Series A

I. MATHEMATICA

314

NOTE ON AN EQUATION IN A FINITE FIELD

BY

VEIKKO ENNOLA

HELSINKI 1962
SUOMALAINEN TIEDEAKATEMIA

Communicated 9 February 1962 by P. J. Myrberg and K. Inkeri

Note on an equation in a finite field

Our intention is to use our results on the conjugacy classes of the finite unitary groups [1] in order to prove the following result. Let $\mathfrak{F}_{s}=G F\left(q^{s}\right)$ denote the finite field with q^{s} elements ($q=$ power of a prime).

Theorem. Let a be $q+1$ or $q^{5}+1$. Then the number of vectors (x, y, z) such that

$$
\begin{equation*}
x^{a}+y^{a}+z^{a}=0 \tag{1}
\end{equation*}
$$

where x, y, z are linearly independent elements of \mathfrak{F}_{6} over \mathfrak{F}_{2} equals

$$
q^{3}(q+1)^{2}(q-1)\left(q^{6}-1\right) .
$$

From this we can derive a new proof of the following fact. (For the general result see [2].)

Corollary. The number of vectors (x, y, z) such that (1) is true for $a=$ $q+1$ or $q^{5}+1$ and x, y, z are non-zero elements of \mathfrak{F}_{6} equals

$$
\left(q^{6}-1\right)(q+1)^{2}\left(q^{4}-q^{3}+q-2\right)
$$

Thus the statement: 》In every solution of (1) with $x y z \neq 0, x, y, z$ are necessarily linearly independent over \mathfrak{F}_{2} " is true if and only if $q=2$.

Proof of the theorem. Let ϱ be a primitive element of \mathfrak{F}_{6}. Put $\tau=\varrho^{q^{3}-1}$ and $\tau_{i}=\tau q^{2 i}\left(i=0,1,2 ; \quad \tau_{0}=\tau\right)$. Then the $\tau_{i}^{\prime} \mathrm{s}$ are the conjugates of τ with respect to \mathfrak{F}_{2} and we have

$$
\begin{equation*}
\tau_{i}^{q^{3}}=\tau_{i}^{-1} \tag{2}
\end{equation*}
$$

Clearly $\tau_{i} \neq \tau_{j}$ for $i \neq j$. If we write

$$
f(t)=\left(t-\tau_{0}\right)\left(t-\tau_{1}\right)\left(t-\tau_{2}\right),
$$

then $f(t)$ is an irreducible polynomial over \mathfrak{F}_{2}. Let $f(t)=t^{3}+a t^{2}+$ $b t+c$. Write $\tilde{f}(t)=\bar{c}^{-1}\left(\bar{c} t^{3}+\bar{b} t^{2}+\bar{a} t+1\right)$, where for $x \in \mathfrak{F}_{6}$ we put $\bar{x}=x^{q^{3}}$. (Note that if $x \in \mathfrak{F}_{2}$, then $\bar{x}=x^{q}$.) Now (2) easily implies. $f(t)=\tilde{f}(t)$. Let $M=M(f) \in G L\left(3, q^{2}\right)$ be the companion matrix of f. Then we know [1] that M is similar to a unitary matrix and the number $\gamma(M)$ (see [1]) is

$$
\frac{g\left(1, q^{6}\right)}{u\left(1, q^{6}\right)}=q^{3}-1
$$

Hence the number of non-singular matrices X with elements in \mathscr{F}_{2} such that

$$
\begin{equation*}
X M X^{-1} \in U\left(3, q^{2}\right) \tag{3}
\end{equation*}
$$

equals (see [1])

$$
\begin{equation*}
\left(q^{3}-1\right) u\left(3, q^{2}\right)=q^{3}(q+1)^{2}(q-1)\left(q^{6}-1\right) \tag{4}
\end{equation*}
$$

We now go up to the field \tilde{F}_{6}. We can find a matrix P with elements in \tilde{F}_{6} such that

$$
P^{-1} M P=\operatorname{diag}\left(\tau_{0}, \tau_{1}, \tau_{2}\right)=D
$$

Since the column vectors of P are eigenvectors of M belonging to the distinct eigenvalues τ_{i} we may assume them to be conjugate over \mathfrak{F}_{2}.

Suppose now that Y is a non-singular matrix with elements in \mathfrak{F}_{6} such that

$$
\begin{equation*}
Y D Y^{-1} \in U\left(3, q^{2}\right) \tag{5}
\end{equation*}
$$

From the results of [1] it follows that $Y^{*} Y$ must be diagonal, i.e., if $Y=\left(y_{i j}\right)$, then $\sum_{i=0}^{3} y_{i j} \bar{y}_{i k}=0$, for $j \neq k$. Also, if we multiply each column vector by a suitable element of \mathfrak{F}_{6}, then we get a matrix in which the column vectors are conjugate over $\tilde{\jmath}_{2}$.

