Series A

I. MATHEMATICA

322

ON THE NULL-SETS FOR EXTREMAL DISTANCES

W"
JUSSI VÄISÄLÄ

Communicated 14 September 1962 by F. Nevanlinna and O. Lehto.

On the null-sets for extremal distances

1. Introduction. Let \bar{R}^{n} be the n-dimensional Möbius space, i.e. the one point compactification of the Euclidean n-space R^{n}. Let E be a closed proper subset of \bar{R}^{n}. Suppose that F_{1} and F_{2} are two disjoint continua in the complement of E. Denote by $\bar{\Gamma}$ the family of all arcs in \bar{R}^{n} which join F_{1} and F_{2} and let Γ_{E} be the subfamily of Γ whose members do not meet E. Consider the modules ${ }^{1}$) $M(\Gamma)$ and $M\left(\Gamma_{E}\right)$. Since $\Gamma_{E} \subset \Gamma$, $M\left(\Gamma_{E}\right) \leqq M(\Gamma)$.

We say that E is a null-set for extremal distances (with respect to \bar{R}^{n}) if $M\left(T_{E}\right)=M(\Gamma)$ for all pairs of sets F_{1}, F_{2}. In other words, the removal of E does not change the extremal distance between two continua in its complement. We abbreviate this by saying that E is an NED-set or simply E is NED.

In the case $n=2$, Ahlfors and Beurling [1] have proved that E is NED if and only if it is an $O_{A D}$-set, i.e. every non-constant analytic function in the complement of E has an infinite Dirichlet integral.

The purpose of this paper is to study the NED-sets in higher dimensions. We establish for a closed $E \subset \bar{R}^{n}$ the following measure-theoretic conditions:
(a) If E is NED, then the n-dimensional Lebesgue measure of E is zero.
(b) If the n - 1-dimensional Hausdorff measure of E is zero, then E is NED.
In addition we prove the topological condition
(c) If E is NED, then $\operatorname{dim} E \leqq n-2$.

For $n=2$, these are well-known properties of the $O_{A D}$-sets.
2. Terminology. The points of R^{n} are treated as vectors. We denote by B^{n} the n-ball $|x|<1$, where $\mid x ;$ is the norm of the vector x. If $x \in R^{n}$, $A \subset R^{n}, C \subset R^{n}$ and r is a real number, we let

$$
\begin{aligned}
A+x & =\{a+x: a \in A\} \\
A \pm C & =\{a \pm c: a \in A, c \in C\} \\
r A & =\{r a: a \in A\}
\end{aligned}
$$

[^0]With this notation, we have for instance

$$
A+r B^{n}=\{x: d(x, A)<r\},
$$

where d is the Euclidean distance. The complement of A with respect to C is denoted by $C \sim A$.

For $A \subset R^{n}$, we let $m_{n}(A)$ be its n-dimensional Lebesgue outer measure. Put $\Omega_{n}=m_{n}\left(B^{n}\right)$. The p-dimensional ${ }^{2}$) Hausdorff outer measure $m_{p}(A)$ of A is defined as follows: Let $\varepsilon>0$ and let B_{1}, B_{2}, \ldots be a countable covering of A by open n-balls with radii r_{1}, r_{2}, \ldots such that $r_{i}<\varepsilon$. Set

$$
m_{p}^{\varepsilon}(A)=\inf \sum_{i=1}^{\infty} \Omega_{p} r_{i}^{p}
$$

over all such coverings. Then

$$
m_{p}(A)=\lim _{\varepsilon \rightarrow 0+} m_{p}^{\varepsilon}(A)=\sup _{\varepsilon>0} m_{p}^{\varepsilon}(A)
$$

The measure of a set A which contains the point at infinity is defined as the measure of $A \sim\{\infty\}$.

