ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

317

ON FUNCTIONS OF CLASS U

BY

CHU]JI TANAKA

HELSINKI 1962
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1963.317


koskenoj
Typewritten text
https://doi.org/10.5186/aasfm.1963.317


Communicated 9 March 1962 by P. J. MyrRBERG and F. NEVANLINNA

KESKUSKIRJAPAINO
HELSINKI 1962



On functions of class U

1. Introduction. We begin with

Definition. Let f(z) (z=re”) be regular and bounded: |f(z)|<1 in
zl<l. If |f(e")|=1 almost everywhere on the arc A(e” : O,<O<O,), then
we call f(z) a function of class U(O,, 0,). Instead of U(0,27), we write
simply U .

R. Nevanlinna [14] was the first to point out the interest which lies in the
class U. G. Héssjer [6], W. Seidel [24] and O. Frostman [2—4] have
made important contributions to the theory of class U, which was extended
in various directions by many authors. (K. Noshiro [16—18], M. Tsuji [26],
A. J. Lohwater [10—12], M. Ohtsuka [20,21], O. Lehto [7—9], D. A. Stor-
vick [25]).

In this note, we shall establish some new properties of functions of class
U or UB,, 6,). Our main theorems read as follows:

Theorem 1. Suppose that f(z) €U , and it has at least one singular point
on |z|=1. Then the following propositions hold:

(1) the set S of singularities of f(z) lying on |z|=1 coincides with the
set of the limit points of the a— points (la!<<1)of f(z), except for a set of
values « of capacity zero.

(2) f(z) is meromorphic in |z =oc . except fortheset S on 'z =1,whichis
of linear measure zero.

Theorem 2. Let f(z) (z=re”) belong to class U(O,. O,) . If f(z) is not
regular on the arc A(e”: 0,<O<0O,). then the following propositions hold:

(1) the set S of singularities of f(z) on A s the closure of the union
M, U M, , where M; = A N E”: «€R(f, )Y, My, = A N Ee” :
a= f(e®)) , and a is any fized point of modulus less than 1.

(2) f(z) 1is meromorphic in the sector: O;<O<O,, 0=r=ow, except
for the set S of linear measure zero lying on A.

(3) if at least two values in |w|<<1 are omitted by w=f(z) in the neigh-
borhood of A, then S is a perfect set, whose linear measure is zero but
whose capacity is positive.

1) R(f,e®) is the range of values at ¢, which is defined as the set of values «
such that lim z, = e, |z2,]<<1, f(z.) = a.

n—> oo



4 Ann. Acad. Scient. Fennicae A.I. 317

Remark. Part (3) was proved by P.J. Myrberg [13] (K. Noshiro [19] p. 20)
in the special case where w=Ff(z) is a function which maps |z|]<<1 onto
the universal covering surface of a domain obtained by excluding from
lw|<1 a set of capacity zero with at least two points.

9. Lemmas. In order to establish our theorems, we need some lemmas.
Lemma 1. For |a|<1,

(2.1) ‘ z—a

Proof: By the inequality log ( 1+2)=x for =0 ,we have for [z|=1,
lal<1,

log |(z—a) | (1—az)| = 12+ log {1 + (lz2—1) (1—|aP)/ [1—az[%}
<12 (jz2f—1) (1—lat) [ [1—azp
< 2(1—lal) | [1/i—aP.
Hence, (2.1) holds for |2/ =1, |a|<1. On the other hand, we evidently have
(2.2) l(z—a) | 1—az)|<l for |z|<1, |a|<L.

By (2.1) and (2.2), Lemma 1 is established.
Lemma 2. Put

ala—=z) | la] 1—az) =1+ fz)  (0<la[<1)
and suppose that
(2.3) r—e?| e, |a—e"| =20 [1ja—e"| =20,

where 0<1—|a|<8?[4, 0<2e<<0<C 1/2.

Then

2+¢
5

)] < {(a—lal) 4+ (1= lalf)
Proof: By simple calculation,
If@)<—lal) (I(z—a) [ (@—1)) (+I[z])/ [z—al.
Hence, by Lemma 1,

24)  |f&)<1—lal) exp{2(1—la|) | [1Z—al}  (1+[]) [ z—al.
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Since |z—e'”|<e means that |1/Z—e™?|<2¢ for 0<<e<<1/2, (2.3) yields
lz—a|>0, |1/z—a|>6,

so that, by (2.4)

(2.5) f(2)|<(1—lal) exp {2(1—|a])/0%} - (2+¢)/0 .

