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On the conjugacy classes of the finite unitary groups

The conjugacy classes of all the classical groups have just been discussed
by G. E. WALL [4] by a very ingenious method. In the case of the finite
unitary groups we give here a simpler alternative method, which, we hope,
throws more light on the question and shows more concretely the significance
of the terms in the final formula.

I am greatly indebted to Dr. G. E. WALL, who kindly sent me a summary
of his unpublished manuscript. I also wish to express my gratitude to
Prof. R. BRAUER for many important discussions.

1. Let & = GF(q?) be the finite field consisting of ¢*> elements, where
q is a power of a prime. For « € we write & = o2 Then « is called the
conjugate of «. For any matrix M with elementsin § we write M* = the
conjugate transpose of M. Then a square matrix M with elements in
is called unitary or Hermitian, if MM* = M*M =1 or M = M*,
respectively. The group of all unitary matrices with elements in GF(¢*) is
denoted by U(n, ¢*) and, especially, 1. = U(n, ¢?). The group of all non-
singular square matrices with elements in GF(¢*) is denoted by GL(r, ¢")
and, especially, ®, = GL(n, ¢?). Let u(n, ¢*) and g(n, ¢') be the number
of elements in U(n, ¢*) and GL(n,q'), respectively, and, especially,
Un = u(n, ¢%), go = g(n, ¢?). Asis well known ([1] p. 77 and 134)

n

u(n, q2s) — ql/z"("—l)’ "I_l' (qsi . (_ 1)1) ,

i=1

n

gn,¢) =q" """V T (¢" —1).

i=1

By convention, u(0,¢*) = ¢(0, ¢') = 1.

2. We begin with the following simple lemma.
Lemma 1. The number of non-singular Hermitian matrices with elements
m F equals
Gn }yn(n—1) = i i
W, =TT e+ (=1

Un
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Proof. Every non-singular Hermitian matrix 4 with elements in §
can be written ([2] p. 16)

A =XX*,
where X €@®,. Suppose that 4 = X, X,* for some X, €@®,. Write
Y = X71X;. Then XYY*X* = XX* g0 that YY*=1, ie. Y is

unitary. This clearly also holds conversely. Hence from the g, products
XX* each u, are equal. This proves the lemma.

It is perhaps of interest to note that the so called »polar decomposition»
is not valid in the finite case. This is so because u, is always even and
hence 11, contains involutions which are Hermitian. So the coset re-
presentatives of 11, in @, cannot be chosen from Hermitian matrices only.
It is also not true in the finite case that every Hermitian matrix has a
square root.

Let
f@&)=t"+at"™ '+ ..+ oag

o~

be an arbitrary polynomial over ¥ with ag % 0. Then we write

) =agt @' + ag ¢ . 4 1)
Lemma 2. Suppose that, identically,
J@®) =f@)
and that f(t) is irreducible. Then d is odd and every root & of the equation
Sf(¢) = O satisfies the condition
gl =1,
Proof. We have F(£) = GF(¢*). The Galois group of (&) with respect
to § is a cyclic group of order d generated by
i af,
Our assumption implies that &7 is also a root of the equation f(£) = 0.
Hence &= 7'(§) = 592‘ for some 1,0 <71 <d— 1. Thus we have
£+ = 1. Let & belong to the exponent e. Then ¢ '= —1 (mode)
and ¢** =1 (mod e). Let s be the g.c.d. of 2 — 1 and 2d. Then we can
choose integers «, y such that
(2t — 1)+ y2d=s.

Here z is odd, since s is odd. Raising the congruences to the powers
and y, respectively, and multiplying we get
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¢ =—1(mode).
If d is even, we have
¢’ =1 (mod e) .

But this means that 77*%(&) = & which is impossible. Hence d must be
odd, and we have ¢¢= — 1 (mod ¢). This proves the lemma.

Lemma 3. If the characteristic polynomial of a square matriz A with
elements in a perfect field ® is irreducible and g is an arbitrary polynomial
over &, then the only solutions X, with elements in &, of the matrix equation

AX — XA = g(4)

are of the form X = f(A), where f is a polynomial over & and moreover,
X = 0 unless ¢ vanishes identically.

Proof. From the hypothesis it follows that in a suitable algebraic exten-
sion field of & we can transform A4 into diagonal form where the diagonal
elements are all distinct. Then it is easy to see that the transform of X
must also be diagonal and hence X can be expressed as a polynomial of 4.

Lemma 4. Let A and B be square matrices, not necessarily of the same
order, with elements in a perfect field & and suppose that their characteristic
polynomials are irreducible. Let X be a solution, with elements in &, of the
matriz equation

AX = XB.