Let Γ be a family of curves in \bar{R}^{n}. We define $F(\Gamma)$ as the family of all non-negative Borel-measurable ($=$ Baire) functions, defined in R^{n} and satisfying the condition

$$
\begin{equation*}
\int_{\gamma} \varrho d s \geqq 1 \tag{1}
\end{equation*}
$$

for every $\gamma \in \Gamma$. The greatest lower bound

$$
M(\Gamma)=\inf _{\varrho \in F(I)} \int_{R^{n}} \varrho^{n} d \tau
$$

is the module of Γ. Here $d \tau$ is the n-dimensional volume element. We will usually omit the domain of integration if it is the whole R^{n}. For the properties of the module of a curve family, see [8].

In this paper, we will only consider curve families of the following type. Let G be an open set in \bar{R}^{n} and let F_{1}, F_{2} be two disjoint continua in G. Then Γ is the family of all rectifiable ${ }^{3}$) ares which join F_{1} and F_{2} in G. We say that Γ is the family joining F_{1} and F_{2} in G. The number $1 / M(\Gamma)$ is called the extremal distance between F_{1} and F_{2} in G.
3. We first state some general remarks on NED-sets. It is clear that a closed subset of an NED-set is also NED. Furthermore, since the module

[^1]of a curve family is a conformal invariant, the image of an NED-set under a conformal mapping of \bar{R}^{n} is also NED. If E disconnects \bar{R}^{n}, it cannot be NED. For, then we can choose two non-degenerate continua F_{1}, F_{2} from different components of $\bar{R}^{n} \sim E$. The $M(\Gamma)>0^{4}$) while $M\left(\Gamma_{E}\right)=$ $M(\varnothing)=0$.
4. We next prove the proposition (a) mentioned in the introduction.

Theorem 1. If $E \subset \bar{R}^{n}$ is NED, then $m_{n}(E)=0$.
Proof. Choose two distinct points a, b from the complement of E and map \bar{R}^{n} conformally onto itself so that a, b are mapped into $0, \infty$, respectively. The image E^{\prime} of E is still NED. Since E^{\prime} is closed, we can find positive numbers $r_{1} ; r_{2}$ such that E^{\prime} is contained in the spherical ring

$$
A=\left\{x: r_{1}<|x|<r_{2}\right\}
$$

Let F_{1}, F_{2} be the components of $\bar{R}^{n} \sim A$. If Γ is the family joining F_{1} and F_{2}, we have

$$
M(\Gamma)=\int \varrho^{n} d \tau
$$

where $\varrho \in F(\Gamma)$ is defined by

$$
\begin{array}{ll}
\varrho(x)=\frac{1}{|x| \log \frac{r_{2}}{r_{1}}} \text { for } x \in A \\
\varrho(x)=0 & \text { for } x \in R^{n} \sim A
\end{array}
$$

(see [8], p. 8). We define a function ϱ_{1} by

$$
\begin{array}{ll}
\varrho_{1}(x)=\varrho(x) & \text { for } \\
\varrho_{1}(x)=0 & \text { for } \quad x \in R^{n} \sim E^{\prime}
\end{array}
$$

Then $\varrho_{1} \in F\left(\Gamma_{E^{\prime}}\right)$, whence

$$
M\left(\Gamma_{E^{\prime}}\right) \leqq \int \varrho_{1}^{n} d \tau \leqq \int \varrho^{n} d \tau=M(\Gamma)
$$

Because E^{\prime} is NED, we have $M\left(\Gamma_{E^{\prime}}\right)=M(\Gamma)$. Thus

$$
0=\int_{R^{n}}\left(\varrho^{n}-\varrho_{1}^{n}\right) d \tau=\int_{E^{\prime}} \varrho^{n} d \tau
$$

Since $\varrho(x)>0$ for $x \in E^{\prime}$, this implies $m_{n}\left(E^{\prime}\right)=0$. Hence, $m_{n}(E)=0$, q.e.d.

[^2]5. In order to prove the proposition (b) in the introduction we need five lemmas.

