R A LA V|

are all the roots of f (cf. [3], Lemma 2). We can call the elements (4) the
U-conjugates of .
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From the results of Wall ([11], cf. also [3]) it follows that every conjugacy
class ¢ of 1, can be uniquely described by a partition valued function
»(f) = v.(f) on K satisfying the condition

D Hldf) =mn,

JerF
and, conversely, to every such function »(f) there corresponds a class ¢
of W, The characteristic polynomial of a unitary matrix belonging to ¢ is

F(t) = ]_I'fJV(f)i .

fe€F
We shall denote the class ¢ by the symbol
c=(...r9. ).

A class ¢ is principal, if »(f) is {1} or 0 for every f€ & . Ifin this case
F (t) has ry factors of degree d (d =1,2,...,n), we say that c is of
principal type o, being the partition {1272 ...n™} of n. A class is
primary, if »(f) = 0 except for one particular f € ; ¢ has then the form
(f*) for some partition ». Primary classes (f*) and (9) (f,9g € S ) are said
to have the same type if d(f) = d(g) and 1 = u. Note that a primary
class of 1, is not necessarily primary in GL (n , ¢2).

Definition 2. If ¢ = (...f"¥...) is a class of U,, put
a(e) =TT @, ((— q)dm) .
ferF

Then a(c) has the sign (— 1)". By Wall’s results, (— 1)” a(c) is the
order of the centralizer of an element of 11, belonging to the class c.
Hence the number of elements in the class ¢ is

u(n , ¢%) gn, —q)
(— Drale)  ale)

Definition 8. If ¢ = (...f""...) isaclass of U, ci=(...f"...)
is a class of U, (1 =1,2,...,k), where s,,...,s, are natural numbers

k
such that Z s; = n, then we denote
i=1

¢ — v (f) — o)
gclcg...ck_f]e_lj-Tgafl(f)v2(f)...vk(f) (( ‘]) )).

Definition 4. Let o, ..., q, be classfunctions of 11,1, 1152, e, 1I,k )
k

respectively, where s;,...,s, are positive integers such that Z S; = M.
i=1

Then by « = aoa0...0a, we mean the classfunction on 1, whose

value at a class ¢ is
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<*

alc) = Z Jereg. ..o @ (C1) @2 (C2) - e (cy)
where the summation is over all rows ¢, ¢y, ..., ¢, of classes respectively
of My, Uy,,....U,.
From the corresponding lemma of Green it then follows immediately
Lemma 2. With the assumptions of Definition 4 we have
Du(— )

1) — i, (1 f.ll... n]..
W= Ty (g @D )

2

If, in Definition 4. the functions «; are characters of u,, (=1,
2,.... k), we don't know if @ oayo.. .0 is a charvacter of U,. If we
could show this, then the machinery of Green would work and would give
us a proof of our conjecture.

As in the paper of Green, making only the required trivial modifications,
we can now define the following concepts:

the set of g-variables X° = {wg} (i =1,2,...,r5; d=1,2,...,n0)
o being the partition {1 22. . n'n};

the set Z¢ of o-roots;

substitution of X<,

equivalence of two substitutions and the mode of substitution;

the partition o(m ,f) which describes the mode m ;

o-junction U,

substitution of the o-variables info a class ¢ ;

isobaric classes.

Definition 5. (Definition of uniform function) For each partition o of
n let there be given a o-function U, (X?). Then the uniform function
U= (U, on 1, is the classfunction defined at the class ¢ by

(3) Ule) = > X Qm . c) U,(X?m)

o

summed over partitions o of n, and all modes m of substitution of X
into ¢; and

— 1
QLo =TT~ @9 ((— ).
flelf: Zg (m,f) g(m,f) ( )

The functions U, (X¢) are called the principal parts of U, U, being the

o-part. Formula (5) is called the degeneracy rule. A uniform function whose
principal parts are all zero except for U, is called a basic uniform function
of type ¢. Then, clearly, the analogues to Green’s theorenis 7 and 8 are valid.

Definition 6. (Definition of s-simplex) Let %, be an arbitrary integer.
Suppose that
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(6) B, — kg, kq®, .. . k(—q)!

are distinct residues (mod ¢ — (— l)s). In this case we say that each of
the integers (6) is an s-primitive, and that the set (6) is an s-simplex g
(or a simplex g of degree s) with L — kg, k¢® ..., k(— q) " as its
roots.

We use the following notation. Let o be a primitive root of F*. Write

(7) s =

Then there is an 1—1 correspondence between the s-simplex (6) and the U-
irreducible polyriemial having

k(—g)*—1

9
kq=
s s <y O

ko —k
w07 o

as its roots. Hence we have

Lemm= 3. There are exactly as many simplexves of degree s as there are
U-irreducible polynomials f € S of degree s.

Tet .G be the set of all s-simplexes for s = 1 and let d(g) denote the
degree of g € .G . Let »(g) be a partition valued function on & such that

Y 1vig)l dig) =
g€g
Then we call (...g¢"@...) the symbol of a dual class e. It follows from
lemma 2 that the number of classes of 11, is the same as the number of dual
classes.
We can then define the dual concepts:
the set Y¢ of dual g-variables;
substitution of Y
equivalence of two substitutions;
mode m of substitution;
the partition o(m, g);
substitution wmio « dual class;
1sobaric dual classes;
dual o-function.
The set of dual o-roots H* is defined to be a set of n symbols
hai  hai(— q) s oo ha(— @), (=1.2. ... rg;d=1,2,....n},
o being the partition {171272... n"}.