By the inequality e*<<1+42z for 0<<x<1/2, we obtain on account of
(2.3) and (2.5)

If (@) <(—al) {14-4/6* - (1—la])} - (2+¢)/0,

which was to be proved.
Lemma 3. Put

B(z) = ﬂLl}Odn/[avni Atn—2) | (1—@n2) ,

n=1
+ oo
where Z (1—las]) < +oo. For B(z) to be singular at z = €', it is
n=1

necessary and sufficient that z=e'* is a limit point of {a.} .

Proof: Since the zeros of B(z) do not accumulate at a regular point,
it is sufficient to prove that, if z=e” is not a limit point of {a.},
B(z) is regular at z=e'" .

Suppose that z=¢” is not a limit point of {a,} . Then there
exists a positive constant ¢ such that

(2.6) |an—€'7| 228, |1fdn—e'”| =20

for 0<6<1/2, n=1,2,...
Put

Anf|n] * (n—2) [ (1—anz) = 1+[a(2) -

By the convergence of > (1—|a,), we can find a sufficiently large
integer N such that

(2.7) 0<1—|a

<4 forn=N.

If we choose & such that 0<<e<<6/2<<1/4, then by (2.6), (2.7) and Lemma 2,

4 2+ ¢
)] {1 = Jaa) + = (@ — a2} 2T
02 )
for [z — é? <& n =N, so that, on account of the convergence of

> (1 — |aa]), it follows that ) fu(z) is uniformly convergent for [z — ¢*
Ze. Since fu(z) is regular in |z — €| <&, B(z) = II(1 + fa(2))
is also regular in |z — ¢”| < e, which was to be proved.

Lemma 4. B(2) is meromorphic in 2| = oo, except for a set of linear
measure zero lying on |z| = 1.
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Proof: For |z|> 1, we can put
+0oo
1B(2) = IT |an/[d@n - (1/z — @) | (@n)z — 1) .
n=1

By the convergence of » (1 — id,ﬂ;), 1/B(z) is regular in ’z[>l and
it has zeros at {1/@.}. In other words, B(z) is meromorphic in |z/>1,
and it has poles at {1/a@.} . |

By Lemma 3, the set of singular points coincides with the set of the limit
points of {@.}. Hence it is sufficient to prove that the set K of the limit
points of {a,} is of linear measure zero. By F. Riesz’s theorem ([22]; R. Ne-
vanlinna [14], p. 207) the radial limit B(e'”) is of modulus one for almost
all ¢ . Hence, by Egoroff’s theorem, we can find suitable positive constants
e, 0 and a closed set E* lying on |z = 1 such that m(CE*) <e,
1/2 < [B(re")|< 1 for g € B*, 1 — 6 < 7 < 1. Therefore, the set E is
contained in CE*. Letting ¢—0, we see that m(#) = 0, which proves
Lemma 4.

Lemma 5. If f(z) € U, then, except for a set of values «, |a|<<1, of
capacity zero, we can put

(f(:) —a) [ (1 — () = B(z) .

where B(z) is the Blaschke product extended over the a-points of f(z).V

Lemma 6. Let D be a simply connected domain of hyperbolic type, E a closed
set of capacity zero contained in the boundary I', and z, a point of K. Suppose
that f(z) is reqular and bounded in the common part of D and a certain
neighborhood of z,. We denote by Cp(f,z) and Cp_g(f, z) the interior
cluster set and the boundary cluster set, respectively.? If Q = Cp(f, z) —
Cy_ 5 (f, %) (open set) is not empty, then w = f(2) takes every value, with one
possible exception, belonging to Q. infinitely often in any neighborhood of 2,
where 2, is any component of Q.

Lemma 7. Put

a

md:%/%W+@HW—a@w%

—T

where
0 [ ldntg) <+ o0

2) For these definitions, we refer to K. Noshiro’s book [19], p. 1 —2.
3) Noshiro [19], p. 25.
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(ii) p'(¢) = 0 almost cverywhere on the arc A(e™ : ¢, < ¢ < @) .
Then the following alternatives are possible:

(1) F(2) is regular on A .

(2) F(z) has an enumerable number of poles of first order on A .

(3) lim R[F(re'")] = + oo for a non-enumerable set of points on A9

r—>1

Proof: 1f u(p)is constant on 4, we can put

1 . .
FQ) = — / (€7 + 2) [ (¢ — 2) dulg),
2n
CA
where CA denotes the complementary set of 4 with respect to (—m,
+m). Hence, F(z) is regular on 4.

If u(g) == constant on A . u(p) admits the following representation:

w(@) = mlp) + @) + ps(e)
where all functions u,(¢) (¢ = 1.2, 3) are of bounded variation; u,(¢) is
continuous and uj(¢) = 0 almost everywhere on A, u,(p) is absolutely
continuous and uy(p) is a step-function. Since u'(p) = 0 almost every-
where on A, uy(¢) =0 on 4.
If u,(p) is constant, then uy(p) is certainly not constant. In this case,
we can put

~

1 . .
Fiz) = o / (€ L 2) (e — z) du(p)
2T
(2.8) e ¢4
X 2 (e — )

n=1
where {¢n} C A and Z Ju <+ . Therefore F(z) has an enumerable
number of poles of first order on A .