Lemma 1. Let $A \subset R^{n}$ be the spherical ring $r_{1}<|x|<r_{2}$ and let F_{1}, F_{2} be two disjoint subsets of A such that every sphere $|x|=r$, $r_{1}<r<r_{2}$, meets both F_{1} and F_{2}. If Γ is the family joining F_{1} and F_{2} in A, then

$$
M(\Gamma) \geqq c_{n} \log \frac{r_{2}}{r_{1}}
$$

where c_{n} is a constant depending only on n.
In the case $n=3$, this was proved in [8] (Theorem 3.9), with $c_{3}=$ $1 / 200$. The general case can be proved in an analogous manner.
6. Let G be a domain in \bar{R}^{n} and let F_{1}, F_{2} be two disjoint nondegenerate bounded continua in G. Denote by Γ the family which joins F_{1} and F_{2} in G. Let δ be the smallest of the numbers $d\left(F_{1}, \bar{R}^{n} \sim G\right)$, $d\left(F_{2}, \bar{R}^{n} \sim G\right)$ and $\frac{1}{2} d\left(F_{1}, F_{2}\right)$. For each $0<r<\delta$ denote

$$
F_{i}^{r}=F_{i}+r \bar{B}^{n}
$$

$i=1,2$. Furthermore, let Γ^{r} be the family joining F_{1}^{r} and F_{2}^{r} in G. For each $\varrho \in F(T)$ put

$$
L(r, \varrho)=\inf _{\gamma \in I^{r}} \int_{\gamma} \varrho d s
$$

As r decreases, $L(r, \varrho)$ increases. Thus the $\operatorname{limit} \lim L(r, \varrho)$ exists.
Lemma 2. If $\varrho \in F(\Gamma)$ and ϱ is L^{n}-integrable over R^{n}, then $\left.\lim L(r, \varrho) \geqq 1^{5}\right)$.
$r \rightarrow 0+$
Proof. Let Γ_{1}^{r} be the family joining F_{1}^{r} and F_{2} in G and let

$$
L_{1}(r, \varrho)=\inf _{\gamma \in \Gamma_{1}^{r}} \int_{\gamma} \varrho d s
$$

We first prove that $\lim L_{1}(r, \varrho) \geqq 1$.
Suppose $\lim _{r \rightarrow 0+} L_{1}(r, \varrho)<q<1$. Set $R=\min \left(\delta, \frac{1}{2} d\left(F_{1}\right)\right)$ and let $0<r<R$. Then there exists an arc γ in Γ_{1}^{r} such that

$$
\int_{\gamma} \varrho d s<q .
$$

Let a be the endpoint of γ which belongs to F_{1}^{r}. Then there exists a point b in F_{1} such that $|a-b| \leqq r$. For each s such that $r<s<R$,

[^3]the sphere $|x-b|=s$ meets both F_{1} and γ. Let Γ_{r}^{\prime} be the family joining F_{1} and γ in G. Because the ring $r<|x-b|<R$ lies in G, Lemma 1 implies
\[

$$
\begin{equation*}
M\left(\Gamma_{r}^{\prime}\right) \geqq c_{n} \log \frac{R}{r} . \tag{2}
\end{equation*}
$$

\]

Let $\gamma^{\prime} \in \Gamma_{r}^{\prime}$. Because the continuum $\gamma \cup \gamma^{\prime}$ joins F_{1} and F_{2} in G, there exists an arc $\gamma^{\prime \prime}$ in Γ such that $\gamma^{\prime \prime} \subset \gamma \cup \gamma^{\prime}$. Thus,

$$
1 \leqq \int_{\gamma^{\prime \prime}} \varrho d s \leqq \int_{\gamma} \varrho d s+\int_{\gamma^{\prime}} \varrho d s<q+\int_{\gamma^{\prime}} \varrho d s
$$

for each $\gamma^{\prime} \in \Gamma_{r}^{\prime}$. Hence, the function $\varrho /(1-q)$ belongs to $F\left(T_{r}^{\prime}\right)$ so that

$$
M\left(\Gamma_{r}^{\prime}\right) \leqq \frac{1}{(1-q)^{n}} \int \varrho^{n} d \tau
$$