If « is a substitution of Y?, we define « as a mapping of H? into the
rational integers by
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(— ) —
(—gyi— 1’

where ¢y is a root of the simplex ys;e and sg is the degree of yue.

haia = cq;

Definition 7. Let J;(k) be a basic uniform function on 1; of

type d with d-part S,(k: &) = O%(E) + O7M(E,) + .. + @2y
Let o= {122, .#n'n} Dbe a partition of »n and let A° stand for

the row (A, ..., k‘l,l; hoys ... by, .) of integers hy;, one integer for

each part of ¢. Then we denote
Be (h?) = Jy (hyy) o . . 'oJl(klrl)oJ2(k2l)o SR °J2(h2r2)°

From Green’s results it follows that B?(h?) is a basic uniform function on
U. of type o, with p-part

B = B TT{ Z S gy + Ear) S (hyy: Ea2) -+ - Sy (hdrd : fdr;i)},

where the summation is over all permutations 1’2" ...7; of 12...7; and
Sa(h:8) = 0"(8) + 07(§) + 07 (&) + ... + 697 (),
We shall call B?(h?) a basic C-function of type o.

)d-—l

For any classfunction y on 1, we shall call x(1) the degree of
(even if (1) is negative).

We now state our final

Definition 8. Let »(g) be a partition valued function on the set & of
simplexes, which satisfies the condition
2 @) dlg) =n,
§€G
and let e=(...¢"®...) be the dual class determined by »(g). By the

corresponding trreducible C-function (for which we use the same notation as
for the dual class) we mean the classfunction on 11, which is given by

(8) (g = X lm ) Be(hem),

summed over all partitions ¢ of » and all modes m of substitution of Y¢
into e and

»(g)
XOgn g) ’

x(m,e):]_l

2€G “olm.g)
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where y’ stands for the character of the symmetric group of appropriate
degree, and the sign in (8) is to be so chosen that the degree of (...¢"® ...)
is positive.

Then we have

Theorem 1. T'he irreducible C-functions form an orthonormal bastis for the
vector space of the class functions on ., t.e. the number of distinct irreducible
C-functions equals the number of classes of W, and

e e _Jo, if w(g) £ (g) for some g,
(Coog®e)s (g™@e) = L, if »(g) =+"(g) for all g¢.

The degree of (...g"® ...) is

(9) [Du(— ) TT (@) 2 (— )@}
8€g
Furthermore, (...g"® ...) can be written as
(10) (..g0®9..)=T1@w"9),
5€G

where | denotes the o-product (the factor for which v(g) = 0 1is omitted).

Conjecture. 7'he system of irreducible C-functions coincides with the system
of irreducible characters of 1.

As an important example we shall now show that the linear irreducible
C-functions are characters of 10,. Suppose that y = (...¢"®...) is
linear, i.e. yx(1)=1. If »(g) # 0 for at least two g, then we can decide, by
(10) and lemma 2. that the only possibility is n = 2, ¢ = 2, v»(¢;) = »(¢,) =
{1}, where ¢; and g, are two simplexes of degree 1. This case will be con-
sidered in § 6, where we prove our conjecture for n = 2. Hence we may

S

assume that y is primary, ie. y = (¢’9). Put »(9) = (L, b . ... 0},

where [, = 1,... =1, > 0. Then from the formula for the Schur function
we see that necessarily p = 1. Put l=1[,s=d(g). Then we have

(Da(— q)| = | ((— 9)*)! .
Clearly, this is the case if and only if s = 1. Hence we get the linear C-
functions (g{"}), where ¢ goes all the ¢ 4+ 1 simplexes of degree 1. Now
let g be an arbitrary simplex of degree 1 and let & be a root of ¢g. Then it

follows from our definitions that y = (g{"}) has the value ©"(det 4) at
an element 4 of 1, and hence y is a linear character of 1.

3. We shall now discuss the problem how to prove that the C-functions
are characters of 11,. The most straightforward idea is to apply the following
fundamental theorem of Brauer ([1]).
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A classfunction y on a finite group & is a character of & if and only if
the restriction of y to € is a character of & for every elementary subgroup
€ of @.

A subgroup € of & is called elementary if it is a direct product of a
cyclic group and another group whose order is a power of a prime.

Hence, in order to show that y is a character of ®, it is enough to show
that y is a character of a system & of subgroups of @, which has the
property that & together with all its conjugates covers every elementary
subgroup of @.

In our case we claim that this property is possessed by the following
system of subgroups

Y =Y UY, UY, UV, UY,.

the /s being defined as follows.
1) & ={P® x 3}, where P isthe p-Sylowgroup of U, (¢ = power of
p) and 3 is the center of 1U,.

2) S, ={1,xU,;} (t =1,2, ..., [Z:}), where 11; X 1,_; means

\

the group of matrices of the form

with U,€ll;. U,_,el,_,. { _n\
3) Y, is the set of centralizers of all the primary classes (f 1494 ),
where f goes all the U-irreducible polynomials of degree d(f) = 2, d(f) | n.
4) Yy = {9 8}, where %R, goes all the r-Sylowgroups of U, corre-
sponding to primes r satisfying

l’“ (—aqr—1
(11) g+ 1
r|(—q)— 1 for at least one ¢ with 1 =i=n—1.

n

s 1s the set of centralizers of the classes ((t — 1){”}) for
tln, 2=<i1=n—1

Namely, suppose that € = £, X {G} is an elementary subgroup of 1l
where {G} is the cyclic group generated by an element G of 1, and £
is a subgroup of the centralizer €(GF) of @, whose order is a power of a
prime. Let ¢ denote the class of 1, to which G belongs. If ¢ is not

5) s :

n
primary, i.e. ¢ = (...f"Y...), where 0 < |»(f)| < - for at least one

a(f)
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f, then clearly some conjugate of € is contained in 1, x U,_; for
i = d(f) |»(f)]. Suppose therefore that ¢ is primary,ie. ¢ = (f*Y). Ifnow
d(f) = 2, then it is easy to see that a conjugate of ¢ is contained in a

n

a(f)

J
centralizer of an element belonging to the class ( f‘l }). Suppose then
that d(f) = 1. If G € 3, then a conjugate of € is contained in T 3,
where ¥ is a Sylowgroup of 1. But a conjugate of T 3 is always
contained in one of the groups B % 3, U, x W,_,, R, 3 orin the centralizer
of an element belonging to a class (f), where d(f)=mn. Let ¢ 3
and ¢ = ((t — a)ﬁ’), where o (s {1"}) is a partition of n. If 0= {n},

then a conjugate of € is contained in P < 3. If o= {i‘:} for 7 !n,
9 <i=<wn —1, then a conjugate of € is contained in a group belonging
to . If o= {1122, .w"}, where at least two ri’s are # 0, then
one can easily see that a conjugate of € is contained in a suitable group
of the system ¥,.