If A and B are stimilar, then X 1is either 0 or non-singular. If A and B
are not similar, then X 1is 0.
Proof. This is a special case of the well known Schur’s lemma.

3. Consider now an arbitrary matrix 4 in &, Suppose that there
exists a matrix X in &, such that
(1) X4Xtell,.
Write I'= X*X. Then we have
X*14*X*XAX 1 ==1,
i.e.
(2) A*TA =T

Conversely, if (2) is valid for a Hermitian matrix I, then as in the proof
of lemma 1 we can write I'= X*X for some X € &,, and we see that (1)
is true. To each matrix 4 in &, which is similar to a matrix in 1, we
can thus associate a non-empty set I'(A) of Hermitian matrices satisfying
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(2). We denote by y(A) the number of elements in this set. Let €(A4) be
the centralizer of 4 in &, and let ¢(4) be the number of elements in
E(A4). Let B €E(A). Then

A*B*I'BA = B*¥*4A*I'AB = B*I'B

for all I"€ I'(4). Hence it is easy to see that €(4) can be considered as a
permutation group of the set I'(4). Assume that this permutation re-
presentation is transitive. Let

A1=X1AX1—1€un, Iy = X7X,,
A, = X,AX;' €U, I,=XX,.

From the transitivity assumption it follows that there exists D € §(A4)
such that D*['\D = I',. Denote F = X;DX;'. Then F~'4,F = A, and
F*F =1 so that F € 1l,. By the proof of lemma 1, it is easy to see
that the total number of matrices in &, transforming A into a matrix
of U, is 9(A4)u.. On the other hand X'AX'-1 = X"AX"1 if and only if
X"1X" € €(A4). As a result from our considerations we thus have

Lemma 5. If €(A4), considered as a permutation group of the set I'(4),
is transitive, then the elements of U, similar to A in &, (if there are any)
Jorm exactly one conjugacy class of U. and the number of elements in it equals

y(4) un
c(4)

4. Let f(t) = t' 4+ at*' 4 ... 4 a4 be an irreducible polynomial over
& Define the matrices

1 .
1
M)y =Mi(f)y =| oo
1
—y — Gy e —
the »companion matrix» of f, and
M)
Lo M(f)
M\(f) = Ly )
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with 1 diagonal blocks M(f) and 1, is the d-d identity matrix. Finally,

if v =1{l;,l,...,L} isa partition of a positive integer k, whose p parts,
wiitten in descending order, are ), =0, =...=10[>0,
M(f) = diag (ML,(f), My (f) -+ My () -

Let A €@, have characteristic polynomial
fafa. iy,

where f,fs,...,fy are distinct irreducible monic polynomials over G,
k=0 (i=1,2,...,N) and, if d;,d,, ..., dy are the respective degrees
N
of fi,fes--sfw 2 kidi =mn. Then A is similar in @, to a matrix
i=1
Ao = dla'g fl f2 ‘Zl[vN(fN))
where v, = {I{,1{,..., 1)} is a certain partition (whose parts are

written in descending order) of k; for i =1,2,..., N (cf. [3], p. 406).
Let m{? denote the number of parts in the partition »; that are equal
to j (j=1,2,...,k). Then we have

k;

(3) c(4) Tr {exp [ (2 j—1) m("2

k;

+ 2 Z § mPm{] TT m) , %)},

jr1=1 j=1
i<i

where we use the notation exp (x) = ¢*. (See [3], p. 410, Lemma 2.4, or [1],
p. 235. The formula can easily be modified to the form (3).)
We shall now consider the non-singular Hermitian matrices I satisfying

(4) A¥Trd,=1T.
Corresponding to the partitioning of 4, we divide the matrix in the
N

natural way into (Z k)2 blocks and denote by

Iy(r,s=1,2, SN v=1,2,...,k; w=1,2,...,k)

the part of I' in the same position as the intersection of the v-th horizontal
strip of M, (f,) and the w-th vertical strip of M, (f,) in the matrix 4,.

Put
L) =0, LO=19 19 +...+19» (@=1,2,...,N;

We use the notation %; for the following set of indices
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L IY ., L)

and we write ; for the complement of the set ; in theset {1, 2, ..., k.
For shortness, write M; = M (f;). Then (4) is equivalent to the following
conditions:

METIM, & T2y M+ METT, 4 T
=1,,, if veEY,, wey,,

(5) MFT M, + Iy M, == I, if v€DB,. wel,,
METm M, + METT . =I5 if €, weD,

MET? M, =17, if v €9, well.

