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Grunsky inequalities anil coefticients of boundeil sehlicht functions*

Let D be a domain, having the origin as an interior point, in the complex

z-plane which is bounded b;, z closed analytic curYes C,andl"t C:,1rC,

denote the boundary of. D. Let f (z) be a regular analytic function in D which
has the following expansion about the origin

f(r) : bfi * brz' * brzg * . . . 2 bt ) o.

Grunsky [5] had given a set of inequalities, depending upon the
coefficients b; (i,:1,2,3,. ..) i.t (I), which &re necessary and sufficient
so that f (z) rorray be extended to a schlicht function in the whole domain D.
In the present paper we give the corresponding modification of the inequa-
lities when/(z) has an additional restriction of being bounded, i.e., l/(z) | < l,
z e D. Schiffer and Spencer [II] garre a generalization of Grunsky inequa-
lities when D is replaced by finite oriented Riemann surfaces and from there
obtained the inequalities when lf@l < l. But their derivation in this
special case does not seem to give sharp results.

We use the theory of Bergman kernel function and it is found that
Grunsky inequalities are the outcome of a certain monotonicity result due

to Bergman and Schiffer [2]. In the particular case when D is the unit disc,

lzl < l, we obtain the distortion theorems for the class B of bounded schlicht
functions in lzl < t and using an observation by Charzynski and Schiffer

[3] we obtain sharp bounds on lånl when the coefficients ä" are real.

The Grunsky inequalities are equally well adapted to the class .X of
schlicht functions y@) in lzl > I such tbat lp@)l > I in lzl ; 1, and

v@) - cz , C) 1,

(1)

(2)
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about the point at infinity. We have given bounds on lcrl and lcrl which
include, as special cases, the inequalities due to Schiffer [8] and Golusin [4]
for the class .X, of functions g(z) schlicht in lzl > I and having the expansion
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(3)

(4)

(6)

d, d, d,

Green's function of B, then it is 'rvell known [g] that

n 0w0e

C,t, 
I

zB 
-1-

ct,trl
Z 

-f 
zz 

-T-

We have also proved sharp inequalities for the first three coefficients
of the class x' of functions which are inverse to functions of the class x,
i.e., a function S(w) e.X' maps a schlicht domain containing u : @ z,fld
contained in lzul ) 1 onto lzl > I and has the expansion

§ 1. Grunsky Inequality

Let' B be a bounded domain of connectivity n, in the oo-plane, containing
the origin and contained in lrz,l < I. Let the boundary b of -B consist of z
closed analytic curves b,(t,:1,2,...,n) and let ö, be the outer boundary
and, E, the simply connected domain complementary to .B and bounded
by b,.

If the differential operators 3 *rra 
-a 

ur" defined bv- dw 0w -- ----- -r

- u + ia )

a l la a\ a lla a\

and g(us, e) is the

(5)

and

1 2 029 (zt:, e)

where K(w, C) is the Bergman kernel function of B and X(w, C) is regular
analytic in the closed domain B + b and is symmetric in zu and (.

Consider the function

(7) p(w):*" 
[,å, ".ry*\,

where a, are arbitrary complex numbers and (, e B. p(w) is harmonic in.B,
except ab 1,, and vanishes on the boundary ä. Its singular part is given by
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(8) s,(rzr): i *" [,I, - _z\
Therefore, if

(e) §(ru) : - j *" t.ä,(;=,- 
ä)\,

the function p(w) -t §(rz) is harmonic in B and by Green's theorem

ra(r0) J (p@) * st )) ii kt(w) * §(u))ds > 0

where fi, is thejor", ,o"*al with respect to B. Since p(w) : 0, w €ö, (10)

yields

(1 1)

In view of the fact that §(lz) is harmonic in 8,, (a : 2,3, . . ., n) we
obtain by virtue of Green's theorem

I asut(12) / S(ro) =;j asJ 0n
b

ÅL:t 
fl:2 tUJ i&- ),:l \\ct >yl /t 

blB
lt.

fn order to see that the last term in (12) is also non-negative we consider
the region E or the union of finite number of regions .O,, bounded by the
unit circumference and ör. Then §(zrr) is harmonic in this and vanishes on

lwl: l. Hence

f ?§(z') f ^ äs(rc,) -(rs) -JS(to) *:ds:- J S(w)-,,fr ds)0,
b, brfiol:I

by Green's theorem. Equality in (13) occurs only when E or E, have zero
area and hence ä, contains lwl: l.