4. We shall now consider more closely a special subgroup of 1, be-
longing to the system /3. Write
n—1 N
JO =TT — o),

i=0

where , is defined by the equation (7). Then there are elements of .
having the characteristic polynomial f(t). Let 4 be such an arbitrary fixed
element and let 9 be the cyclic group generated by 4. Then 2 is the
centralizer of A. Write R(n) for the order of 4 so that

Rn) = ¢" — (= 1)".
We shall prove the following

Theorem 2. The restrictions of the irreducible C-functions to A are
characters of .

Let % be an arbitrary natural number. We define w(k) to be the least
one of the natural numbers w which satisfy the condition

k=1Lk(—q)" (mod R(n)) .

Clearly w(k) | n.
Put

e = 0O (wn) .

Then ¢ is a primitive R(n)-th root of unity.
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Denote
w(k)—1

) =TT (¢ — o= k=1,2,...)

i=0

and let ¢, be the class of 1. defined by
/
w(k
= (.

Then A* belongs to the class cy.
Let %" be a character of 9 defined by the condition

p0(A)=¢ (t=0,1,...,R@) —1).

If a is any natural number and p is a partition, then the notation « | p
means that a divides all the parts of the partition o. If then o is the
partition whose parts are equal to the parts of o divided by «, then we

1
denote 9=a-c and o = 9
Let B?(h?) be a basic C-function of type o defined in the definition 7.
Firstly, we shall compute the value of B¢ (h?) at the class cx, i.e. B?(h?) (4%).
If w(k)+ o, then B¢ (h¢) (4*) = 0.

If w(k) | o, then there is exactly one mode m of substitution of the o-
variables X? into the class ¢, and
1 | sw)
Qum . er) = ——— Q"™ ((— g®).
1
Let () o= {11272 . n"}. Then we have
o ) k ] {1%’ w(k) 0 0
B (h*) (4%) = P QU ((— ™) B, (e = £2m)
_ w(k) ©
w(k)

‘1— {l wz:c)} w(k)
= , Q' 3 ((_ q)* )T:l- (1/Z’de(k) (hdw(k),l: Edw(k),l' m)
Q ..Vd

z s
(i) w(k)
ce de(k) (hdw(k),l ey g m))
Td w(k)—1 _
=@, (") e, (0 TTTT X eew, &0,
w(l) ) a i=1 j=0

In general, we denote by p, the number of parts of a partition . We shall

renumber the integers kg, ,; and denote them more simply by
hy hy,...,h

P, *
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Py .
wk)—1 wik)—1  wk)—1 kX hi(—a)i
ol

B ) =@ , (') e,(—q) > > .. X &

w(k) =0 dp=0 =

Then we have

We denote

1 R
() (4%) 3 (4¥).

Po
eg(—q) o w—1 w—1 w—1 h('\ hy(—q)i—t)
Dg(h@,t):—R Z Z ,,(_Q)Z Z 28 =
(’ﬂ) w0 lg(l;:e)g_R(n) - 71=0 ja=0

Clearly k satisfies the condition w(k) = w if and only if

where the natural number [ is w-primitive.
We shall use the following notations:

B(r)
<R

for a|n

s _JO if a=b (modR )

“PTL, if a b(modR )
d d—1 d—1 d—1 d
—_— s
Aa;b]_,bg ..... by _Z Z T Z 641, D bi(_q)fx :
j1=0 Jjg=o0 =0 .=
We consider in general a sum of the form
al
S(a) = Z Ew >
1< i< R(w)
! w-primit

where the summation is over the w-primitive residue classes (mod R(w)).
We claim that
R(u) w

(12) S@ =Y X u (;)

ulw m=1

where u is the Mobius function. Namely, we can write the right-hand side
of (12) in the form

R(0) w))

(13) Z( Z u ?) & -
=1 " u | w
R(w)

R(u) |



16 Ann. Acad. Scient. Fennica A. 1. 323

Let u, be the least natural number which satisfies the condition

l=1(—q)" (mod R(w)).
Then
R(w) |

R

if and only if %, |« . Hence the inner sum in (13) equals

Vo, i uy <,
12,”,_“‘(@)_]1, if wy=w.

This implies (12). Furthermore, we can compute the inner sum in (12), and
so we get

(12) S(a) = 3 8%y (%) R(u) .