If uy(¢) is not constant, then u(¢) = 4o at a non-denumerable
set of points on A. (Schlesinger and Plessner [23], §43). Since pus(g) is
discontinuous at an enumerable set of points on A4, there exists a non-
denumerable set E of points on A such that pi(p) = + oo and uy(ep)
is continuous at ¢ € . Therefore

(2.9) uw(g) = Loo for ¢ €E .
Since
Mﬂﬂz;ﬁfﬂ—ﬂwﬂ+ﬁ—%WM@whww,
2z

-

1) R(F(re"# is the real part of F(reit) .
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z=re'” , we have by (2.9) and by Fatou’s theorem

lim R[F(re'”)] = + oo for e € K .
r—>1
Thus Lemma 7 is completely established.
3. Proof of Theorem 1. By Lemma 5, we can put

(3.1) (f() — o) | (1 — af(2)) = B),

except for an exceptional set of values « of capacity zero, where B(z) is the
Blaschke product extended over the a-points (je|<<1) of f(z). If z = ¢'”
isnot a limit point of ¢-points, then, by Lemma 3, B(z) is regular and of
modulus one at z = ¢ . By (3.1)

(3.2) f@) = (B() + @) | (1 + «B(2)),

so that f(z) is also regular at z = ¢” . On the other hand, a limit
point of e¢-points is evidently a singular point of f(z). Thus, the set S
of singularities of f(z) lying on [2‘ = 1 coincides with the set of the limit
points of a-points, except perhaps for exceptional values « of capacity
zero, which proves statement (1) in Theorem 1.

By (1) and Lemma 3, the set S coincides with the set of singularities
of B(z) lying on !zi = 1. Hence by (3.2) and Lemma 4, f(z) is meromor-
phic in [2[=<co, except for the set S of linear measure zero lying on [z|
= 1, which proves statement (2) in Theorem 1.

4. Proof of Theorem 2 (1). Since the closure M;U M, of M,U M, is
evidently contained in the set § of singularities of f(z) on A, to establish
part (1) it is sufficient to prove that f(z) is regular at the complementary
set of M, UM, with respect to A.

Taking account of

(f(z) — @) | (1 — af(2)) € U(O;, ;) ,
we can decompose it as follows (W. Seidel [24] p. 204)
(4.1) (f(z) — @) | (1 — af(2)) = €7 - B(z) exp(F(2)),
where fis a real constant, B(z) the Blaschke product extended over the
a-points of f(z),

Py = L / @+ 2) [ (€ — 2) du(@),

u(p) a monotonic non-increasing function of ¢, and u(p) = 0 almost
everywhere on A(¢'7: O, <¢p<O,) .
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Put
(4.2) e € ANC(M,UDM,) .

Since z = ¢ is not a limit point of the «-points, by Lemma 3, B(z)
is regular and of modulus one at z = ¢”. In a sufficiently small neigh-
borhood of z = e, the following three cases are possible by Lemma 7.

(1) F(z) is regular at z = ¢, and lim R[F(re®)] = 0 as r—0.

(2) F(z) has an enumerable number of poles {e*»} of first order, and
lim R[F(re!*n)] = — oo asr—> 0. (Since u(g) is non-increasing, in (2.8) we have
J.<0 , so that by arguments entirely similar to those applied by W. Sei-
del ([24], pp. 205—206), we conclude that lim R[F(re'")] = —o0).

(3) lim R[F(r¢'")] = —oo for a non-enumerable set of points. (For,
u(p) is non-increasing).

In both cases (2) and (3), the right-hand side of (4.1) tends to zero, so that
there exists at least one point z = ¢ in a sufficiently small neighbor-
hood of z = € such that lim f(re¢'”) = ¢, which is contrary to (4.2).
Hence, only case (1) is possible.

Thus, the right-hand side of (3.1) is regular and of modulus one at z =

“  Since

e’ .
f(z) = (G() + o) | (1 + «6(2),

where G(z) = e+ B(z) - exp(F(2)), f(z) is also regular at z = ¢”, which
was to be proved.

5. Corollaries of Theorem 2 (1). As an immediate consequence of Theo-
rem 2 (1), we obtain

Corollary 1. Let f(z) belong to class U(O,, 0,). If f(z) is not regular
on the arc A (¢ : 0,<O<0,), and « (la[<1) is omitted by f(z) in a neigh-
borhood of A, then there exists at least one point z = € on A such that

lim f(re') = a .
r—1
It is an extension of W. Seidel’s theorem ([24], p. 205).