The expression on the left hand side of (11) can be integrated explicitly
by the residue theorem. Indeed, if U(w) and V(w) are analytic functions
for which p(w): Re (I/(a;)) and §(tz) :P"e{V(w)}, we have, in view of
P(w):o,web,

1n(u\ I
ffat:=U'(w)d,w, web.
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Hence

(r4) I ur*, ry o,: | @(,:) * u1*yff o,
b

: *" {; I vwt * v(w)) u'1*10\

;, r: - Re li I ,,-) -t v1w11v'1w1 d,u\ ,

use having been made of the facl thab U(w) * V(w) is regular in B. To
evaluate the above integral we observe that

a@):) i l*.aq(!o:-e:) -aq@"c')1: 
z ,4rL'-a\- * "" - uc- )'

where q(w, e) is the analytic function in z.for which Re {q(w, q} : g(w,il.
Also, it is easily verified that

(r5) ry:ruo?r".
Therefore, in view of the relations (5), (6), and (f5) we obtain from (14)

(16)

{**'ff"
: nzke 

{., å, o'a* lxg., c,t - *}77;] - Z ,o,o,, 
x(e ., c,,)l .

Hence (rl), (12), (13), and (16) yield

(r7) *" 
{,,å ,o,a*lx{c.,E,,) -,(r=Il] - : ,ad,,7(i,,;,,1f 

> o.

Equality in (17) is attained only l.hen equality holds in (10) and the
right hand side of (t 1) vanishes. The former equality will hold if p(w) * §(rp)
is constant in -B or equivalently on å. Since p(w) : 0, w eö, this implies
that the boundary ö should be given by

(,s) 
""{å, l*r,-#*]} :"",,*
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X'urther, from (12) and (13) we infer that the right hand side of (11) vanishes

if the domains .B,, contained in lru | < I have no interior point and Ö, contains

lwl : l. Since the constant in the right hand side of (18) vanishes if lzul : I
we conclude that the boundary of B is given by

(1e)

We note that (17) can equivalentl;r belvritten in the form

Re{t i-Y.- u'n 
1\

,,år.&d,, 
y'(c,,, ,,,)] 

=,,,å, 
o,'d,,L", e,',',,) - *:*tl(20)

becauso if we replace a,by a,e'o, @ real and arbitrary, the part involving

and, remalns unchanged but the Re t i o,,o, XG,, e ,)\ gets transformed

to Re {""' Z ora, y(e*, e)} where U:":^rbe so chosen that the real part,

becomes equal to the modulus. X'urther, we had assumed the boundaries
to be analytic curves and rve find that the extremal domains being slit
domains do not beiong to this class. But this can easii5, be avoided by using

the continuity of K(", C) and, fl2, [) in dependence of their domain of
definition B and the preceding inequalities consequently hold for the most
general domains.

Leb D be a domain in the z-plane as described above and let tp : l@)
map D conformally onto the domain B. The relations (5) and (6) together
with the conformal invariance of the Green's function readily yield the
following transformation properties

(21)

(22)

where

L{ I'@)f'(q r | | a2 fk)-/(;)(23) ti@, ö : ;1d-4, - @ - eyj 
: ; a,urog", -l:'

We have, therefore, demonstrated the following
Theorem 1. Let D be a finitely connected plane domain and let q, e D.

\f w:/(z) maps D conformally onto a domain B cont'ained in ltul < t,
and a, are arbitrary complex numbers, then

r.-l(24) I I auau lx,(n,, n,) * U(rt,, tt,))l
lo'P:t I

L

__!'a; t'w; 
1

n,(L-f(n,ffi1
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where K(", 0 is the Bergman kernel of D and X@, 0 and. U(2, () are defined
by (0) and (23) respectively. For a given set of a, some inequality becomes
an equality if the image of D under /(z) has no exterior points in lrzl < 1

and its boundary satisfies the equation (19).
we remark t'hat' a partial converse of the above theorern is also true,

namely, if D is mapped on a slit subdomain B of lwl < I such that the
boundary consists of the unit circumference together with slits which satisfy
(19); then the mapping solves some extremum problem for the inequalities
p!. To see this, consider