Using (12) we can write the above expression for D, (k¢ t) in the form

—1 w—1 w-—-1 l“

1
S S N Ryt e,
\_gp;'f( >uzw J1=0 j3=0 jp';o'u u)R( ! é‘- > hi(—g)i

Do(kga t) =

@

From this we get the final expression for D, (¢, )

pu
(14) D, (r*,t) = Z Z @n ((—‘ w)ﬂ( )( ) R(u) Atu;hlhz,...,hpl
We put © = — ¢ and we consider (14) as a rational function in the variable

x. We assert that (14) is, in fact, a polynomial in « with integral coefficients.
We distinguish between two cases. Suppose first that all parts of the
partition g are not equal. It is clearly enough to show that

(15) —— o, s @),

is a polynomial in « for all natural numbers w«, which satisfy the condition
wlo. Put m = % o o= {1122 . (m — 1)ym-1} 2z = 2. Then
the expression (15) is

1=z (1 —2...(1—2z"1

(16) 1 —2y (1 =22, . (1 — " Yymr

Let »4 denote the value of (16) in the normed exponential valuation of
Q(z) (@ = rationals) associated with the d-th cyclotomic polynomial. We
have to show that »3 = 0 for all natural numbers d < m — 1.
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We have

i[5 5

i=1

In any case, by our assumption, at least two of the numbers 7; are 7 0.
We have three possibilities. Firstly, if all the ra’s are =0, then clearly
vg = 0. Secondly, if exactly one ra, say f7a; is == 0, then the assumption
yg < 0 implies

m — 1

Tdi0—>_—[ d }‘i—l,

so that

m—1

m :.Zjﬂrj>(liord,~ogdrdio>m——1,

j=1

which is impossible. Thirdly, suppose that at least two ra4’s, say 7a, and
rai, are # 0. Let i, > 1. Then we have

dvd>m-—l—d——drdio—drd,-lgm-—l—diordio—dilrdilz—- 1,

so that »g = 0.
We suppose now that all parts of the partition

=G

In this case our proof will depend on the following lemma.

o are equal, i.e.

<

Lemma 4. Let r and s be arbitrary natural numbers. Put
M) = D vu@) (1 —2) (1 — 2 (1 —2") ... (1 —=2").

Then
1 —z
(1 —27) (1 —29)

, M(2)
is a polynomial in z with integral coefficients.

Proof of the lemma. The case s =1 is trivial. Hence assume that
s > 1. Denote

r 1

M, (2) = M(z) = > vu) P, v),

i1 1 — zls

where
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Pz, v) (1 —z(i%+j)v).

u:]a
n':r]w

S

We shall show that M, (z) is divisible by
the lemma.

Let (> 1) be an arbitrary divisor of s and let ¢, be a primitive I-th
root of unity. We have to show that M, () = 0 for each .

If P(f, v) # 0, then the least natural number « which satisfies the

Clearly, this will imply

s
condition ¢v =0 (modl) must be e On the other hand, this number

!
(1)

is, of course, Hence

s
v o= (v,l)?.

s s
If now (l , 7) > 1, then there exists a prime p such that p|l, p| 7

But then p|v and p|(v,1), so that p?|v and u(v) = 0. Hence we
may assume that
s
(l R i) =1.

s
73
=120,
v

s
is a primitive . -th root of unity, so that

and

This proves the lemma.

w
Put v = o Then we can write the expression (14) in the form
(— 1 .
Du(hgﬁt) = n Z R(u) At;hl,hz,...,hr
Q—2a) (1 —a") s«

r

3 v u) (1 —a®) (1 —a®™). .. (1 — 2"
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n

For each % we use lemma 4 taking s = R It follows that

D, (k% t) is a polynomial in 2 with integral coefficients, as asserted.
Let now e = (...g"®...) be an arbitrary dual class

e= 4 > y(m,e) B (h*m).
We denote ;
Z x(m,e)D,(hm ,t).

Again we write © = — q. Then, by our result above, Df(e, t) isa polynomial
in x with rational coefficients. We shall show that D(e, t) multiplied by
suitable factors of the form 1 — a' is a polynomial in « with integral
coefficients. By the classical theorem of Gauss, it follows that Die, t)
itself has integral coefficients, and this will prove our theorem.

We have

Dt = gy X Z(T[; o g))egm >3
= m g€ w oo u w

o(m 2

n

u ! w \Pelm. o) (2) (g) )
Lsz;hlm,hw. ..... hPDm ;I:[; ~ ; Zolm . g) Colm.g) (x \a), .

“o(m,g)
We shall now consider more closely the expression A}, hymohgm,.. . hp m for
Qo

fixed u, o, and m. Let « be a fixed substitution of the dual g-variables

Y into &, which belongs to the mode m. Let us consider first a

certain fixed simplex ¢ and assume that the Ak’s are so numbered that

hyshyy ..., Py, g correspond to those dual p-variables Y¢ which are

mapped onto g by «. Denote shortly o= o(m,g), p=p,d=d(g),

and ¢ = an arbitrary root of the simplex ¢g. Let a = (u,d) and
w

b= (w,d). Since w|p, we must have o | o, so that we can write
azﬂr Let 7={1"2%. ..} sothat »# =p and Zit-:ilv()l
T R Jti=p i= (g
By definition,
u u—1 u—1 u—1 “
tthym hym, ..k :,Z Z 2 9, }‘1: (hy m) <)
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Consider now the following partial sum of this expression. Fix j,.,,

Jpsas -+ Jp, in some way, denote shortly
Py _
N = Z (him) i,
i=p+1
and then sum with respect to j;.js....,J,. So we get the expression
u—1 u-1 u—1
by N st P
(17) Z AR A 6;; N (b m) e N
J1=0 jg=0 p=0 =

Now the set {(him)} (1 = 1,2,...,p) consists of the following polynomials

in :
f;<w>=c(1+xd+x2“+...+x(]7_1)d) Gj=1,2,...),
/;(x) appearing {; times. We have
fyte) =] @) (mod R(w) .
where
aw

flx) = ¢ ™ (I—Q—xd—!—xz‘l—i—..‘—i—x(;_l)d).

Furthermore,

f@)(z*—1)=0 (mod R(u)) .

