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On the null-sets for extremal distances

1. Introduction. Let R be the n-dimensional Mobius space, i.e. the one
point compactification of the Euclidean n-space R". Let E be a closed
proper subset of R". Suppose that F; and F, are two disjoint continua
in the complement of E . Denote by I' the family of all ares in R™ which
join F, and F, and let I'y be the subfamily of I’ whose members do
not meet E . Consider the modulest) M([") and M(I'g). Since I'yC I,
M(I'y) = M(I).

We say that E is a null-set for extremal distances (with respect to B
if M(I'y) == M(I') for all pairs of sets F,,F,.In other words, the removal
of E does not change the extremal distance between two continua in its
complement. We abbreviate this by saying that I is an NED-set or simply
E is NED.

In the case n = 2, Ahlfors and Beurling [1] have proved that E is
NED if and only if it is an O jp-set, i.e. every nou-constant analytic function
in the complement of E has an infinite Dirichlet integral.

The purpose of this paper is to study the NED-sets in higher dimensions.
We establish for a cloted E C B the following measure-theoretic conditions:

(a) If E is NED, then the n-dimensional Lebesgue measure of E is
7€ro.

(b) If the n — l-dimensional Hausdorff measure of £ is zero, then F
is NED.

In addition we prove the topological condition

(¢) If £ is NED, then dim K =n — 2.

For n = 2, these are well-known properties of the O jp-sets.

2. Terminology. The points of E" are treated as vectors. We denote by
B the n-ball x| < 1, where |v is the norm of the vector z.If x € R",

ACR,Cc R and r is a real number, we let
Atz =1{a+xrac€d},
A+0C=4{at+ca€d, ceC},

rd = {ra:a € 4} .

1) For the definition of the module, sce Section 2.
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With this notation, we have for instance
A+ rB* = {x:d(x,A) <r},

where d is the Euclidean distance. The complement of 4 with respect
te C is denoted by C ~ 4.

For A c R*, we let m,(4) be its n-dimensional Lebesgue outer mea-
sure. Put 2, = m,(B"). The p-dimensional?) Hausdorff outer measure
mp(A) of A is defined as follows: Let ¢>> 0 and let B;,B,,.. be a
countable covering of 4 by open n-balls with radii ry,r,,... such that
r; < €. Set

oo
mi(4) = inf »' QP
i=1
over all such coverings. Then
m,(4) = lim m(4) = sup my(4).
e 0+ #>0
The measure of a set A which contains the point at infinity is defined as
the measure of 4 ~{w}.

Let I' be a family of curves in R*. We define F([") as the family of
all non-negative Borel-measurable (= Baire) functions, defined in R"
and satisfying the condition

(1 /st = 1

for every y € I'. The greatest lower bound

M) = inf / o dv
0 €F(I)
Rn

is the medule of I'. Here dr is the n-dimensional volume element. We
will usually omit the domain of integration if it is the whole R". For the
properties of the module of a curve family, see [8].

In this paper, we will only consider curve families of the following type.
Let G be an open set in R" and let F,, F, be two disjoint continua in
G . Then I' is the family of all rectifiable?) arcs which join F, and F,
in G'. We say that [ is the family joining F, and F, in G . The number
1/M(I) is called the extremal distance between F; and F, in G .

3. We first state some general remarks on NED-sets. It is clear that a
closed subset of an NED-set is also NED. Furthermore, since the module

2) We shall consider only the case p = n — 1.
3) This restriction is unessential, because the non-rectifiable curves have no
influence on the module of a curve family. See [8], p. 8.
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of a curve family is a conformal invariant, the image of an NED-set under
a conformal mapping of R* is also NED. If £ disconnects R*, it cannot be
NED. For, then we can choose two non-degenerate continua F,, F, from
different components of R* ~E. The M(I')> 0%) while M(I'y)=
M@w)=o0.

4. We next prove the proposition (a) mentioned in the introduction.

Theorem 1. If E C R* is NED, then m,(E) ==

Proof. Choose two distinet points @, b from the complement of £ and
map R" conformally onto itself so that @,b are mapped into 0, o,
respectively. The image B’ of F is still NED. Since £’ is closed, we can
find positive numbers r, ; 7, such that E’ is contained in the spherical
ring

A = {xir, < |x] <7}

Let F,,F, be the components of B* ~ A . If [" is the family joining

F, and F,, we have
M(IN) = /g” dr,

where o € F([I") is defined by

o(x) = — for x €4,

o) = 0 for x € R ~ 4,
(see [8], p. 8). We define a function o, by
0,(x) = o(x) for x€R" ~E,
oy(x) = 0 for 2z €E.
Then o, € F(I,), whence

M) = /Q’l'dr = /Q"dr = M(I).