(25)

1\n
R(u) :,L,,o, (r*r". C,) #.*) +, ä u,

This represents a regular analSrtic function in
(19) and the boundary relation

/
(o('' e'')

B and for w

rr(I - Lo C,)'

€ b, in view of

(26)

rve have

(27 )

Hence R(w) vanishes

Re (A (ut) dw) - 0 .

identically and \\,e obtain from (2b)

(28) x(rc, e 
")

Taking norm orrer B of (28) we obtain

(2e)

li å e, x,Un, C,)il'
v- |

Further, since the norm of both terms in
we get from (29)

(30)

ll f a, x,«t), C,)il' :
y==L

e) :l.l #*0,.)"
I 

,,,

_l _ o.
r(L - LD:)'l ,

(28) should be separately equal

+t d,
y:L

lo.y:1

Re 
{,,,ä: ra,'a'' 

(xre -'

n(L - we )'

+

2 Re { i &,,&,, (xG*,
l,,,Gr \

Il .å,,. (u,*,2,)
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It is

(31)

easy to verify that
n-71,

ll I an y(ta, C,)ll': I o*d,,(KG*,i) l(e ,,, e ))
P,v -- |

where

-rfd,wr(e, r\-- t 

--

4s \at - 2nzi J @ - Cu), @ - e)'
On the boundary slits this integral is readily seen to vanish and, by residue

theorem, it can be evaluated on the unit circumference. fn the present

case, it is found that

xr(L e ,,,,)' 
'

by virtue of Green's theorem and the boundär5r relation (26), we have

I r i x,@.,:,) , r i clu,tt,

; J ) (t "i=d,o: nt J x(u" b'') e-:"rr)
I 

u 

r ud,u:2*uJ

(32)

Also,

(33)

- 0.

Vanishing of the last integral is again a consequence of the fact that it
vanishes on the boundary slits and also on the unit circurnference. There-
fore, (30) yields

"l-l\,(s4) Z o*u,lx G,, i,) - -; *) : n" { | o,.o, xGu, C,)}
y,-rt \ z(r - CuL,)', B,':t

Comparing this with (20) we see that the extremal character of B with
respect to that inequality is established. Since (2a) is a direct consequence

of (20) this proves our assertion for the converse that every domain contained
in lrzl < I and bounded by l*l:1 and the slits satisfying (19) results
from an extremal mapping.

It is worth pointing out that the inequality (20) is an immediate conse-

quence of the fact that the quantity

R"{ I ud*K(C,.,e-)
trp:l

decreases if D increases, once it has

non-negative. fndeed, if the domain

(35) å &,'dt, x,(e ,' e ,)\
v, pt: L

been denronstrated that it is always
is contained in the unit circle, then
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(36)

(37)

because X,@, å) -- 0 for the circle and K(r, The mono-

tonic character of (35) was proved by Bergman and schiffer [2] by a varia-
tional method and also follows from the right hand side of (lI) as was
pointed out by l{ehari [6]. But the fact that the quantity (85) is always
non-negative seems to have escaped the attention ofthe earlier investigators.
This observation makes it possible to obtain analogues of (24) for any other
subclasses of the classes of conformal mappings of D.

If.in Qa) we specialize to n: l, we obtain

x,@, z,) -
I

G {f ("), *} ?r (1 lf (z)ir), '

wlrere {f (*), z} is the

(38)

well-knowrl Schwarzian and we ha\re used the fact that

U (2, z) {f (r), z}

The inequality (37) gives a generalization to the case of bounded ulivalent
functions in D of the inequality

I
6t

loo
\r

rr /-rv 
4'u: o

{ K{2,2)

for univalent, functions in D due to Bergman and Schiffer [2].
Let us suppose that the origin js contained. in D and let us expand the

analytic functions occurring in @\ into the power series

fI (r, C)

(3e)

K(r, C)

f'@)fTL _
(1 - f(r)f(C))'

oo

1t't :0

oo
Y l" n1rz,

-{I , ti - 0

oo

- 
Y n ,!tf'v
L -'!tt'u 5 

'Pt''a:Q

ku, J k,, ,
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we notice that only the coefficients c*, and il* involve the ooefficients

ä^ of the functions /(z) given by (l). we now proceed to prove the following

generalization of Grunsky's inequalities'
Theorem 2. Let f (z) be a single-valued regular function in a finitely

connected domain D containing the origin and having the expansion (1).

