ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

 $\mathbf{314}$

NOTE ON AN EQUATION IN A FINITE FIELD

 $\mathbf{B}\mathbf{Y}$

VEIKKO ENNOLA

HELSINKI 1962 SUOMALAINEN TIEDEAKATEMIA

.

https://doi.org/10.5186/aasfm.1962.314

Communicated 9 February 1962 by P. J. MYRBERG and K. INKERI

KESKUSKIRJAPAINO HELSINKI 1962

.

Note on an equation in a finite field

Our intention is to use our results on the conjugacy classes of the finite unitary groups [1] in order to prove the following result. Let $\mathfrak{F}_s = GF(q^s)$ denote the finite field with q^s elements (q = power of a prime).

Theorem. Let a be q + 1 or $q^5 + 1$. Then the number of vectors (x, y, z) such that

$$x^a + y^a + z^a = 0 ,$$

where x, y, z are linearly independent elements of \mathfrak{F}_6 over \mathfrak{F}_2 equals

$$q^{3}(q+1)^{2}(q-1)(q^{6}-1)$$
.

From this we can derive a new proof of the following fact. (For the general result see [2].)

Corollary. The number of vectors (x, y, z) such that (1) is true for a = q + 1 or $q^5 + 1$ and x, y, z are non-zero elements of \mathfrak{F}_6 equals

$$(q^6-1)(q+1)^2(q^4-q^3+q-2)$$
.

Thus the statement: »In every solution of (1) with $xyz \neq 0$, x, y, z are necessarily linearly independent over \mathfrak{F}_2 » is true if and only if q = 2.

Proof of the theorem. Let ϱ be a primitive element of \mathfrak{F}_6 . Put $\tau = \varrho^{q^*-1}$ and $\tau_i = \tau q^{q^*}$ $(i = 0, 1, 2; \tau_0 = \tau)$. Then the τ'_i 's are the conjugates of τ with respect to \mathfrak{F}_2 and we have

(2)
$$\tau_i^{q^3} = \tau_i^{-1}$$

Clearly $\tau_i \neq \tau_j$ for $i \neq j$. If we write

$$f(t) = (t - \tau_0)(t - \tau_1)(t - \tau_2) ,$$

then f(t) is an irreducible polynomial over \mathfrak{F}_2 . Let $f(t) = t^3 + at^2 + bt + c$. Write $\tilde{f}(t) = \bar{c}^{-1} (\bar{c}t^3 + \bar{b}t^2 + \bar{a}t + 1)$, where for $x \in \mathfrak{F}_6$ we put $\bar{x} = x^{\mathfrak{q}}$. (Note that if $x \in \mathfrak{F}_2$, then $\bar{x} = x^{\mathfrak{q}}$.) Now (2) easily implies. $f(t) = \tilde{f}(t)$. Let $M = M(f) \in GL(3, q^2)$ be the companion matrix of f. Then we know [1] that M is similar to a unitary matrix and the number $\gamma(M)$ (see [1]) is

$$\frac{g(1, q^6)}{u(1, q^6)} = q^3 - 1 \; .$$

Hence the number of non-singular matrices X with elements in \mathfrak{F}_2 such that

(3)
$$XMX^{-1} \in U(3, q^2)$$

equals (see [1])

(4)
$$(q^3 - 1) u(3, q^2) = q^3(q + 1)^2(q - 1)(q^6 - 1)$$
.

We now go up to the field \mathfrak{F}_6 . We can find a matrix P with elements in \mathfrak{F}_6 such that

$$P^{-1}MP = ext{diag} (au_0, au_1, au_2) = D$$
 .

Since the column vectors of P are eigenvectors of M belonging to the distinct eigenvalues τ_i we may assume them to be conjugate over \mathfrak{F}_2 .

Suppose now that Y is a non-singular matrix with elements in \mathfrak{F}_6 such that

(5)
$$YDY^{-1} \in U(3, q^2)$$
.

From the results of [1] it follows that Y^*Y must be diagonal, i.e., if $Y = (y_{ij})$, then $\sum_{i=0}^{3} y_{ij}\overline{y}_{ik} = 0$, for $j \neq k$. Also, if we multiply each column vector by a suitable element of \mathfrak{F}_6 , then we get a matrix in which the column vectors are conjugate over \mathfrak{F}_2 .

But this is easily seen to hold also conversely, i.e., if Y satisfies these conditions, then (5) is true.

