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On the conjugacy classes of the finite unitary groups

The conjugacy classes of all the classical groups have just been discussed

by G. E. Wer,r, [+] by a very ingenious method. fn the case of the finite
unitary groups we give here a simpler alternative method, which, we hope,

throws more light on the question and shows more collcretely the significance
of the terms in the final formula.

f am greatly indebted to Dr. G. E. &r,r, who kindly sent me a summary
of his unpublished manuscript. I also wish to expre§s my gratitude to
Prof. R. Bneurcn for many important discussions.

1. Let 8 : GE(qz) be the finite field consisting of gz elements, where

q isapowerof aprime.X'or o€$ wewrite ä:äc. Then d iscalledthe
conjugate of o. X'or any matrix M wibb"elements in $ we wfit'e M* : the
conjugate transpose of M. 'Ihen a square matrix M with elements in $
is called un'i,tary or Herm,itian, if MM* : MxM : l or M : M*,
respectively. The group of all unitary matrices with elements in G7(q2") is

denoted by U(n, q2') arrd, especially, '$. : U(n, q2). The group of all non-

singular square matrices with elements in GI(q') is denoted by GL(n, q')

and, especially, @.: GL(n, qz). Let, u(n, q") and g(n, q') be the number
of elements in [J(n, q'") and GL(n, q'), respectively, and, especially,

un: u(n,gz), g*: g(m, g2). As is well known (ttl p. 77 and f34)

qLlzn(n- 
l)t

%(n, q") :

g(n, q') : nt!r"('t-l)t

By convention, u(0, q") - g(0, q')

2. We begin with the followirg simple
Lemma 7. The nuntber of non-singular

in 8 equals

9" : o'l'n(n-,)
'lln 

t

lemma.
Hermi,t'ian matrices with elements

+ (- 1)') .

IT
i:1

n

il
i:1

t.

n
i:1

(q'
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Proof. Every non-singular Ilermitian matrix .4 rvith elements in S.
can be written (tZl p. t6)

A: XX* ,

where X € 6". Suppose that A : XrXf for some Xr € 6". Wr.ite
Y : X-LXI Then XYY*X* : XX*, so that YY* : T, i.e. Y is
unitary. This clearly also holds conversely. Hence from the g, products
XX* each ltn are equal. This proves the lemma.

It is perhaps of interest to note that the so called »polar decomposition»
is not valid in the finite case. This is so because u,n is always even and
hence IIo contains involutions which are llermitian. So the coset re-
presentatives of U, in @, cannot be chosen from flermitian matrices only.
ft is also not true in the finite case that every Hermitian matrix has a
square root,

Let

f@:f+at**L+...*aa
be an arbitrary polynomial over $ with aa * 0. Then we write

jttl : di' @oto * do_rf-t +. . . + r).
Lemma 2. Suppose that, id,entically,

t$) : f$)
and that f@ ds irued,ucible. Then il, is odd, and, euery root E of the equation

f@: 0 satisfies the cond,ition

6'd-' : I '

Proof . We have 8(6) : GI(q'o). The Galois group of 8(6) with respeot
to $ is a cyclic group of order d generated by

T: fi--> fiq'

Our assumption implies that f-s is also a root of the equation 
"f(r) 

: O.

Ilence 6-c:rt161:6t2t for some i,0<i<d,-L. Thus we have

€"no : l. Let s belong to the exponent e. Then q!2i-t : - r (mod e)

and q2d: I (mod e). Let s be the g.c.d. of 2i - L and. 2d,. Then we can
choose integers r, y such that

*(2i-t)*92d,:s.
E:erc r is odd, since s is odd. Raising the congruences to the powers r
and. g, respective§, and multiplyrng we get
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q':-I(mode) .

If rJ is even, we have

qd-L(mode) .

But this means that t't'o(E): §, which is impossible. Hence d must be

odd, and we have qd : - I (mod e). This proves the lemma.
Lemma 3. If the charucter'i,stic polynomial, of a squclre nt'utri,r A with

elements 'in a perfect field, I 'is i,rred,uci,ble and, g is an cr'rUitrary polynomi,al'
ooer 9, then the only sol,ut'ions X, with eletnercts in fi, of the mq,trir eqtr,at'iom

AX-XA:s(A)

are of the form X : f(A), where f is a polynomial, oaer § ancl, nloreouer,

X : 0 unl,ess g aani'shes i,r.lentical,ly.