In order t:nat f (z) be schlicht and l/(z)l < t in D it is necessary and suffi-

cient that for every complex vector cts, . . . 2 a"r,1

11

wherethecoefficietltsCo,,, xp,,,k1",,andd*,aredefinedin(39)'Foragiven
set of d, some inequality in (a0) becomes an equality for such a schlicht

function which maps D on a domain bounded by the unit circumference

and siit along an isothermal system of algebraic curYe§'

Proof. Let us suppose that, f (z) is bounded and schlicht in D. It therefore

satisfies the inequalify Q$.Let E be a closed rectifiable curve sullounding

the origin and contained in the common domain of convergence of the

developments (39) and let p(s) be a complex-valued function of the length

parameter on X given by lo(s): q(z(s)) z'(s) where

- ('r,+ I)

we then obtain from (21) by a limit process

U (r, i)7 p$,) p(s.) ds-ds-

(40)

(41)
I

f '(') rlY 
1 ,{s,) p(s.) d,s,rts-

n(L-f(4f@Yln\Ö'

A'I I \ '_ Jr

,,,,Eg \ JL i t &,v:o

r{l I \

Pr'r:o\ 
v-0, Ir 2... ,,

1N
zri,,ä &'z

| | tx(',i) +
- 'c \-

- '-F \'
ar>--

This readily yields the inequality (a0) and demonstrates the necessity of
the conditions.

we now show that if (40) holds for every positive integral.l[ and eYery

choice of arth4.,n /(z) is univalent and l/(z)l < I. The univalence of f(z)
can be proved on the same lines as Bergman and Schiffer [2]. Indeed, because

,lf

I d,*,ura, is a positive definite form, (40) implies a fortiori

(42)
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which is the equivalent form for the original Grunsky inequalities and for
which schlichtness is well known. rt therefore remains to demonstrate that
lf@l < l. This is a consequence of the fact that the right hand side of
(40)ispositive. Indeed, sel a*:?p * Cr, 1r:0, 1,.. ., N, dr:0, p .--I,-.
rt then follows from the positiveness of the right hand side of (a0) that

nlK(z,r) + K(C, q + XG,r) + K@, a)l

_- ll'@)12 , _lf,G)12 r oD^ I l,@)f,@ I/ -t ZIl'e l--.-- (r - lt@)l\, - I - vc)lr), - "no lr_=@furl '

Letting z ---> e we find that

_ , f,(c)l
n K(e, e) >_ 

11 _ ,y16yry .

Now the facts that KG,d is bounded for ( € D and f (z) isregular analytic
in D such that /(0) : 0 ensure rhat, lf (t)l < r.

§ 2. Bounded Univatent Funetions in lrl < r

Let us suppose that the domain D is the unit disc lzl < t. rnequalities
(2a) then take the form

i+ !f'G,)f'(eu) I llt,,,,Arana* ly15; - f ey (e, hyil
(43 )

- $ -, |.- ' _ Jliltle"l l
=u,A,o*on t(r 

=.6,1, 
I - l(-;VCi*)

A similar result but of a different form was obtained by Nehari [6].
we proceed to derive from (48) the distortion theorems for the class §

of bounded univalent functions in ,z ( r. \1'e first obtain distortion theo-
rems when f(z) is an odd univalent function. i.e., f(z): -fea). Let us
put .l[ : 2, e t: z, ez : - z. and a, : iaz in (a3). \Ye get

(44)

rvhich yields

(45) f' (r)z 
f@)
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Since to every odd univalent function f (z) there corresponds a function
g(z) € § and vice-versa such fhat J@) : lg@\f't', we get from (45) the
following inequality for functions 9(z) € §

(46)

This was earlier
variations.