Denote by S the number solutions of (1) with a and x, y, z as required in the theorem. Let x, y, z be an arbitrary solution. Consider the matrix

$$\begin{pmatrix} x & x_1 & x_2 \\ y & y_1 & y_2 \\ z & z_1 & z_2 \end{pmatrix},$$

where $x_i = x^{q^{2i}}$ (i = 1, 2) etc. It is non-singular, because x, y, z are linearly independent over \mathfrak{F}_2 . If a = q + 1, we have

$$x\bar{x}_2 + y\bar{y}_2 + z\bar{z}_2 = 0$$

and raising this to the q^{5} -th power we have

$$x\bar{x}_1 + y\bar{y}_1 + z\bar{z}_1 = 0 \; .$$

If $a = q^5 + 1$, we get the same results. So we see that the total number of different non-singular matrices Y with conjugate column vectors satisfying (5) is equal to S. Suppose now that X is a non-singular matrix with elements in \mathfrak{F}_2 satisfying (3). Then Y = XP is a matrix with elements in \mathfrak{F}_6 and conjugate column vectors satisfying (5).

Conversely, by using the eigenvector argument again, it is easy to see that if Y is a non-singular matrix with elements in \mathfrak{F}_6 and with conjugate column vectors, then $X = YP^{-1}$ has its elements in \mathfrak{F}_2 and satisfies (3). Hence S is equal to the expression (4) and this proves the theorem.

Proof of the Corollary Suppose that (1) is valid for a = q + 1 or $q^5 + 1$, x, y, z are linearly dependent over \mathfrak{F}_2 and $xyz \neq 0$. Write $u = \frac{x}{z}, v = \frac{y}{z}$. We may assume that a = q + 1, otherwise we raise (1) to the q-th power. We have

(6)
$$u^{q+1} + v^{q+1} + 1 = 0$$
,

where u, v, 1 are linearly dependent over \mathfrak{F}_2 . Clearly we may assume

$$u = bv + c, \quad b, c \in \mathfrak{F}_2.$$

Then

 $u^q = ar{b}v^q + ar{c}$.

Multiplying these, using (6), and then raising the equation to the power q, q^2, q^3 , respectively, we get the following system of equations

(7)
$$\begin{cases} (b\bar{b}+1) v^{q+1} + \bar{b}c v^{q} + b\bar{c} v + c\bar{c} + 1 = 0, \\ (b\bar{b}+1) v^{q^{2}+q} + \bar{b}c v^{q} + b\bar{c} v^{q^{2}} + c\bar{c} + 1 = 0, \\ (b\bar{b}+1) v^{q^{3}+q^{2}} + \bar{b}c v^{q^{3}} + b\bar{c} v^{q^{3}} + c\bar{c} + 1 = 0, \\ (b\bar{b}+1) v^{q^{4}+q^{3}} + \bar{b}c v^{q^{3}} + b\bar{c} v^{q^{4}} + c\bar{c} + 1 = 0. \end{cases}$$

Consider here $\bar{b}b + 1$, $\bar{b}c$, $b\bar{c}$, $c\bar{c} + 1$ as indeterminates. Then the determinant of (7) is

(8)
$$v^{q^2+2q+1}(v^{q^2-1}-1)(v^{q^4-q^2}-1)(v^{q^3-q}-1)^2$$
.

If $v \notin \mathfrak{F}_2$, then $v^{\mathfrak{g}^2-1} - 1 \neq 0$ and thus (8) does not vanish. Hence $b\bar{b} + 1 = c\bar{c} + 1 = b\bar{c} = 0$, which is impossible. So we must have $u, v \in \mathfrak{F}_2$.

Write (6) in the form

$$u^{q+1} = -(1 + v^{q+1})$$
.

We can take v to be any one of the $q^2 - 1$ elements of \mathfrak{F}_2 except those q + 1 which make $v^{q+1} = -1$. For each v we have q + 1 possible u's.

So the total number of linearly dependent solutions of (6) is $(q + 1)^2$ (q - 2). Multiplying this by $q^6 - 1$ we get the corresponding number for the equation (1). From this the Corollary follows.

References

- [1] ENNOLA, VEIKKO: On the conjugacy classes of the finite unitary groups. Ann. Acad. Sci. Fenn. A I, No. 313 (1962).
- [2] MITCHELL, HOWARD H.: On the congruence $c x^{\lambda} + 1 \equiv d y^{\lambda}$ in a Galois field. -Ann. of Math. 18.3 (1917), pp. 120-131.

University of Turku Finland

6

Printed April 1962.