Proof . X'rom the hypothesis it follows that in a suitable algebraic exten-
sion field of S we can transform -4 into diagonal form where the diagonal
elements are all distinct. Then it is easy to see that the transform of X
must also be diagonal and hence X can be expressed as a polynomial of ,4.

Lemma 4. Let A anil, B be square matrices, not necessarily of the same

ord,er, with elem,ents in a perfect field, § and, suTtpose that their charucter'i,stic

polynomials are irred,ucible. Let X be a soluti,on, with elem'ents in §, of the

matrir equation

AX: XB.

If A and, B are simil,ar, then X 'i,s either 0 or non-singul,ar. If A and B
are not s'im'il,ar, then X i,s 0.

Proof . This is a special case of the well knowri Schur's lemma.

3. Consider nolv an arbitrary matrix A in 6". Suppose that there
exists a matrix X in ($J, such that

(1) x,4x-1 € u".
\Yrite f : X*X. Then rt-e ha'i'e

xx-u{<xxxÅx-L: | ,

i.e.

(2) A*tA: t .

Conversely, if (2) is valid for a Hermitian matrix J", then as in the proof
of lemma I we can write .l': X*X for some X € 0,, and we see that (1)

is true. To each matrix A in @" which is similar to a matrix in 1I, we

can thus associate a non-empty set J-(-4) of Hermitian matrices satisfying
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(2). We denote by y(A) the number of elements in this set. Let §(/) be
the centralizer of A in @" and let c(A) be the number of elements in
§(A). Leb B € O(,4.). Then

a*B*lBA: B*A*|AB : B*rB

for all f e f@). Hence it is easy to see that 0(.4) can be considered as a
permutation group of the set f@). Assume that this permutation re-
presentation is transitive. Let

AL-XLAXT'e!7n,

Az - X*AX;I € u, ,

Ir: XfXt ,

lz: Xf X,'

X'rom the transitivity assumption it follows that there exists D e §@')
suchthat D*|LD: Ir. Denote -E': XtDXir. Then I-rArI: A, and,
I*I : I so that X e'11". By the proof of lernma 1, it is easy to see

that the total number of matrices in 6" l,ransforming A into a matrix
of 11., is y(A)u". On the other hand X'AX'-\ : Xt'AXt-t if and only if
X,'LX' e g(/). As a result from our considerations we thus have

Lemma 5. If §(A), consid,eretl, a,s a perryutati,on, grou,gt of th,e set l(A),
i,s transitiae, then the el,ements of A" simil,ar to A i,n @" (if th,ere are any'1

form eractly one conjugacg class of ll" and the number of elements irt,,it equals

4. Let f(t): to + ilrto-' +
8. I)efine the matrices

y(A) u"

c(A)

. * aa be &n irreducible polynomial over

M(f)- Lt[rff)-

cl, d

and

M(f)
La

0a -t

I

-aL

the »companion matrix» of f,

M(f)
IdM,(f)-

M(f)
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with tr diagonal blocks M(f) arld la is the d,. il idenlity matrix. x'inally,

if t' : tlr,lr, . . .,lo\ is a partition of a positive integer k, whose p parts,

M,(fl: diag (M,r(f), M,r(l),. . ., M,r(lD .

Let A e@, have characteristic polynomial

f!, f!' . . ./i,* ,

distinct irreducible monic polynomials over 8,
and, if d,1, dz,. . . , dn are the respective degrees

- rL . Then A is similar in 6, to a matrix

where fr,fr,... )

ki > 0 (i - 1, 2,.

of fr,fr," ',f*,

f* are

.;, Itr)

,ä k'iti

- diag

(3)

Ao (M,r(å), M,r(fr), . . ., M,N(/*)),

where ar:{l,f),1!) ,...,U) is a certain partition (whose parts aro

written in descending order) of ki fori : 1,2, . - . ,.M (cf' [3], p' 406)'