Further, if V@) e

(47)

' v'@)lL + lv@)l

'' v@)i L -'w@l
---\ 1 lzl

LL2) by theobtained by Singh method of interior

4#å)-vG)

also belongs

(18)

and F (- å)

(4e)

to § and therefore satisfies (46). One readily concludes that

, ?'(- e) å r'(o) tt - lr(6) l'Jb Fee) vG) (1 iål')

- q,(e). Hence (46) yields

I v@ve-j-L\\r + erl

iv(e)l \\! _qt_r'(o)
(I ild0D, "'- (1 + I(r

oI

The inequalities in (aO) and (49) are easily seen to be the best possible,
equality being attained for the function

(50) =:9* : !'(o) z

l*E@D' $azlz'
If p is the distance from the origin of the nearest boundary point, then

(49) gives

(51)

which is a generalization of the Koebe quarter theorem.
fn order to obtain the inequaiities corresponding to (a6) and (49) in

the opposite direction, we set z: reio in (a6) and, for fixed @, integrate
with respect to r from rrto r, and let rr+ 0.We obtain

(52)
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Ilsing once again the transformation (47) u'e get

(53)

(51)

E'@)z 
v@)

t lrlt+lp@)i
1+ lzl I lv@)l'

The inequalities (52) and (53) are easily seen to be sharp, equality holding
for the function

We have therefore proved the following
Theorem 3. Let § be the class of schlicht functions f(z),in lal < 1, such

that /(0) :0, /'(0) :a,) 0 and lf@l< l. Then, for lzl : p ( 1, the
following sharp inequalities hold:

2a rQ <if@i(55)
q)\,/ L + ra! - rctt) + a'z

2ot Q

(1 2eG-ar) + q2) -i- (1 -q){ L_ 2dL - rar) + e'

and

(56) + Qz)Llz 
'

the unit

1A ?' f'(r)l
<-tP

id

r+q
-/--\tt zg(L 2nr)

fn each case, the bound ary of the extrem aI domain consists of
circumference with a radial slit towards the center.

We mention that the inequalities (55) have been obtained from (49)

and (52) by using the fact that the left hand sides of (a9) and (52) involve
monotonic functions of lq(z)l and hence they can be solved for lE@|.
Similarly, inequalities (56) have been obtained from (a6) and (03) by
substituting the corresponding extreme value for the quantity
(t * lE@)l)/ (1 - iq@}. The inequalities (55) and (56) are easily seen

to include, as special cases, the well-known distortion theorems for schlicht
functions.

§ 3. Coeffieient Inequalities

Let the domain D be the unit disc and let us consider the class ,S of
trounded schlicht functions rvhich have the expansion (1). Since in this

I
case h*,: ; l"ö,," and yn,: 0, the inequality (40) becomes

/tf IY* n

I I &ua, C *,1 < I piat i2 I a,d, (1,,,,

klr'/:7 p1 - | pru: L

(57)
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These inequalities are equivalent
Nehari [6].

We observe that if f (r) € ,S then
It is readily verified that

to the inequalities

r (") - lf @\7't' also

obtained by

belongs to ,S.

(58) r @)

-ztu{r+ t?,+ 4(ä
Taking /'r - 3 and using

(5e)

1b2
tb,

< (t - ö,)larlz

Putting az

(60)

an inequality due

(61)

(f 'il a!+ (f -lfl d,as+

+ ( r - u,,l'{ + (, - b; - i'H)
- as : 0 in (59) we get

ai lbr 2b,br 13 a3\
l-_l-a

2 \ö, bi '12bili
I u"l2

? - b, R* {ororbrlbr} .

rö;\ zulb^ tbrb, Ib3\
I | _ I _ I __ I I

4 b?l -r z \ö, z b? -r L6bil -i-

(57 ) for the function ? (r) r,r.e obtain

I
2tat-rt

b, b?i

bL bil

which is the adaptation of Bieberbach area inequality to our present case.

Both these inequalities are sharp, equality holding only for the functions
given by (54), with E'(0): ö1, and those obtained from it by rotation.
We now proceed to prove the following

Theorem 4. Let §, denote the subclass of the class § of bounded univalent
functions f(z) with expansion (1) such that the coefficients b, are real.
The following sharp inequalities hold for the coefficient ba;

(i) For4/9(ör(1,

(62) u, =;a, 1r - al; .