Hence the expression (17) is

: (1) >
( ) a AG; t; f(x) Pj ()+N

where P;(x) goes all the a? polynomials that can be formed from the
matrix

1 1 2 2 3

x x 2x 2x 3x
x2 ... 2 202 L. 222 32
o=t Lt 2t . 2! 3ao~1
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so that one term is taken from each column and these p terms are then
summed. (Of course, these polynomials are not necessarily all different.) Let

&
(19) Pie) =Y i Y a*
‘(_iT =1
be any such polynomial, the /s being certain integers between 0 and
@ — 1, determined by the choice of P;(x). Take auxiliary variables
Ygos Yg1s> - - - > Yg,a—1- Lt the monomial

(20) TT 1T %,
G) 1=1
correspond to the polynomial (19). Then (19)<- (20) determines a 1—1
correspondence between the polynomials P;(x) and the terms in the product
(21) Sz(ygo sYgls v oo s yg,a—l) = U (?/;o + 9;1 + ...+ y;,a—l)ti >
and hence the number of times that a certain polynomial P;(z) appears is
equal to the coefficient of the corresponding term in the product (21).
We assume now that the above procedure is carried out for each simplex
g. We shall form a new expression D;(e, t) by replacing A}, hym kg m
by the product

w

( U )Pg(m’g) S

RN ) L

From the above considerations it follows that it is enough to prove the
assertion for D; (e, t), ie. we have to show that D;(e, t) multiplied by
suitable factors of the form 1 — ' is a polynomial in » and ¥, with
integral coefficients

We have
1 w'
nien = g L ol Tr| 5
o dy
= <—*w‘““ )PU S Wao > Yor > -+ 5 ¥, _1) 1 @e (xd(g))} .
2, (u,d(g)) (“’_’wi‘gﬁo g0 > Jgl s > Jgs(u,d(@)—1) Zs~ o

It is clearly enough to prove the assertion for the expressions in square
brackets. Let us again consider a fixed simplex g¢. Let it be the same as
that considered above and let us also use the same notations that were
used above. Then the expression we are interested in is (of course we

may assume that %g |»(g)] , otherwise the expression is 0)
|
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1 [0\ *a
(22) ? (:{) S-z (ng ’ ygl >t yg.a——l) Z’;«(}g) ¢, (xb ) .

el N

S‘vM

7l =

b
Now — is an integer. Take — auxiliary variables x}, z,, ..., %, and
a a b

PZ a
replace in (22) (;) by S,(®;,%,...,2,). Then it is enough to prove

the assertion for the new expression, because from the new expression
we get (22) by taking a; =, = ... =, = 1. We denote the

a b
products  y,;; t1=0,1,...,a—Lj=12,..., ;) in some order by

y07y17-'°,y[,__1- Then
S1(x17w2;-..,xi)St(ng;ygl,...,yg’a_l) :Sr(y07y1;' ":yb_l)-

By [7], § 8.1, pp. 143—146, we have

28 = > aq
b’ lul=7|
) 2a b
for some integers a,. Put z = z® and T = e Iv(g)]. Then we have
to consider
1
(23) Z o B8, Yo s Yrs e s Yp—r) €(2) -

ltf|=T “z
For l=4b+4 0<i<b—1,j=0,1,2,...) we write
Z;:zfy,-.

Now (23) is a formal Schur function of degree 7' in the infinity of variables
Z; and hence it can be written in the form

AR A A A

L, R 2 i p

©w 11,1‘2,7...,!})

where p = p,, the ¢,’s are integers, the outer sum is to be formed over all
partitions u = (my, my, ..., m,) of T, and the inner sum is to be taken
over all ordered p-tuples (i, iy, ..., i), where the 44’s are different non-
negative integers. It is enough to consider the sum
(24) . .Z CZ Zy) .z

19925045 0p

if?éis

Rearranging the terms in the sum (24) we can write it in the form
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b1 b—1 b—1 m m m
2
Y Y
, L . . ll l2 lP
11:0 12=0 IP=0 i1se.esip
i #i
irElr(modb)

It is enough to consider the sum

(25) DI AN A
il,i._),...,ip
ir#is

i, =1, (mod b)

for fixed I, 1, ..., l,. Suppose the notations to be so chosen that

L o=l =..=1 =1L,
lrl-{-l lr1+2 = . = lr1+r2 L27
lr1+r2+..+r,_1+1 e = lr1+r2+..+rt:Ltﬂ

where the L;’s are different and », + r, + ...+ r, = p. Then (25) can
be written in the form

my  mg mp WV
(26) Iy Yy oY z 2
ot irl 'rl-%l"" ritrg
ls=—‘i“ iS:zu
My iq -moiy = ... — i
T P 111 - m2iy mplp.
. el .
'rl—‘..+rt_1fl"’*'rl+..—‘rt

Hence, finally, it is enough to prove our assertion for a sum which is of the
type
(27) Z Zmli1+m2i2+... +om i, .
irige i,
is # iu
Let = {171 2P2 .} be a partition of r. Let 7_ be an arrangement
of the numbers 1, 2, .., r into subsystems so that p; subsystems consist

of d elements (d =1, 2,...). The number of such arrangements % _ is
obviously
7!
N, = TT@Y pal”
d

Corresponding to the arrangement 7 _ we define the sum

T

U(of/? ): ?/ 2m1i1+m2i2...+m,ir
L ya
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as follows. We identify 4, and 4, if ¢ and b belong to the same subsystem
and after this we sum all the remaining variables 4 from 0 to co. Then
clearly each U (S2.) is a rational function of z of the form

.
where Z n; = }_ m;. Furthermore, we denote

U@ = > U,
R

‘o

the sum being formed over all arrangements £ ,. Now the truth of our
assertion rests on the following lemma, which allows us to express (27) in
terms of the U (n).