Together with (2) this yields

$$
(1-q)^{n} c_{n} \log \frac{R}{r} \leqq \int \varrho^{n} d \tau
$$

Finally, if we let $r \rightarrow 0$, we obtain a contradiction. Thus $\lim _{r \rightarrow 0+} L_{1}(r, \varrho) \geqq 1$.
Now let $0<\varepsilon<1$. By the above, there exists a positive number r_{1} such that

$$
L_{1}\left(r_{1}, \underline{g}\right)>1-\varepsilon
$$

We apply the first part of the above proof replacing F_{1} by F_{2}, F_{2} by $F_{1}^{r_{1}}$ and ϱ by $\varrho /(1-\varepsilon)$. We thus find an $r_{2}>0$ such that

$$
\int_{\gamma} \frac{\underline{1}}{1-\varepsilon} d s>1-\varepsilon
$$

for each γ joining $F_{1}^{r_{1}}$ and $F_{2}^{r_{2}}$. Thus,

$$
\int_{\gamma} \varrho d s>(1-\varepsilon)^{2}
$$

whenever $\gamma \in \Gamma^{r}$ and $r<\min \left(r_{1}, r_{2}\right)$. This completes the proof of the lemma.
7. Next we require some estimates for the measure of sets $E+\gamma$ where γ is a rectifiable are.

Lemma 3. Let $\gamma \subset R^{n}$ be a rectifiable arc of length l and let $r>0$. Then

$$
\begin{equation*}
m_{n}\left(\gamma+r B^{n}\right) \leqq r^{n-1}\left(\Omega_{n} r+\Omega_{n-1} l\right) \tag{3}
\end{equation*}
$$

If γ is a segment of line, (3) holds with equality.
For $n=2$, this is proved in Apostol [2], p. 285. The proof for the general case is similar.

Lemma 4. Let $\gamma \subset R^{n}$ be a rectifiable arc of length l and let E be any subset of R^{n}. Then

$$
\begin{equation*}
m_{n}(E+\gamma) \leqq l m_{n-1}(E) \tag{4}
\end{equation*}
$$

The bound is sharp.
Proof. If $m_{n-1}(E)=\infty$, the lemma is trivial. Assume $m_{n-1}(E)$ is finite. Let $\varepsilon>0$. Cover E with balls B_{1}, B_{2}, \ldots such that their radii $r_{i}<\varepsilon$ and

$$
\sum_{i=1}^{\infty} \Omega_{n-1} r_{i}^{n-1}<m_{n-1}(E)+\varepsilon
$$

Then

$$
E+\gamma \subset \bigcup_{i=1}^{\infty}\left(B_{i}+\gamma\right)
$$

Hence,

$$
m_{n}(E+\gamma) \leqq \sum_{i=1}^{\infty} m_{n}\left(B_{i}+\gamma\right)
$$

By Lemma 3,

$$
m_{n}\left(B_{i}+\gamma\right) \leqq r_{i}^{n-1}\left(\Omega_{n} r_{i}+\Omega_{n-1} l\right)
$$

Thus,

$$
\begin{aligned}
m_{n}(E+\gamma) & \leqq\left(\Omega_{n} \varepsilon+\Omega_{n-1} l\right) \sum_{i=1}^{\infty} r_{i}^{n-1} \\
& \leqq\left(\Omega_{n} \varepsilon+\Omega_{n-1} l\right) \frac{m_{n-1}(E)+\varepsilon}{\Omega_{n-1}}
\end{aligned}
$$

As $\varepsilon \rightarrow 0$, this gives (4).
If E is contained in an n - l-dimensional linear subspace T of R^{n} and if γ is a line segment perpendicular to T, then (4) holds with equality.

Lemma 5. Let γ be a rectifiable arc in R^{n} and let $E \subset R^{n}$ such that $m_{n-1}(E)=0$. Then

$$
(\gamma+x) \cap E=\varnothing
$$

or almost every $x \in R^{n}$.

Proof. Obviously,

$$
\{x:(\gamma+x) \cap E \neq \emptyset\}=E-\gamma .
$$

Because $-\gamma$ is rectifiable, Lemma 4 implies that $m_{n}(E-\gamma)=0$, q.e.d.
8. We are now ready to prove our main theorem.

Theorem 2. Let E be a closed subset of \bar{R}^{n} such that $m_{n-1}(E)=0$. Then E is NED.