Equality is attained only for the function f (z) given by

f'(r) b1r'

The boundary of the extremal domain consists of the unit circumference
together with three radial slits of equal length starting at the points
e*nil\ ar.d - l.

(ii) X'or 1/1I < bL < 419

(63)
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(64)

(65)

(66)

(68)

8
+ 4gbl

2
bi) (4 9ör)r,

and the corresponding extremum function is given by

f '(") b'rr'

There is strict

(67)

and the extremal
with a straight slit

Proof. In (59)

b,

b, x'2

inequality unless

f(,) _ _!t_
(1 -f("))' (1 z)')

(zu + lzz ),2 I )'

unit circumference, together

F',,, +

6

3), 3A

Tf'z@ b,

3

1z

f(r) lj

where X: i $ - 9bl) :, (, - 2 cos q) : br(l - 2 cos @).

The boundary of the extremal domain consists of the unit circumference
together with a straight slit at the point - I and two slits starting at the
points eti@ and symmetric with respect to the real axis. The end points
of the slits are images, respectively, of the points - l, s*iv.

(iii) For 0 < ö1 < 1/11 ,

2 10b.

boundary consists of the
startin g ab the point l.
take az == 0 and put arl

+ 27 (ä :#) '- (?,

aB: f"

2b2b 3

t2
aL

then obtainreal. We

13 b3\lr 
- 

'l-i- 12 b'rl

3 ö3\
7'r3 

v "'Iu1 
1 br)

Since we can assume ön ) 0 we get, on taking the real part of the left
hand side,

b^ 2b"b"



We choose 7 so that it minimizes the right hand side. This value is

given by
IeI
It, 1- t,1t, - 4 b;lbil
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x,- zll bL b\lzbl

and (69) now yields

( 70)

(7 4)

fu<_
bL 

-\\
b.

t'-r- 
br

3 ö3\
_t

4 b?l
?*(u,

b3 3 ö;\,
-T T, ZE)

2(' bL h)t

2(r bL - bzlzbl)

25
+- 3(1 b") + n

bl 5b3

F,T
But

2b,
(71) i
equality

(7 2)
b.

b2+ i
3 b?,

---= :
1bi

m (70)

(u,

(u,+ ?, : #,)

holding only when

2(L bL b2l2b)

Using (71) we obtain fro

b4 z _" tol. t ol(73) b, < 3 
(r - öi) + zg (,1 - eÖr) - aa

One easily confirms that if 1 ) å, > 419, the maximum of the right
hand side of (73) is attained fot br: 0. Hence

b^2

equality holding only when b, - 0 and heuce frorn (i 2)

function is easily seen to be

( 75)

This proves part (i) of the theorem.
We need to remark now that br) 0 for the function for whiehÖn

is maximum. This is a consequence of the well-knovn inequality

lb^*r-b^-rl 12b, f.or symmetric univalent functions. fndeed,if Ö, were

2
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not positive, it would follow thatbnl2b, but the functions given by (ti5)
and (67) yield values of bnlb, which are greater than 2.

Let us now assume 0 { å, < 4lg and maximize lhe right hand side of
(73) as a function of brlbr. This is seen to occur for

(76) 7b2: 4b1(4 - 9br) ,

and the corresponding inequality for bn is

bnzg(77) . <5(1 -åi) * *(+- eä,)'.
0r

Equality holds in (77) for the function for which å, is given by (76)
and by virtue of (72)

(78)

(7e)

(81)

bB 8

b7 49 \

and it is easily confirmed that the function given by (65) gives equality in
(77) anrl satisfies (76) and (78).

In view of the inequality (60) one finds that (76) and hence (77) hold
for lill < ä1 < 419. At,bL:419 the extremal values given by (74) and
(77) agree. This proves part (ii) of the theorem.

We now have 0 <br < l/11. Let us set

b,

In view of (60) we find that the entire region of variation of positive
values ofö, is covered by straight lines ofthe system (79) such that through
each point there passes only one line of the family. Substituting in (73),

this value of brfbr, we obtain

bn214(80) å, < 3 
(1 -öi) +2)12(r-b,)r(4-ebl)-n i, (1 -är)r.