Suppose that M, and M}~' are not similar in &,. Then it is easy
to deduce, by lemma 4, from these equations, that all I (w=12,...,k;
w=1,2,...,k) wvanish. Since we want to have a non-singular I,
we must have for each M, exactly one M}~ similar to it. (There cannot
be more than one, because no two M/ s are similar.) Of course, r may be
equal to s.

Suppose next that 3/, and JI/*~! are similar in &,. This means the
same as

We denote by
I (%, ) (e=1.2, ... .pr:u=1.,2,...,p)

the block of the matrix I" consisting of all matrices I7 with

[ L2, + 1

=v =L,
|20, +1=w=10.

(6)

Denote the set of ordered pairs (v, w) satisfying (6) by B. Furthermore,
we denote by I™ the block consisting of all I™ (%, u) (x=1,2,..., pr;

n=12 .., p,).
Now all the blocks I™(x, u) have a »triangulars form, that is

I, =0, if (v,w)€B”

[0

+ min (10, 1) + 2.

and v +w =LY + L/(f)_l

(7)

This can be seen as follows. Without loss of generality we may assume that
I <19. For shortness, write

H=DM* K=M

s

and
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rs

X =Lne . ¥V =1w.0.

(We assume that ljf) > 2, otherwise our assertion is trivial.) Then, by (5),
we have
IH XK=X,

8
® |HYK+HX=7.

If X is not 0, then, by lemma 4, it must be non-singular, and we have
H'Y X1 - YXTH1=1.

But this contradicts lemma 3. Hence we must have X = 0. Continuing
similarly, we can decide that every I, with v = LY, w= LY 42 is
zero. Then take » = L — 1, etc. Thus (7) follows.

Next we note that the partitions » and v, are identical. Here, of
course, we suppose that r = s. Firstly, the determinant of the matrix
consisting of the blocks I, I'™, I'", I'* is obviously a factor of the
determinant of I' and hence it must be s 0. From this it follows at once
that k, = k,, for if k < k,, say, we get a contradiction by taking the
Laplace expansion of the determinant with respect to the first d,k rows.

Secondly, suppose that

0 =19 10 =19,...,010, =19,.10>19.
Then from what we have proved it follows that

I =0 for v=L", w being arbitrary,

which is impossible. This proves the assertion. For simplicity of notation
we can now write I, I'(x,u),L,,l,,d, k,p,m; instead of I,

Iy (e ), LY, LY, ete.
We consider now an arbitrary block I'(x, u). By (5) and (7), we have

9) HI'wK =Tl
for all I, with v+ w=1L, ,+ L, ,+min (,,l,)+ 1 (1e. situated
on the diagonal). By induction on » + w we now show that (9) is valid
for all pairs (v, w) €B],. We may therefore suppose (9) to be true for the
pairs (v + 1,w), (v, w—+1), (v 4 1,w -+ 1). Put

X = H—l Fvﬁ—l,w ]( _E— Fv,w+1 _|_ H_l Fv+],w+1 ’

Y=»r,.
But now (8) is valid. Hence our argument above shows that X = 0 and

the assertion follows.
Let F be a non-singular matrix satisfying

HFK=TF.
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In what follows we keep F fixed. In the case » = s we have H — K*
and so K¥*FK =F, K*F*K = F* Take B€J such that F, =pBF
+ ﬁF* # 0. Then F; is Hermitian and K*F, K = F,. By lemma 4, F,
is non-singular. Hence in the case r =s we may assume that F is
Hermitian.

By lemma 3, obviously, every solution X of the matrix equation
HX K = X can be written in the form X = F f(K), where f is a poly-
nomial over §§. We can thus write

I =F o .
where each y,, is a polynomial of K. Then
I =diag (F,F,...,F) (V).
Furthermore, by (5), we have
(10)  Kyprw+ Ky wir + Vortws1 =0, if v€EDB,, weD,.

If, in particular, v +w =L, , + L, , + min (,, [) 4+ 1, that is, we
have a y,, situated on the diagonal, then the term Voil,we1in (10) is 0.

The matrix K generates in the total d-dimensional matrix algebra over
&, a field isomorphic to GF(¢*"). For counting purposes we may therefore
consider the matrix (y,.) asa k -k matrix with elementsin , = GF(¢*).
Namely, in the case r £s we dont have any difficulties, because the
Hermitian nature of I' only requires that I™ = I™*. In the case r — s
lemma 4 implies that K+ — 1. Hence it is easy to see that the dk - dk
matrix I with elementsin §& is Hermitian if and only if the % - & matrix
(Yw) with elements in ¥, is Hermitian.

