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On the Gram Determinant and Linear Transformations of Hilbert Space

1. Introduction. Recently Everitt proved two theorems concerning
inequalities for Gram determinants of L2-integrable functions [2]. The first
of these teorems can be found — as the author remarks — in [1].

Moppert generalized these inequalities in [3]. He replaced the partial map
by an arbitrary orthogonal projection of a Hilbert space. This was based on
the following remark: Let E;, and E, be two measurable sets and E, C E,.
Let L2(E;) be the space of L*integrable functions in E; (i = 1, 2). The
space L2(H;) can then be considered as a subspace of L*(H,). Let @g be
the characteristic function of the set E,. Then the map f— ggf is an
orthogonal projection of the space L*(E,) on the subspace L*(E,).

In the present paper a generalization of the results of Everitt and
Moppert will be given. The projections are here replaced by arbitrary
bounded linear transformations. It is shown how the (generalized) Courant-
Hilbert inequality can be deduced as a consequence of (generalized) Everitt
inequality. A necessary and sufficient condition for equality in (generalized)
Courant-Hilbert inequality will be given and finally a simple »geometricy
interpretation is pointed out.

2. The Gram determinant. Let H be a Hilbert space!). The inner product
of « and y is denoted by the symbol (x, y) and the norm of vector = by

lz|. The Gram determinant of vectors x;,...,z, is

(@, @) (@, 2) .. (21, 2,) |

(3, 1) (@, @)« .. (2, @)

Gz, zy, S T e e

(xn ’ xl) (xn H x2) (xn ’ xn)
Obviously G(,q) s Ty s + + + s Tpy) = G(@1, @y, ..., @), where o is
any permutation of numbers 1,2,...,n. It is easy to see that
Gy, %, ,2)=0 and Gx;,x,,...,%,)=0 if and only if the

vectors «; are linearly dependent.

1) The scalars may be real or complex. We do not assume that H is separable.
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We denote the linear subspace generated by vectors y, , 45, ..., ¥, by
L(yl’yz"' "yk)'
Let now a,,%,,...,x, be arbitrary vectors in H. We set

’ rr
xn = xn “I— xn 2

where z,’ is the orthogonal projection of z, on the space L(z; , z, ,...z,_,).
In other words: (z,,z) = 0, when ¢ =1,2,...,n—1, and
x, € L(x, , @, ,...,%, ). It is well.known that 2, and a. are unique.

By bilinearity of the inner product and elementary properties of determi-
nants we have

(1) Gy, %y oo @) = Gy, 2y, ..., @, y) |2, 2.

Repeating in the same manner we set x, =z, + 2, (h = n — 1,

n—2,...,2), where a, is the orthogonal projection of , on the
subspace L(x;,%,...,%,_;), and we thus have
Gy, 2y, ..., ) = |2 B2, .. |2, 2.

If the vectors «; are linearly independent we have z; # 0 and z; = 0
(t=2,...,n) and then G(z; ,2,,...,x,)> 0.

3. Inequalities. From (1) we get immediately the inequality
(2) Gy, @y, ...,%,)=CQ@ ,%,...,2, )|z,

where equality holds if and only if one (or both) of the following conditions
is satisfied: 1) The vectors x,,a,,...,x,_; are linearly dependent. 2)
x, = w,, this condition being equivalent to |z.| = |z,|.

Let 7' be a bounded linear transformation of H. We consider =
vectors x; ,%,, ..., , and from now on we assume always that the vectors
x; are linearly independent. The vectors 7z;,7Tz,.....7Tx, may be
linearly independent or not. We split the vector 7z, in two orthogonal
components 7Tz, = (Tx,)" + (Tx.)’, where (Tz,)"” is the orthogonal
projection of Tz, on the subspace L(Tz,....,Tx, ;). Let x, =z, + .

as before. T, = Tx, + Tz, and Tz, € L(Tx,,...,Tx, ;). By the
minimal property of the normal vector (7xz,)’ we thus have

3) |(T2,)| = Tz, .

where the sign of equality holds if and only if (7Tx,) = Tx,. Since
Tz, = Tz, + Tx, = (Tx,)’ + (Tx,)” this condition is equivalent to
(Tz,)’ = Tx, .