Because E’ is NED, we have M(I'y,) = M(I'). Thus

0 = /(9”—0&‘)dr = /9"6%-

R E’

Since o(x) > 0 for z € E’, this implies 7,(E’) = 0. Hence, m(£) =0,
q.e.d.

4) See Loewner [6].
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5. In order to prove the proposition (b) in the introduction we need
five lemmas.

Lemma 1. Let A CR" be the spherical ring ry < |x| <X ry and let
F,,F, be two disjoint subsets of A such that every sphere |x| =1,
ry <1 <r,, meets both F, and F,. If I' is the family joining F, and
F, in A, then

7y
M(I") = c¢alog — ,
(51

where ¢, s a constunt depending only on n .
In the case m = 3, this was proved in [8] (Theorem 3.9), with c¢; =
1/200. The general case can be proved in an analogous manner.

6. Let G be a domain in R" and let F,, F, be two disjoint non-
degenerate bounded continua in G . Denote by I' the family which joins
F, and F, in G. Let 6 be the smallest of the numbers d(F, , B* ~ @),
d(F,, B ~G) and Ld(F,, F,). Foreach 0 <r < ¢ denote

Fr = F,+ rB",

i=1,2. Furthermore, let I™ be the family joining F] and F; in .
For each p € F(I') put

L(r, o) = inf /gds.

yE€IT
7

As r decreases, L(r,p) increases. Thus the limit lim L(r, o) exists.
r—> 04
Lemma 2. If o € F(I') and ¢ is L -integrable over R", then
lim L(r , o) = 15).
r—> 0+

Proof. Let I be the family joining F] and F, in ¢ and let

~

Ly(r,0) = inf / nds.

r
y€I']

We first prove that lim Ly(r, 0) = 1.
r— 0+
Suppose lLim ILy(r,0) < g <<1. Set R =min (6, d(F;) and let
r— 0+
0 < r < R. Then there exists an arc y in I7] such that

/st<q.

14
Let a be the endpoint of y which belongs to Fj. Then there exists a
point b in F; such that |¢ — b| <. For each s suchthat r <s <R,

5) A similar lemma is established in a recent paper [5] of Gehring.
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the sphere |z — b| = s meets both F;, and y. Let I be the family
joining F, and y in G . Because the ring r < [x — b < R liesin G,
Lemma 1 implies

(2) M(I'') = calog — .

Let 3’ € I . Because the continuum y Uy’ joins F; and F, in G,
there exists an are »” in I' such that »” €y Uy’. Thus,

/st §f9d8+/9ds <q+/g(ls
7" v 7 7

for each ' € I . Hence, the function g/(1 —gq) belongs to F(I ") so
that

o
1A

~

1
/] 4 < — - n J
M) = o q)n/g dr .

Together with (2) this yields

R
(1 — q)" ¢ log " = [ dr.

Finally. if we let » — 0, we obtain a contradiction. Thus lim Ly(r, o) = 1.
r—> 0+
Now let 0 < e < 1. By the above, there exists a positive number 7,

such that
Ll(rlrg) > 1-—e.

We apply the first part of the above proof replacing F, by F,, F, by Fp
and o by o/(1 —e). We thus find an », > 0 such that

~

] s~ 1
as > 1 —
1 — & S &€

for each y joining Fp and Fg. Thus,

/st > (1 —¢)?

14

whenever y € I" and 7 << min (ry,7,) . This completes the proof of the
lemma.

7. Next we require some estimates for the measure of sets K + y where
y is a rectifiable arc.
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Lemma 3. Let y CE" be a rectifiable arc of length [ and let r > 0.
Then

(3) m(y +rB") =< "N (Qr+ 2, ).

If v is a segment of line, (3) holds with equality.

For n = 2, this is proved in Apostol [2], p. 285. The proof for the
genieral case is similar.

Lemma 4. Let y C R" be a rectifiable arc of length 1 and let E be any
subset of R". Then

(4) m B+ y) = lm, _(E).

The bound is sharp.

Proof. If m, _,(E)= o, the lemma is trivial. Assume m, _ (&) is
finite. Let ¢ > 0. Cover E with balls B, ,B,,... such that their radii
7 < ¢ and

'(“)n—lrztl--1 < mn—l(E)+€'

1N

—

Then

E+yc U (B;i+y).

=1

Hence,

/\

ma(B 4 ) = D ma(Bi 4 7).

i=1
By Lemma 3,
Mma(Bi + ) = 177 (Quri + 2, 1)

n—1/"

Thus,

(o]

ma(B +y) £ (2ne + 2, _4]) Z ot

i=1

m, _(B) + ¢
l) '—O—'——' .