We note that the right hand side of (80) is a monotone increasing function
of )" for 0 (b, < r/11 . fndeed, its derivative with respect to I is easiiy
seen to be 2(r - b)211(8 - 7 i) + bt(1 tr" - 18)l rvhich is positive if
ö, S (8 - 71)l$8 - 71). Since 0 < i. <I, this is seen to hold for 0 ( ät
< l/f f . Hence the maximum in (80)is attained fot )" : 1. The corresponding
inequality for bn is

b,, 2 10
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where equality holds only w}nerr brfbr: 2 (l - br). Ilence the last part
of the theorem follows from the fact that equality in (60) is attained only
for the function

This completes the proof.
It should be remarked here that equality statements in (62) and (64)

and the fact that the corresponding functions (63) and (65) are the only
extremal functions are not easy to deduce from Grunsky inequality. These

statements, however, are immediately verified if one uses the method of
interior variations [12] because the differential equation pertaining to the
cases (i) and (ii) above can then be integrated in a closed form. X'urther,
the restriction that ä" be real is purely artificial and the theorem should
hold for the class B but the present, technique does not yield this strong form.

Let us now consider the class X of functions /(z) univalent in lzl > L

with l/(z)l ) 1 for lzl > r and having the following expansion at trZ

(82)

( 82)

It is easily verified that the inequalities (a3) hold if f (z) € X with the
difference that J(l ) 1. Let 7-(t) denote the polynomial of degree m in t
such that

I ^(f (z)) : z* + a*n Z-n ,

a,nd. let us put

"-ffi)
7-(f) is in fact the Faber polynomial [10] of degree m for f (z).

By expanding the functions in (a3) about the point at co one obtains
the following analogue of the inequalities (57)

NN.If
(s3) I l ro*o,o*,1-Zplarl?- I va,,a,bu,, i[:L,2,3,....

p,t:l p:l r,!:l

Taking N : 2 and putting dz: 0 rve get

oo
v/-)

n-l

§ 
b*n

L ;n '
n-l L

1oca , c?
/- c -r cz

(81)

and on setting aL:

(85)

0 we have
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Equations (19) show that equality holds in (8a) and (85) only for the
domain bounded by the unit circumference with a rectilinear slit in the
direction away from the center.

Let us apply the inequality (83) to the function

C,,ar
/- - I

{ cr' '

which also belongs to .X if f(z) € X. On taking -nf : 3 in (83) and setting
dt: &z: 0 we obtain

(86)

(87)

The extremal domain in (86) is the domain bounded by the unit circum-
ference with three symmetrically situated rectilinear slits of equal length.
In the limit when c --> @ this yields an inequality due to Schiffer [8] and
Golusin [a] for the class .5r.

Thus we have proved the following
Theorem 5. Let f @) e 2 have the expansion (2). Then the coefficients

c, and c, satisfy the inequalities (8a) and (86). There is strict inequality in
(84) unless the domain is bounded by the unit circumference with a radial
slit away from the center. In (86) equality is attained only for the domain
bounded by the unit circumference v-ith three symmetrically situated
radial slits, of equal length, in the direction away from the origin.

X'inally, let us consider the class X' of functions which are inverse of the
functions belonging to Z.It is seen without any difficulty that if g(w) € 2'
and near infinity

(4)

then if

g(tu) == dw *

g(w) is the inverse of f (r) € t with expansion (3), \\re have

L &,4\
cB \, 

-T- 
czl

I
d: i

c

Hence (81) yields

(88)

and (86) provides

(8e)

l rl ,i, _ dr)
I

2

öd,o
ldri _ d3)
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X'urther, (85) gives

(eo) Id,t < jo- oa.

The last inequality is a generalizabion of the corresponding inequality
due to Springer [r3].

We have, therefore, proved the following.
Theorem 6. Let the functions of the class .X' have the expansion (4).

Then the coefficients d,1, il2, and il', satisfy respectively the inequalities
(87), (88), and (89). Equality in (87) and (89) holds for the domains bounded
by the unit circumference with a rectilinear slit pointing away from the
center. Equality in (88) holds for the domain bounded by the unit circum-
ference with three symmetrically rectilinear slits of equal length in the
direction away from the origin.

Harvard University
Cambridge, Mass., U.S.A.

and
D. A. Y. College
Kanpur, India
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