Lef mjtl denote the number of parts in the partition yt t'hat' are equal

to j (j : 1,2, . . . ,lci). Then we have

ki

c(A) - I; {"*p lra,lå U - L) rr{itz

hi

n \\ *l')l,U e (m?t, q'0,)\,

where we use the notation exp (r) : 4. (See [3], p. 410, Lemma 2.4, or ll),
p. 235. The formula can easily be modified to the form (3)')

We shall now consider the non-singular Ilermitian matrices J- satisfying

At fAo: f.
partitioning of Ao we divide the matrix in the

kt)' blocks and denote by

ki

+2Ij
jo 1:1
j<t

(4)

Corresponding to the
N

natural way into (I
i:1

f:'*(r,s- I,2,
the part of f in the sa,me position as the intersection of the

strip of M,,(f,) and the w-th vertical strip of M,"(f ") i,
Put

c)
,tt)

a-th
the

+ lY') n- 

:i ',',

.. ,lcr)

horizontal
rnatrix A*

).. ., N ;

,.... rpi).

Lg)-0, Ly.t-lfi+19+

We use the notation for the followittg set of indices
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{Lfi,1,9t,...,L§rr}
andwewrite t]; forthecomplementof theset !J; intheset {1, 2,...,ki}.
tr'or shortness, write Mt: M(f). Then (4) is equivalent to the following
conditions:

Mr I-":L Å[ , + r;'*r,* M , + fuI: ll,r,**t t_ r;\l,*{L

Mr r:,:, lyl , + r;'"1,,o trf , == r:;. if u es" , ?u q-u, 
,

M!f:;l["+ Mf fl,',n+t=: f::.. if ae?I,,u)5-S*,

lVf f;'- M, : f:;, if L, e ?{, . w € ?[" .

(5)

Suppose l}rat I)[" and M!-l are not similar in @,. Thenitis easy
to deduce, by Iemma 4, from these equations, that alt Ifi (a : 1,2, . . . ,k,;t1;:1,2,...,kr) vanish. Since lr.e rvant to have a non-singular f,
u'e must, have for each M" exactly one M!-t similar to it. (There cannot
be more than one, because no trro rli s are similar.) of course, r may be
equal to s.

Suppose next that ,I1" and J1f -1 are sjmilar in @,. This means the
same as

We denote by

f""(r,p) (x: 1,2,...,?,) lf,: \,2,...,p")
the block of the matrix J- consisting of all matrices J-ji s,ith

lLy)_,+t{z- tLl\.
(6) 'lrl:1, + r < u.S Llit.

Denote the set of ordered pairs (o, zr') satisfying (6) by sil.. tr'urthermore,
we denote by I" the block consisting of all J-'" (2, p) (x:1,2,...,p")
F:1,2,".,p").

Now all the blocks f"" (*,,a) have a »triangular» form, that is

/,I;1.:0, if (a,rc) €Eli, and a+u,2L|),*Zt"l
(7)

f min (ty ,t:» + 2.

This can be seen as follows. Without loss of generality we may assume that,
l,y, < ll?. For shortness, write

,:tllf , K:n["
and

f,- f,.
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x: fi.i,,u' ' Y - fior,rli)-, .

assertion is trivial.) Then, by (5),(We assume that l';)

we have

(8)

If X is not 0, then, by

Y

be non-singular, and we have

H-1YX-r_YX-tH-L:L.
But this contradicts lemma 3. Hence we must have X: 0. Continuing
similarly, we can decide that every ,l-i[ with o : L\),), w > Lli\-, f 2 is
zero. Then lake o : Ly -- l, etc. Thus (7) follows.

Next we note that the partitions rt and z" are identical. Here, of
course, we suppose that r * s. Firstly, the determinant of the matrix
consisting of the blocks 1", l'", f"', T'" is obviously a factor of the
determinant of "f and hence it, must be * 0. From this it follows at, once

that lc, : h", for if k, < k", say, we get a contradiction by taking the

Laplace expansion of the determinant with respect to the first d,k" rows.

Secondly, suppose that

Then from what we have proved it follows that

li:-:O for u:LP, u being arbitrarY,

which is impossible. This proves the assertion. For simplicity of notation
we can now write f.o,I(x,F),Lt,l,),d,lc,P,mi instead of fl:.,
lif, (* , t") , Lf), Ll:), etc.