“*n -1

A

(ne + 2,
As ¢— 0, this gives (4).
If E is contained in an 7 — 1-dimensional linear subspace 7' of R
and if y is a line segment perpendicular to 7', then (4) holds with equality.
Lemma 5. Let v be a rectifiable arc in R* and let E C R such that
m, _(E)=0. Then

v +a)NE =0

or almost every x € R™ .
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Proof. Obviously,
ey +a)NE 20} — B —y.

Because —y is rectifiable, Lemma 4 implies that m,( — ) =0, q.e.d.

8. We are now ready to prove our main theorem.

Theorem 2. Let E be a closed subset of R" such that m, _(E)=0.
Then E is NED.

Proof. Let F,, F, be disjoint continua in R" ~F and let I' be the
family joining #, and F, in R*. We must prove that

(5) (D) = Ty,

where, as before, [I'; is the subfamily of I" whose members do not meet
E.

Performing a preliminary conformal mapping, we may assume that
F, | F, are bounded. We may also assume that F,, F, are non-degenerate,
because otherwise M (/)= 0 and (5) holds trivially. Let 0 <e<<1.
Choose a function o € F(I'y) such that
(6) / omdr < M(Iy) + ¢.

o

By Lemma 2 there exists a positive number r such that
L(r,o) > 1—c¢.

Here

L{r, o) = inf/gds,

Y

where the infimum is taken over all rectifiable arcs y which join F, 4- rB"
and F, 4+ rB" in R* ~F .
We construct the spherical r-average function o, of o,

~

1
o) = 5. / o 4 y) dv .

=Zn!

Iy <r

We next prove that o,/(1 — &) belongs to F(I).
Let y € ' and let f:[0,l]—>R" be the representation of y para-
metrized with respect to arc-length. Then

1
~

/-91 ds == er / (’/Q(f(s) +¥) df) ds .

v 0 Ixl<r ’
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The function o(f(s) + y) is Borel-measurable in R!' X R". By Fubini’s
theorem, we may interchange the order of integration. Thus

(7) /Ql ds = .Q:r" / (/g ds) dr .

v Iyl <ry+y

The arc y 4y joins F, 4+ 7B* and F,—+ rB* for every |yl <r. By
Lemma 5, (y + y)NE =@ for almost every y. Hence,

Jfg ds

vty

%

Lr,o) > 1—c¢

for almost all ¥, |y| < r. Consequently, (7) yields

/Qlds = 1—e.

4

This proves that ¢,/(1 — &) € F(I'). We thus have the estimate

1
(8) M) = T /Q’f dr .
]

An application of Holder’s inequality gives

(9) /9'; dr < /g" dr

(¢f. Morrey [7], p. 687). Combining (6), (8) and (9) we obtain
M(Iy)
(1 —¢)n

4 €

M) =

and letting ¢— 0 yields (8).

Remark. The condition m, _,(¥) = 0 of the theorem cannot be replaced
by m, _,(E) <. For instance, the # — 1-sphere |v| = 1 has finite n — 1-
measure, but because it disconnects K", it cannot be NED.

9. We next prove the topological condition (c).

Theorem 3. If E C B is NED, then dimE =n — 2.

Proof. If dim E = n, then E contains an inner poiut. Thus ma(K)
> 0, which is impossible by Theorem 1.

Assume that dim & = n — 1. Then, by results due to Frankl and
Pontrjagin [3, 4], there exists a domain G in B such that G ~E is
not connected. Let ¢ € GNE be a common boundary point of two
components U and V of ¢ ~KE. We may assume that @ # . Fix
R > 0 such that the ball ¢ + 2RB" is contained in . Let 0 <r < E.
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Choose points = and y in UN(a-+rB") and VN (a4 rB"), re-
spectively. Because R" ~ F is connected (see Section 3), there is an arc y
which joins z and y in B* ~E. Let « Cu - RB* be the subarc of
» which joins x to the boundary sphere of @ 4+ RB", and let # be the
corresponding arc for y. Consider the family /" which joins « and .
By Lemma 1,

R
(10) M(I) = calog

Next define a function ¢ by

1
o(x) = SR for x €a -+ 2RB",

o(x) = 0 otherwise,

Obviously, o € F(/';). Consequently,
(11) M) = /Q"(ZT = 0..

Because E is NED, we have M(I") == M(l’;). Hence. (10) and (11) yield

R
cn log . = Q..
Letting r—>0 gives the desired contradiction.

Remark. Theorem 3 has the following consequence: Let £ be a closed
subset of R"~! such that E contains an inner point. Then no topological
imbedding of E into R* is NED. In particular, if we consider R"~! as
a subset of R*, E is not NED with respect to R".
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