Proof. Let F_{1}, F_{2} be disjoint continua in $\bar{R}^{n} \sim E$ and let Γ be the family joining F_{1} and F_{2} in \bar{R}^{n}. We must prove that

$$
\begin{equation*}
M(\Gamma) \leqq M\left(\Gamma_{E}\right) \tag{5}
\end{equation*}
$$

where, as before, Γ_{E} is the subfamily of Γ whose members do not meet E.

Performing a preliminary conformal mapping, we may assume that F_{1}, F_{2} are bounded. We may also assume that F_{1}, F_{2} are non-degenerate, because otherwise $M(\Gamma)=0$ and (5) holds trivially. Let $0<\varepsilon<1$. Choose a function $\varrho \in F\left(\Gamma_{E}\right)$ such that

$$
\begin{equation*}
\int e^{n} d \tau<M\left(\Gamma_{E}\right)+\varepsilon \tag{6}
\end{equation*}
$$

By Lemma 2 there exists a positive number r such that

$$
L(r, \varrho)>1-\varepsilon .
$$

Here

$$
L(r, \varrho)=\inf \int_{\gamma} \varrho d s
$$

where the infimum is taken over all rectifiable ares γ which join $F_{1}+r \bar{B}^{n}$ and $F_{2}+r \bar{B}^{n}$ in $\bar{R}^{n} \sim E$.

We construct the spherical r-average function ϱ_{1} of ϱ,

$$
\varrho_{1}(x)=\frac{1}{\Omega_{n} ?^{n}} \int_{\mid y_{i}<r} \varrho(x+y) d \tau
$$

We next prove that $\varrho_{1} /(1-\varepsilon)$ belongs to $F(\Gamma)$.
Let $\gamma \in \Gamma$ and let $f:[0, l] \rightarrow R^{n}$ be the representation of γ parametrized with respect to arc-length. Then

$$
\int_{\gamma} \varrho_{1} d s=\frac{1}{\Omega_{n} r^{n}} \int_{0}^{l}\left(\int_{|y|<r} \varrho(f(s)+y) d \tau\right) d s
$$

The function $\varrho(f(s)+y)$ is Borel-measurable in $R^{1} \times R^{n}$. By Fubini's theorem, we may interchange the order of integration. Thus

$$
\begin{equation*}
\int_{\gamma} \varrho_{1} d s=\frac{1}{\Omega_{n} r^{n}} \int_{|y|<r \gamma+y}\left(\int_{\gamma} \varrho d s\right) d \tau \tag{7}
\end{equation*}
$$

The arc $\gamma+y$ joins $F_{1}+r \bar{B}^{n}$ and $F_{2}+r \bar{B}^{n}$ for every $|y|<r$. By Lemma $5, \quad(\gamma+y) \cap E=\emptyset$ for almost every y. Hence,

$$
\int_{\gamma+y} \varrho d s \geqq L(r, \varrho)>1-\varepsilon
$$

for almost all $y,|y|<r$. Consequently, (7) yields

$$
\int_{\gamma} \varrho_{1} d s \geqq 1-\varepsilon
$$

This proves that $\varrho_{1} /(1-\varepsilon) \in F(\Gamma)$. We thus have the estimate

$$
\begin{equation*}
M(\Gamma) \leqq \frac{1}{(1-\varepsilon)^{n}} \int \varrho_{1}^{n} d \tau . \tag{8}
\end{equation*}
$$

An application of Hölder's inequality gives

$$
\begin{equation*}
\int \varrho_{1}^{n} d \tau \leqq \int \varrho^{n} d \tau \tag{9}
\end{equation*}
$$

(cf. Morrey [7], p. 687). Combining (6), (8) and (9) we obtain

$$
M(\Gamma) \leqq \frac{M\left(\Gamma_{E}\right)+\varepsilon}{(1-\varepsilon)^{n}},
$$

and letting $\varepsilon \rightarrow 0$ yields (8).
Remark. The condition $m_{n-1}(E)=0$ of the theorem cannot be replaced by $m_{n-1}(E)<\infty$. For instance, the $n-1$-sphere $|x|=1$ has finite $n-1$ measure, but because it disconnects R^{n}, it cannot be NED.
9. We next prove the topological condition (c).