We consider nolv an arbitrary block f (*, t). By (5) and (7), rve have

(9) Hr,,K:lo.
for all Io* with a + w: L,.-t * L*-t f min (l,,l,p) + | (r.e. situated
on the diagonal). By induction on a * w we now show that (9) is valid
for all pairs (u , w) e S!1.. \Ye rnay therefore suppo§e (9) to be true for the
pairs (o* 1,w), (a,u I L), (u * l,w ! l). Put

X: H-r l'o*r,'. I{ + fo,.+t+ H-'fo{r,uatt
y : lo.,

But now (S) is valid. Hence our argument above shows t'hat X: 0 and
the assertion follo'vts.

LeL I be a non-singular matrix satisfying

IHXK-X.
I,)
IHYK+HX:=
lemma f. it must

HFI{-?
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fn what follows we keep .E, fixed. fn the case r: ,s we have H : K*
and so K*FK:I, K*I*K:I*. Take p€$ such that Et:pI
+ PW * 0. Then -8, is Hermibian and K*ELK: Ir. Bylemma 4, nr
is non-singular. Hence in the case r : § we may &ssume that _F is
Hermitian.

By lemma 3, obviously, eyery solution X of the matrix equation
HxK:x canbewrittenintheform x:Ef(K), where / isapoly-
nomial over $. We can thus write

fo-: E yr- ,

where each yo- is a polynomial of fi. Then

J-'" : diag (F, I,. .., X) (y,-) .

X'urthermore, by (5), we have

(I0) Kyu*r,-+ K-l To,w1-t|- To+r,,+t:0, if a €$,, r.a €8,.
If, in particular, a + w: L,_r* L*_r f min (l*,lt) + l, that is, we
have a Z,- situated on the diagonal, then the tetm yo*r,_*, in (10) is 0.

The matrix K generates in the total d-dimensional matrix algebra over
$, a field isomorphic t'o Gx(qzd). x'or counting purposes we ma,y therefore
consider the matrix (?r,,) as a k . lc matrix with elements in $, : G?(qro).
Namely, in the case r + I we dont have any difficurties, because the
Ilermitian nature of I only requires t]nab I,,: _fo,*. In the case r : I
lemma 4 implies ihat Kcd+t: l. Hence it is easy to see that the d,k. d,lc

matrix r" Trith elements in $ is Hermitian if and only if the k . lc matrix
@) wifh elements i, 8, is Hermitian.

X'or each J (l< j<k) such that ryZL wedefine z; suchthat

l*i+t: l,i+^i:i.
Denote by Pi the block consisting of ml blocks f (*, p) such that

g{t{x,pS4{ry.
We also define a mi. nli matrtx Q; with elements i, Br, which we call
the principal matrir associated with the block Pj, as follows. Let (e),,
be the element of Qi in the z-th row and o-th column. If j is odd, put

(Q ),, : y Lk.+ t0 +tr +j G -t), L,.+ + (i +r)+j (d- r) .

Take an arbitrary fixed element p in 8o such that prd a BKz * O.
(It Kz + - | we may simply take B: l.) Then in the case 3 is even we
put

l0
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(Q)". : § I t*.+ tr i -r +i G -t), L,.+ +i+1+i(d-r)

* §'o T r',.+ 4 i )-r-ti (t-t), L*.+ +i-trJ(d-r)'

using (I0) and Laplace expansions of the determinant of the matrix (7,,)

it is not hard to see that this determinant is a non-zero multiple of a power

product of the d.eterminants of the principal matrices (cf. [1], p. 234 and,

äspecially, the paper referred to in the footnote on that page). Hence in
order to make (y,,) non-singular, we must make all the principal matrices

non-singular.
We now distinguish between the cases r + I and r : §' Suppose

first that r + s. we count the number of possible (/,.) matrices (which is

the same as the number of f" matrioes). consider first the block Pi.

The principal matrix Qi can be chosen in g(mi, q"1 ways. After the choice

of @i the conditions (10) determine all elements yo. wit'h

u + w - rL,i+ I + i(z * 6 - I) (r,6 - 1,2,''',nli)

Then we may choose freelY (i - L) ml

a-tr,,+ 1+i(r 1)

w--L*,+io (o-
This gives us

elements To*, say with

(r 
- 

1 ,2 r.. . rffii),

1 ,2 r.. . rffij).

possibilities.
ditions (10).