If we apply Theorem 2 (1) to a sequence of arcs {4,} containing a
singular point z, = ¢ whose lengths tend to zero as n—- oo, then we
obtain the following result of Seidel ([24], p. 211).

Corollary 2. Let w = f(z) belong to class U(O,, 0,). If f(z) is singular
at zg=¢" on the arc A(e” : O,<<O<0,), then the cluster set of f(z) at z, is !wi =1

Let 7z, = ¢ be an isolated singular point on A. Then there exists
a sufficiently small arc 4, containing z, such that f(z) is regular on A4,
except for z=z,. Applying Corollary 1 to the arc 4,, we conclude that ifa
value « (je|<(1) is omitted it is the radial limit at z,, so that there exists
at most one omitted value. Hence we obtain
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Corollary 3. Let w = f(z) belong to class U(O,, 0,) . If there exists an
solated singular point zy, = €™ on the arc A(e”:0,<O<0,), then at most
one value in w[<l s omatted by f(z) in the neighborhood of z, .

As an immediate consequence of Corollary 3, we have

Corollary 4. Let w = f(z) belong to class U(O;, 0,) . If f(z) is not
reqular on the arc A(e” : ;<O <0,), and at least two values in ’v’f< 1 are
omitted by f(z) in the neighborhood of A , then the set of singularities of f(2)
on A 1is perfect.

This is an extension of W. Seidel’s theorem. ([24], p. 213).

6. Proof of Theorem 2 (2)—(3). Since lim |f(re”) = 1 almost every-
where on 4. by Egoroff’s theorem we can find suitable positive constants
e, 0, 0 and a closed set F contained in 4 such that

m(A—LE) <<e
0 'al<l——6 < [f(re“’){<1 for 1—6 <r<1, O€EE.

Hence, by Theorem 2 (1), the set S of singularities on 4 is contained in
A—FE . Letting ¢—0, we have m(S) = 0. Then, with the function re-

lation f(z) = 1/f(1/z) for :‘ = 1. f(z) can be continued analytically
beyond the open arcs 4,, where 4-—-S = U A4,, which proves (2).

If at least two values in ‘u" <1 are omitted by w = f(z) in the neigh-
borhood of A4, then by Theorem 2 (1) and Corollary 4, S is a perfect set
of linear measure zero. Suppose that S is of capacity zero. Then, by Lemma
6 and Corollary 2, f(z) assumes every value in M <<l infinitely often with
one possible exception in the neighborhood of S which is contrary to the
hypothesis. Hence § is of positive capacity, which proves (3).

7. An application of Lemma 7. By Lemma 7, we can establish

Corollary 5. If w = f(z) belongs to class U(0O, . O,) , and it is not reqular
on the arc A(e” : O;<<O<0,), then every value on w = 1 is assumed by
f(z) infinitely often on A. '

Corollary 5 is an extension of W. Seidel’s theorem ([24], p. 208), but it is a
special case of (aldéron-Domingues-Zygmund's theorem [1] (M. Ohtsuka
[21], p. 299).

Procf: For any real 7. F(z) = (f(z) + ¢%) | (f(z) — ¢*) is a regular

function in 'z <1 such that
R(F(z)) < 0 in z <1,

i

R(F(z)) = 0 almost everywhere on 4 .

Hence, by Herglotz’s theorem [5] (R. Nevanlinna [15], p. 196) we can put

+

/ (67 +2) | (6" — 2) dulg) + if

-

F(z) =

27
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where f is a real constant, u(¢) a monotonic non-increasing function
of ¢ and u'(p) = 0 almost everywhere on A(e'” : 0, <O <06,) .
By Lemma 7, the following cases are possible:

(1) F(z) is regular on A .

(2) F(z) has a finite number of poles {e'n} (n =1, 2,...,k) of first
order on A .

(3) F(z) has an infinite number of poles {e*’»} of first order on A .

(4) lim R(F(re'*)) = — oo for a non-enumerable set of points on 4.
r->1
In case (1), f(z) = €* - (F(z) + 1)/ (F(z) — 1) is also regular on A . For,
if F(z)—1 as 2—>z€A4, f(z) is unbounded in the neighborhood of z,,
which is contrary to the hypothesis. Hence, case (1) is impossible.

In case (2), f(z) tends to e* uniformly as z—en (n =1, 2,... k),
so that, by Corollary 2, z = €= (n = 1, 2, ... k) is a regular point. Hence,
f(z) is regular on A, which is evidently impossible. Therefore, only cases
(3) and (4) are possible. Hence, e* is assumed infinitely often on 4.
Since e* is arbitrary, Corollary 5 is proved.

(Waseda University, Tokyo)
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