Lemma 5. We have

(28) Z Zmlil + mgig - .. 4+ m i, — /Y‘ A_—, LT(TC) ,
i1 dgs . ns iy a=r
is#"u
where

A, =TT{(=D""@—=1)D)Pa for a={1m2r2 ..
d

——

Proof of the lemma. The left-hand side of (28) consists of powers of 2
of the form
(29) zm1i17m2i2+...mrir’
where the ¢’s range from 0 to co and are all different. On the other hand, a
term of this type appears in U ({1"}) only and its coefficient is Afr} = 1.
Suppose now that we have a term of the type (29), where the %’s are not
all different. Without loss of generality, we may assume that

‘zl =i =...=14, =1,

la1+a2:I2a

(30)

.............................

l?a1+a2+..+as__1+1: e = al+a2+..+as:'ls?

where the I,’s are all different and @, + a, + ...+ a; = r. Then (29)
appears in U () if and only if 2 satisfies the following condition: If
i. and 17, belong to the same subsystem of the arrangement 7, then they
also both belong to the same set

ﬂk:{@a1+..+ak_1+1:@a1+..+ak_1+2: .- ',7a1+..+ak}
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for some k (1 =k = s). This condition can be expressed more simply by
saying that 2, is a union
Q?_,zﬁfle(@QU...Uf/? ,

s

where m; is a partition of @, and £ is an arrangement of 7/;. Hence

Tk
the coefficient of (29) (assuming that (30) is valid) on the right-hand side of
(28) equals

(31) > oY ... Y A, N A4 N, .. AN

= ap g = ag g = ag

Now at least one of the «’s, say «;, is > 1. and we have

!
4’ {ig
1 L ~ (&3l

71: ay lny =ey 7y

Y4 N, = N

where y denotes the character of the symmetric group S,,- By the character

relations of &, , this sum is 0, and hence also (31) is 0. This finishes the
proof of the lemma and also the proof of the theorem.

5. Let us consider the special case that n is an odd prime. In this case
it is easy to see that the conditions (11) are satisfied for a prime r if and

only if » =n and ¢ = — 1 (mod n). Hence the system .Y, consists of
only one group R 3, where 3 is the n-Sylowgroup of 1,. We also have
(=g —1
—qg—;l— = — "N (mod n2) .
Using the notation (7), we write
Xp=diag(l,1,...,0;,...,1) 1=k=n),

where X; isa n by = diagonal matrix, the element in the k-th row and
column being w,;, the other diagonal elements are 1. We also denote

01 0...0
0 0 1 0
D
0 0 O 1
1 0 0. 0

Then $ 3 is contained in the group B = {X, X,, ..., X,, Y}. This group
is determined by the following defining relations

IXZ+1= L, X&=XX, (1=k,j=n),
| ¥xoxe. X0y = XpXxp. X, X0
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The elements of B are divided into classes of conjugate elements as
follows:

No. of ele- | p ange of the | No. of classes
Notation Elements ment_s in the parameters ] (.)f the t}_/pe
conj. class | in question
o {xfx§... x» 1 k=1,..,q+1 g+ 1
{X;IX?..XZ”, ‘a,-=1,..,q—1’
(egrags--rap)| X712 X33 .. X0, fori=1,..,n; 1 v
G2 " n , — g+ 1)r—q—1]
............. not all a;’s n
X X5t Xa"—l} are equal
{rr X1 X2, X0, ;
I
where k=1,..,n—1, |
C(k,l) 1 n—1 s ’ s | n—1 1
l=a + ..+ an (¢+ 1) l=1,..,q—{—1!( ) (@ + 1)
(mod ¢ + 1) !

One sees immediately that the system of irreducible characters of B
is the following one:

it ‘ &1L 2ot ‘
Class t =1,2,...,n b; = .,q—f—lforz_l ,n;i
u=1,2,...,9+1 ‘notallb are equal l‘
O(lk) ok l b1 b2 bk |
C(zal,aQ,..,an) au(a1+a2+..+a") E ‘bilal + bi2 “2‘5‘"+bin“n 1
\ (11,..,1n) :
q+1 |

A th + ul

Here & = @ (w,) is a primitive (¢ + 1)-st root of 1, and in Z the sumw is

(i )
over all systems (ij, @y, ..., 7,) such that <i : Z‘) goes all the =
. 1 R AT roEe .
permutations ( 5 3 7;) (j=1,2,..,n). The characteristic polyno-

mial of an element belonging to class C{'? is

# — o,
which splits into distinet linear factors in &, if /=0 (modn), but is
irreducible in §¥, if 7 2= 0 (modn). Now it is easy to verify the truth of
the following
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Theorem 3. The restriction of a basic C-function of type {n} to B isa
character of B.
Proof. For each B?(h?) we write

D,(h;5t,u) =
and
D,(h¢;by,by,...,0.)
We also put

By a straightforward computation we get (writing shortly % instead of

knl)
n 1 ¢n—1 (_ Q)
Dy (58, u) = [; (1 + ES 0 (1) | O,
+ (nd(n) — 1) 6y, (" (¢ + 1))
and
¢ D, (—19)
Dy (™5 by by, ., by) = W o by + by o b -

Clearly, these expressions are both integers, and hence our theorem is
proved.

6. Characters of 1I,. The elements of 1, are divided into classes of
conjugate elements as follows:

| -
, . Canonical form No. Ot." ele- | Range of the No. of classes
Notation in GL (2, ¢?) ment;s in the parameters | c}f the ty"pe
conj. class i in question
® oka=1 .
(041 Qk(q-l) 1 k=1,..,9+1, qg+1
® oke=1
Cs 1 Qk(q_l) q2—1 k:l,..,q+1 qg+1
(k1) k=1 kol=1,...q+1,
G la—1) =1 k1 Yoalg + 1)
Y (k. 3) (1, k)
C3' 7 =Cy
) oF k=1,..,¢*?—2,
Cs ( _qk) 9(¢ + 1) |k==0(modg—1) ¥ (¢* —q— 2)
e (#) _ (-9
Oy’ = Cy
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Here o denotes a primitive element of . Let # be a primitive (g% — 1)-st
root of 1 and e == 5~ 1. Our assertion is that the table of irreducible charac-
ters of 10, is the following one:

t | (t (t, (t
7 e 24 i ey . 218 S
t=1,..,¢—
§01 ; t,bu=1,. Q—lz‘-*()’modgﬂl)w
ass | ‘
| 5;t:l,..,q—fl\t:l,..,q—l t==u, if ¢, = —1q
[ | } /((1( l{) = Zf;_’f) (mod ¢ — 1), then |
: | | ) L) ‘
i g1 Xy
1 1
(k) : 2tk i 2k (t—u)k ik
Cy € qe Co(g — Dt (g —1)¢
o® 2tk 0 ‘ =k ok
ng,l); 8t(k+l) : e gkl cub—1l 0
(‘v(l“) 6“”‘ | E—rk 0 )"!I; . v)]r-rlq