For each j (1 <j <k) such that m; = 1 we define x; such that

lxj+1 =...= lzj+rnj =j *
Denote by P; the block consisting of mf blocks I'(x%, u) such that
et l=n,u=x-+m.

We also define a m; - m; matrix @; with elements in $§,, which we call
the principal matriz associated with the block P;, as follows. Let (@),
be the element of @; in the 7-th row and o-th column. If j is odd, put

(Qj)w = yLHj—F%(j+l)+j(z—]),L,_j+%(jTl)ﬁ—j(a—l) .

Take an arbitrary fixed element f in §, such that ﬁqd—l— BK? £ 0.
(If K £ — 1 we may simply take § = 1.) Then in the case J is even we
put
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(Qj)w = ﬁyL%j-i-éj—l-%-j(t—l)nyj'l‘ Lj+14j(c—1)
4
+p nyj+%j+l+j(z—1),ij+ Lji—1+j(o—1) *

Using (10) and Laplace expansions of the determinant of the matrix (yuww)
it is not hard to see that this determinant is a non-zero multiple of a power
product of the determinants of the principal matrices (Cf. [1], p. 234 and,
especially, the paper referred to in the footnote on that page). Hence in
order to make (ym,) non-singular, we must make all the principal matrices
non-singular.

We now distinguish between the cases 7 # s and r =s. Suppose
first that r % s. We count the number of possible (y.,) matrices (which is
the same as the number of I™ matrices). Consider first the block P;.
The principal matrix ; can be chosen in g(m;, q*') ways. After the choice
of @; the conditions (10) determine all elements y.w with

v+w=2ij—{—l—l—j(t+a—1) (t,o=1,2,...,m).
Then we may choose freely (j — 1) m; elements y., say with
v=ij—1—l—|—j(r—1) (r=1,2,...,m),
w=sz+ja (c=1,2,...,m).
This gives us
exp (2d (j — 1) mj) g(m; , ¢**)
possibilities. After this everything else in P; is determined by the con-
ditions (10). Outside the blocks P; we may choose freely every yu with
v=L,+1(x=1,2,...,p), except the known zeros, of course. This
gives us .
exp (4d“lem,-m;)

s

possibilities. The total number is thus

k k k
exp {2d (Z (G —ym; + ZZ j mjm,)} ]—[ g(mj , ¢*%) .
j=1 ]}l<=’1 j=1
Suppose next that r =s. Then we have to count the number of all
possible non-singular Hermitian matrices (yow)- Consider first the block
P;. For the principal matrix @; we have, by lemma 1,

gom; , 4*')

u(m; , q*')
possibilities. After the choice of @, again, the conditions (10) determine all
elements y., Wwith
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v—}—w:?sz—{—l—i—j(r—{—a—l) (t,o=1,2,...,m).

Now it is easy to see that every other »diagonaly with v -- w — constant
inside a block I'(x, u) with » = u can be chosen in ¢? ways. Namely,
if the number of elements in it is odd and the middle term is y, say, we
must have y = ;v9 and hence ¢? possible y’s; if, on the other hand, this
number is even and ', " are the middle terms, we consider £y’ -+ [)’q Y’
In the other blocks the argument is the same as above, but now we have
only one half the number of free choices compared with the above case.
because of the Hermitian nature of I™. Hence the total number is in this
case

k ko og(m; . q d)
exp {2d (} Z (j—1)ym; + z\ J mmi)} ]_ )
= Ih=

j=1 u(my ,
J<l

5. Without going into details we shall now sketch the proof that €4,)
operates transitively on /'(4,). The most straightforward proof goes as
follows. Take a fixed I, € I'(4,) as simple as possible, e. g.such that all the
blocks 1'(%, u) with % s u are zero. Then write down the most general
form of a matrix B € (4,). Then by a counting argument somewhat
analogous to that carried through above, one can see that the number of
matrices B* [\ B, B €€ (4,) is the same as the total number y(4,) of
matrices in the set I'(4,).

6. By lemma 5, we can now state the final result as follows.

Theorem. The matriz 4 € ®, is similar to @ matrix of W, if and only
if for every index r (1 <r < N) there is exactly one index s (1 =s < N)
such that

fr= f; and v, = v .

In this case the elements of N, similarto A in Gn form exactly one conjugacy
class of Un and the number of elements in it equals

k
» 7°) Tr [exp {24; (2 Z (G — 1w = N jmPm)}
J J=1

J<l
k,

o) (mj(,i) , qidi)]~1 ,
J=1
where

Iu(m}i’ %), if fi= fz ,

0 (m(}') b 92di) = 3 D 1/ -
! Llgm®, 7=, if fi ],

and exp (x) stands for g*.
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