But this is easily seen to hold also conversely, i.e., if Y satisfies these conditions, then (5) is true.

Denote by S the number solutions of (1) with a and x, y, z as required in the theorem. Let x, y, z be an arbitrary solution. Consider the matrix

$$
\left(\begin{array}{lll}
x & x_{1} & x_{2} \\
y & y_{1} & y_{2} \\
z & z_{1} & z_{2}
\end{array}\right)
$$

where $x_{i}=x^{q^{3 i}}(i=1,2)$ etc. It is non-singular, because x, y, z are linearly independent over $\tilde{\mathscr{~}}_{2}$. If $a=q+1$, we have

$$
x \bar{x}_{2}+y \bar{y}_{2}+z \bar{z}_{2}=0
$$

and raising this to the q^{5}-th power we have

$$
x \bar{x}_{1}+y \bar{y}_{1}+z \bar{z}_{1}=0 .
$$

If $a=q^{5}+1$, we get the same results. So we see that the total number of different non-singular matrices Y with conjugate column vectors satisfying (5) is equal to S.

Suppose now that X is a non-singular matrix with elements in \mathfrak{F}_{2} satisfying (3). Then $Y=X P$ is a matrix with elements in \mathfrak{F}_{6} and conjugate column vectors satisfying (5).

Conversely, by using the eigenvector argument again, it is easy to see that if Y is a non-singular matrix with elements in \mathfrak{F}_{6} and with conjugate column vectors, then $X=Y P^{-1}$ has its elements in \mathfrak{F}_{2} and satisfies (3).

Hence S is equal to the expression (4) and this proves the theorem.
Proof of the Corollary Suppose that (1) is valid for $a=q+1$ or $q^{5}+1, x, y, z$ are linearly dependent over \mathfrak{F}_{2} and $x y z \neq 0$. Write $u=\frac{x}{z}, v=\frac{y}{z}$. We may assume that $a=q+1$, otherwise we raise (1) to the q-th power. We have

$$
\begin{equation*}
u^{q+1}+v^{q+1}+1=0 \tag{6}
\end{equation*}
$$

where $u, v, 1$ are linearly dependent over \tilde{F}_{2}. Clearly we may assume

$$
u=b v+c, \quad b, c \in \mathfrak{F}_{2} .
$$

Then

$$
u^{q}=\bar{b} v^{q}+\bar{c} .
$$

Multiplying these, using (6), and then raising the equation to the power q, q^{2}, q^{3}, respectively, we get the following system of equations

$$
\left\{\begin{array}{l}
(b \bar{b}+1) v^{q+1}+\bar{b} c v^{q}+b \bar{c} v+c \bar{c}+1=0, \tag{7}\\
(b \bar{b}+1) v^{q^{2}+q}+\bar{b} c v^{q}+b \bar{c} v^{q^{2}}+c \bar{c}+1=0, \\
(b \bar{b}+1) v^{q^{3}+q^{2}}+\bar{b} c v^{q^{3}}+b \bar{c} v^{q^{2}}+c \bar{c}+1=0, \\
(b \bar{b}+1) v^{q^{4}+q^{3}}+\bar{b} c v^{q^{q^{3}}}+b \bar{c} v^{q^{4}}+c \bar{c}+1=0 .
\end{array}\right.
$$

Consider here $\bar{b} b+1, \bar{b} c, b \bar{c}, c \bar{c}-1$ as indeterminates. Then the determinant of (7) is

$$
\begin{equation*}
v^{q^{2}+2 q+1}\left(r^{q^{2}-1}-1\right)\left(v^{q^{4}-q^{2}}-1\right)\left(v^{q^{3}-q}-1\right)^{2} \tag{8}
\end{equation*}
$$

If $v \notin \mathfrak{F}_{2}$, then $v^{q^{2}-1}-1 \neq 0$ and thus (8) does not vanish. Hence $b \bar{b}+1=c \bar{c}+1=b \bar{c}=0, \quad$ which is impossible. So we must have u, $v \in \mathfrak{F}_{2}$.

Write (6) in the form

$$
u^{q+1}=-\left(1+v^{q-1}\right)
$$

We can take v to be any one of the $q^{2}-1$ elements of \mathfrak{F}_{2} except those $q+1$ which make $v^{q+1}=-1$. For each v we have $q+1$ possible u 's.

So the total number of linearly dependent solutions of (6) is $(q+1)^{2}$ $(q-2)$. Multiplying this by $q^{6}-1$ we get the corresponding number for the equation (1). From this the Corollary follows.

References

[1] Ennola, Veikko: On the conjugacy classes of the finite unitary groups. - Ann. Acad. Sci. Fenn. A I, No. 313 (1962).
[2] Mitchell, Howard H.: On the congruence $c x^{2}+1 \equiv d y^{2}$ in a Galois field. . Ann. of Math. 18.3 (1917), pp. 120-131.

University of Turku Finland