The most direct preof goes as follows. It is clear that the s are
characters of U,. The transformations which are represented with respect
to the hyperbolic basis by matrices of the form

(’a 0
b oa-
belong to U, and they form a subgroup of 1, of order q(q® — 1), which

we denote by §. It is, in fact, the normalizer of a p-Sylowgroup of 1I,
(¢ = power of p). Let " be the character of $ defined by

TR
o° 0
() otk o 9 5
' ((b g—qk))_” (=1.2,....¢=1).

Then the character of U, induced by y" is

’P(t)* = Zg)ﬂ
By Theorem 1 of Green ([6], p. 403), the following classfunction is a character
of 1, ‘

J,wm1&+%:o,

2 ¢ , if z€e0oP,
© 2 ™" , if xeCP
P (x) = sk sl ; (k. 1)
&+ ¢ , if z €l
e, if 2 €0P .

Then
e = — ) tu=1,2,....¢+1).
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7. Characters of 11;. The elements of U; are divided into classes of

conjugate elements as follows:

i |
{

No. of classes

L <l <m ‘

, Canonical form | No. of elements | Range of the i
| tion in GL (2,¢% | in the conj. class | parameters (.)f the type
1 | : ; in question
ota=" \ :
P oka=1) ) 1 k=1, ...g 1 q-+1
‘ oa=1 /| |
- S — - |
i /"/Q"'(‘I—l) '
o 1 gha=1) ) (=11 lk=1...,¢+1] g+ 1
: \ gHa=1 /| ; 1
okla=1 N i
Loy (1 oHla=1) ) gl — 1) (- 1)} kB—=1,...q+1 q+1
| o= \ [ =1 1
ofh JHa=1 U VA (g = 1)
b : k=1 j
\ ola=1 ;
by Bl=1,...q+1 |
- [y b= NS 1
o (1 gha=1) ) g — Dig® = 1) | . e+
; | \ oa=" | -
L/ pkla—1) | F ‘
; /o | ; |
. | - | kylom=1,..,qg+1, 1 .
fdm) ( oHa=1) ) Pla—1) (B —q+ kb =larl 5 1@ —=D

1 k=1...,¢g+1,
! 2

okla—1) ZZ =1, =2, |
=0 (mod g — 1);
Lok b 1 3, 3 ‘ 4 1 (g — 12 (g — 2
e ( Qr—ql Bl =1 T —— 2 (g ) (q )
! ' (mod ¢ — 1). then
cll) oD
‘ B=1.,...q¢%,
| k=0
,Tk(q3_1) | (mod qz — g 1); .
27k —1) Plg + 1% (g — 1) if ky = g% or T q(q% — 1)

7a*k(g® 1) | ky = ¢*k

/
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Here 7 denotes a primitive element of GF(¢®) and ¢ = AL g g
primitive element of §. Let { be a primitive (¢° 4 1)-st root of 1 and 7
and & be primitive (¢2 — 1)-st and (¢ + 1)-st roots of 1, respectively, such
that

2_ _
e = (V1T =171,

Our assertion is that the table of irreducible characters of 11 is as given in
the following two tables.

[ 1 i (t ! t, u)

x(l) xé%_q | zqé | xzz_q 41
Class |
1 lt,uzl,..,q—i—l,‘
t=1,..,9+1 t=1,..,9+1|t=1,..,9+ ¢ u |
i
o® &3tk (g2 — q) ¥ q2 3k (g% — g+ 1) el+29%
o 3tk g ek 0 ) — (g — 1) 2k
C(ak) g3tk 0 0 ‘ st+2u)k :
| _ —1 8(t+u)k+ul‘f

ng,n £H2k+]) ‘ — (g —1 £l2h+1) | q £H2k+1) | (g . SQ)M,,

| !

! (t+u)k+ul

ng, ol £H2k+1) £H2k+1) 0 ‘Z_ o2ub i
O(6k~"'") gHb+14+m) 9 gtll+1+m) _ gtltl+m) gth+u(l+m) i
(ks I, m) |
ngk ) 6‘(k_') 0 gz(k—— ] 8Ik—ul E
Og‘) stk _ 8tk _ E‘k 0 :

By Z we mean a sum over the cyclic permutations of =z,y,z
(x:2:7)

and Z means a sum over all permutations of =z, y, z.
{%,y,2}
The case of the linear characters is clear. The transformations which are

represented with respect to the hyperbolic basis by matrices of the form

a 0 0O cc =1,
b ¢ 0 |, with {ae +bc=0,
d e a ad + ad - bb = 0,
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A(t, u) , (tyu,v) (t,u) (t)
Zq(g2—g+1) | Kg-1)(g2—g+1) %41 Xg+1) (@2-1)

; ‘ | . t=1,..,q¢,

} t:]-a'-,qq‘i‘lé t$0

| U=t T S od g2 — g 4 1);

iClass t,u=1,..,94+ 1t,u,v=1,..,¢+1,/u =0 (mod g — 1); (if tq:t;zz or)

t £ u t<<u<w if u = — ug L

i (mod ¢2 — 1), then =1

i | 4 ’ (mod ¢3 + 1), then
| Z(t,u) — Z(h ul) ® (t;) (ty)

| | W=y V= 2

| |

L o @ — D (@ —q+1) | e |

O g(q?—g 1) etk IS (@@ + 1) etFwk (g + 1) (¢ — 1) e‘ki

\ | ‘

| i |

i O(2k) q glt+2u)k : (2¢ — 1) lt+uto)k j gtk — (g +1) gtk

j Cgk) 0 — ltruto)k slt+uw)k gtk

!