U: L* + 1

gives us

exp (4d

possibilities. The total number is

exp {zdlå u-L)ml+

suppose next, that, r : s. Then we have to count the number of all
possibio non-singular Hermitian matrices (y,-). Consider first the block

P.i. X'or the principal matrix Qi we have, by lemma I,

possibilities. After the choice of
elements To* with

g (nti , q'o)

w,m
Qi, again, the conditions (10) determine all

exp (2d, (j - L) *1) g(*i , q',o)

After this everything else in Pi is determined by the con-

Outside the blocks Pi we may choose freely every 7,. with
(* - I ,2 ,. . . , P), except the known zeros, of course" This

I i*i*,)
j'l:l
j<t

thus
kk

2 z i *i*,)\ Tl s(mi , q'o)
jjEL " j:l
j<t
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a *w:2L, + t + j k -l o - t) (t,o: t,2,...,tr;).
Now it is easy to see that every other »diagonal» with a + w: constant
inside a block l(*, p) with x - p ca,, be chosen in qd ways. I{amely,
if the number of elements in it is odd and the middle term is ,r', say, we
must have y : yqd and hence qd possible y's; if, on the other hand, this
number is even and y',y" are the middle terms, we consid.er sy, * §roy,,.
rn the other blocks the argument is the s&me as above, but now we have
only one half the number of free choices compared with the above case,
because of the Hermitian nature of l-'". rrence the total number is in this
case

k

exp{za(* I u-
.l: I

5. without going into details we shall now sketch the proof that o(-40)
operates transit'ively on l(A). The most straightforward proof goes as
follor,vs. Take a fixed d e r@i as simple as possible, e.g. such that all the
blocks .t(r, p) wif]n x * p, arc zero. Then write down the most goneral
forrn of a matrix .B € § (,40). Then by a counting argument, somewhat
analogous to that carried through above, one can see that the number of
rnatrices B* foB, B e §,@i is the same as the total number y(Ao) of
matrices in the set J-(,40).

6. By lemma 5, we cart no.r,r- state the final result as follows.

k

tr\ mi -j- \-'t '.r ' L,Jj ,l:1
j<t

nun,,)}fi ##1

Theorem. Tlte rnatrir A € Gr,

s?.Lcll th,at

In th,is ca,se tlte ele'ments of 7Jn s,irnilcr,r to A
cl,oss ,f U, und th,e r?,uwLber of elements irt

t(n , qz) tl ["*p {za,(å Ä U -
'l: I

'as si'milar to ct matrimf U* if and, o?LlA

tltere'is erctctly one ,inder I (I { s < Å')

in, 6" forin efre,ctly one conjugacA
it equctls

l) ttt\)z r-

f,- i,

k

\'
j,l:t
j<t

f,:i,
f,*i,

i ,,,{'t nll11

ki

m @ (rrt!» , q'u,)]-, ,
J:l

where

u(mlt) ,rl'or), if

lg(*(il,q2'ti11' ,, ,f
&nd exp (r) stand,s fo, q".



References

[1] Drcrsox, L. E. Linear groups - Dover edition, New York 1958.

[2] DrouooNNfr, J. La göomötri,e d,es groupes claas'iqwes - Ergebnisse der Mathomatik
und ihrer Grenzgebiete, Neue Folge, Iloft 5, Springor Verlag 1955.

[3] GnrrcN, J. A. Characters of tha Jdnite general, ldne,ar groups - Trans. Amer. Math.
Soc. 80.2 (1955), PP. 402-447.

[4] Wer,l, G.E. The conjugany claases im the olass'tcal' growps ' Unpublished.

Printed May L962


	IMG_20161010_0001
	IMG_20161010_0002
	IMG_20161010_0003
	IMG_20161010_0004
	IMG_20161010_0005
	IMG_20161010_0006
	IMG_20161010_0007
	IMG_20161010_0008
	IMG_20161010_0009
	IMG_20161010_0010
	IMG_20161010_0011
	IMG_20161010_0012
	IMG_20161010_0013