Theorem 3. If $E \subset \bar{R}^{n}$ is NED, then $\operatorname{dim} E \leqq n-2$.
Proof. If $\operatorname{dim} E=n$, then E contains an inner point. Thus $m_{n}(E)$ >0, which is impossible by Theorem 1 .

Assume that $\operatorname{dim} E=n-1$. Then, by results due to Frankl and Pontrjagin [3, 4], there exists a domain G in \bar{R}^{n} such that $G \sim E$ is not connected. Let $a \in G \cap E$ be a common boundary point of two components U and V of $G \sim E$. We may assume that $a \neq \infty$. Fix $R>0$ such that the ball $a+2 R B^{n}$ is contained in G. Let $0<r<R$.

Choose points x and y in $U \cap\left(a+r B^{n}\right)$ and $V \cap\left(a+r B^{n}\right)$, respectively. Because $\bar{R}^{n} \sim E$ is connected (see Section 3), there is an arc γ which joins x and y in $\bar{R}^{n} \sim E$. Let $\alpha \subset a+R \bar{B}^{n}$ be the subarc of γ which joins x to the boundary sphere of $a+R \bar{B}^{n}$, and let β be the corresponding are for y. Consider the family Γ which joins α and β. By Lemma 1,

$$
\begin{equation*}
M(\Gamma) \equiv c_{n} \log \frac{R}{r} \tag{10}
\end{equation*}
$$

Next define a function @ by

$$
\begin{aligned}
& \varrho(x)=\frac{1}{2 R} \text { for } x \in a+2 R B^{n} \\
& \varrho(x)=0 \text { otherwise. }
\end{aligned}
$$

Obviously, $\varrho \in F\left(\Gamma_{E}\right)$. Consequently,

$$
\begin{equation*}
M\left(\Gamma_{E}\right) \leqq \int \varrho^{n} d \tau=\Omega_{n} \tag{11}
\end{equation*}
$$

Because E is NED, we have $M(I)==M\left(T_{E}\right)$. Hence, (10) and (11) yield

$$
c_{n} \log \frac{R}{r} \leqq \Omega_{n}
$$

Letting $r \rightarrow 0$ gives the desired contradiction.
Reriark. Theorem 3 has the following consequence: Let E be a closed subset of R^{n-1} such that E contains an inner point. Then no topological imbedding of E into \bar{R}^{n} is NED. In particular, if we consider R^{n-1} as a subset of R^{n}, E is not NED with respect to \bar{R}^{n}.

References

[l] L. V. Ahlfors - A. Bevrling: Conformal invariants and function-theoretic null-sets. - Acta Math. 83, 1950, 101-129.
[2] T. M. Apostol: Mathematical analysis. - Addison-Wesley, 1957.
[3] F. Frankl: Charakterisierung der n-l-dimensionalen abgeschlossenen Mengen des R^{n}. - Math. Ann. 103, 1930, 784-- 787.
[4] F. Frankl - L. Pontrjagin: Ein Knotensatz mit Anwendung auf die Dimensionstheorie. - Math. Ann. 102, 1930, 785-789.
[5] F. W. Gehring: Extremal length definitions for the conformal capacity of rings in space. - Mich. Math. J. 9, 1962, 137-150.
[6] C. Loewner: On the conformal capacity in space. - J. Math. Mech. 8, 1959, 411-414.
[7] C. B. Morrey: A class of representations of manifolds. - Amer. J. Math. 55, 1933, 683-707.
[8] J. VÄisälÄ: On quasiconformal mappings in space. - Ann. Acad. sci. Fenn. A I 298, 1961, 1-36.

University of Helsinki

[^0]: ${ }^{1}$) For the definition of the module, see Section 2.

[^1]: ${ }^{2}$) We shall consider only the case $p=n-1$.
 ${ }^{3}$) This restriction is unessential, because the non-rectifiable curves have no influence on the module of a curve family. See [8], p. 8.

[^2]: ${ }^{4}$) See Loewner [6].

[^3]: ${ }^{5}$) A similar lemma is established in a recent paper [5] of Gehring.