el | (g — 1) etk (g 1) ) ekt k-t

Ca 1 g g2uk+l (t,;v) (q + 1) &+ 0

| i

' Cg’ul) _ elttwktul _ Z sl ul-tol guk-+tl 0

i (t,u,v)

;C(:’l’"’) _ ghtu(l+m) | _ Z 8!k+ul+vm 0 0

| (k> T, m) {tru, v}

‘: 0(7"'") gth—ul 0 gtk (nul + ,’]—qul) 0

: Cg‘) 0 0 0 — otk C;qu _ Ctkq4

belong to 1;, and they form a subgroup of 11; of order ¢3(q -+ 1) (¢2 — 1),
which we denote again by $. It is the normalizer of a p-Sylowgroup of U,.

Let 3" be the character of § defined by
"o 0
e [ b Do

”°

=*pt t=1,2,...,9+1,

d e o~ wu=1,2,...,¢2—1).

Then the character of U, induced by % is x;?‘,:l’ This character is
irreducible, if % == 0 (mod g — 1). We also have

2_
3= GETTY =) t=1,2,...,¢41).

Next, we have to prove that

12'2_";+1 t,u=1,2,...,9+1),

(£, u,v) .
X(q_.l)(qZ_q_H) (t,u,v_1,2,...,q+1),

g1 21 t=1,2,...,¢¢+1)
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are characters of 11;. We use the method indicated in § 3. Taking Theorem 2
into account, we see that it is enough to show that these functions are
characters of the following subgroups of U;: B x 3. U; x 1,, and B.
(That the functions of the third type are characterb of B has already been
proved in Theorem 3.) We omit the straightforward verification, that this is
the case. Finally, we have

2_ 1)) 1) ¢
o, = A — ety =12, g ),
(t,u) ol usu) (t,u) — 1.9 1
Xy@—q+1) /(q 1)(q —qw—l)—'_xz—ﬁl (t,w 2,0+ )

Appendix

8. Let N(s,q%) denote the number of distinct U-irreducible poly-
nomials f € § of degree s, which, by Lemma 3, is the same as the number
of simplexes of degree s.

Theorem 4. N(s, ¢2) = % [AZ u(k)g* — cs] ., where
) l— 1, of s=1,

6= Y p®) (= DF =1 2. i s=
v l 0 otherwise .

Corollary. The number of distinct U-irreducible polynomials of degree s
over GF(q?) equals the number of distinct irreducible polynomials of degree s
over GF(q), except in the cases s = 1,8 = 2.

The proof of this fact follows immediately if we take « =0 in the
formula (12').

If we denote the generating functions for the number of classes of
GL(n,q) and Un, ¢%) by ¥g(q ) and Jy(g x), respectively, then it
follows from Theorem 4, by the formula of Green ([6], p. 408), that

L‘?qu

Q?U(q ’L i=

in accordance with the result of Wall ([11]).

9. If one wants to apply the procedure of § 3, it seems that one of the
most difficult subgroups to consider is the p-Sylowgroup %. It is therefore
desirable to study more thoroughly the structure and representations of this
group, especially, compared with those of the p-Sylowgroup of GL(n, g).
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Let RS and RY be the p-Sylowgroups of GL(3, ¢) and 1,, respective-
ly. Then the following is valid.

Theorem 5. RS and RY are isomorphic if and only if p > 2.

Proof. We can take

10 0\ l
BT = a 1 0 a,b,c€GF(qg)
b ¢ 1 ]
and
1 0 0
) a,b€GF(¢),
‘Bg’ = a 1 0 _
b+ b+ aa =0
b —a 1/

If p =2, then P contains more involutions than RY. Suppose p > 2.
Take 0 # ¢« € GF(¢?) such that « -+ a«=0. Then the mapping
o: R — BY, defined by

1T 0 0 1 0 0

o
a 1 0] — a -+ ca 1 01,
b ¢ 1, \— % (@® — ?c*) 4 (2b —ac)e  —a 4 ce 1,

gives the required isomorphism.

Let P, = B be the p-Sylowgroup of GL(n.¢). We may take R, to
be the group of matrices of the form

1 0 0...0

sy 1 0...0
(32) A= a3 asp 1...01},

Uy Apo v v e 1 /

We define
#(A) = dim ker (4 — 1) .
From the results of Green ([6], p. 431) it follows that the function y defined
by
Z(‘é‘l) = qu(A)——l (Q)
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is a character of .. In what follows we give a direct simple proof of this
fact.

Tor n = 1 our assertion is trivial. Suppose it is true for B, ;. We
denote by ® the group of matrices (32) with a; = 0 for j =2, and by
B the group of matrices (32) with a; =0 for ¢ =2,...,n Then &
and P are subgroups of P, ® is normalin B, and P, is a semidirect
product of § and $B. Furthermore, P is isomorphic to P,_,. For
A € R, we have a unique decomposition

A=KP, Kef,Pep.

Now the induction assumption gives us a character of B, which we denote
by x'. Since B~ R,/® we can consider ;' as a character of B, and
we have

1 (A) = (pz(P)—2(‘Z) .
On the other hand, let »'* denote the character of R, induced by the
character 3’ of the subgroup . By the formula of Frobenius, we have

2 (A) = 3 o (GAGTY).

GER

By means of elementary vector space theory, one can verify that there exist
matrices G € & such that GAG™' € R if and only if

imAd—1I) =im (P —1)
and that in this case the number of such matrices is

#(A)—1

q

Hence

x=1 —1*.
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