Then we have by (1), (2) and (3)
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G(Txy, ..., Tw,) =Tz, ..., Tx, )|(Tz,)?

<Q(Tx,,...,Tx, )| Tz, 2 < |TPGT,, ..., Tz, ,) |, ?

— |TPG(Tx, , . .., Tz, ) Glar, - t)

" Gy, ..., %,_))
We thus obtain the
Theorem 1: If the vectors =, , %, , . . . , ¥, are linearly independent and the
linear transformation T is bounded we have the following inequality
@) O ... Tr) = | TRKTey, . .. Ta, ) @)
" " Gy, ..., 2, 1)

where the equality holds if and only if one (or both) of the following conditions is

satisfied: 1) The vectors Tx,, ..., Tx, , are linearly dependent (in which

case both sides in (4) are = 0). 2) Tz, = (Tx,) and |Tw,| = |T||x,]|.
By repeated use of (4) we get first

G(T T,) < |THG(Te Pa, ) o )
19+ > r) = | 15> n—2 G(xl"..,xn_2),
and so on. Finally we have
o [Ty ?
Q(Tx,,...,Tx,) < |TP" o Gy, ...,x,).
1!

Since G is symmetric we can replace the index 1 by any index ¢ and we thus
have

Y . ’ T(l‘,' |2
(5) G(Txy,...,Ta,) =|TP"? min ——-

1<i<n | [2 v )

From this we get immediately the less sharp inequality

(6) GTx,,...,Tx,) = |T"G@,...,x,).

4. Special cases. Let T = P = orthogonal projection, i.e. P? = P = P*.
| Px| = |z| if and only if Pz = z, thus the condition 2) in theorem 1 now
reads: (Pxz,)’ = Pz, = x,. We assert that this condition is equivalent to
(Px,) = x,. Assume that the latter is the case. We have by (3): [(Pz.)'|
< |Pz,| < |x.,| and hence |(Px,)| = |Px,| = !z,|, but this implies
(Pz,) = Px, = x,,.

We thus have the following result: When 7' = P the inequality (4) has
the form

Gy, ...,x,)

> n

G@y, . @)’

(7) G(Pz,,...,Pzx,) < GPxy,...,Pr,_,)
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where equality holds if and only if one (or both) of the following conditions
is satisfied: 1) The vectors Pz,,...,Px, , are linearly dependent. 2)
(Pz,) = =, .
The inequality (7) is due to Everitt and Moppert (cf. [2] and [3]).
When 7 = P the inequality (6) becomes

(8) GPxy,...,Pzx,)=CGx,...,x,),
where equality holds (by inequality (5)) if and only if Px; = x; (i =1,
2,...,n). This is the Courant-Hilbert inequality (cf. [1] pp. 107—108).

5. Investigation of inequality (6). Assume that |7'| > 0, that is, 7' is
not identically = 0. Then, by (5), a necessary condition for equality in (6)

is |Ta;| =|T||z| (¢t =1,2,...,n). We shall see that this condition is
also sufficient. For this purpose we first prove the following
Lemma: Let x;,,x,,...,x, belinearly independent vectors in the Hilbert

space H and let T be a bounded linear transformation of H and |T|> 0.
If |Tx;| = |T||x;| ¢ =1,2,...,n), so T =|T|V, where V maps the
subspace L = L(x,,z,,...,x,) isometrically on the subspace T(L).

Proof. Let E be the orthogonal projection of H on the subspace L
and let @ and y be in L. We have

(ET*Tx ,y) = (T*Tx , By) = (T*Tx ,y) = (¢, T*Ty) = (Bx , T*Ty)
= (v, BET*Ty) .
Thus the restriction (ET*T'); of transformation ET*T to the subspace L
is self-adjoint (and completely continuous, the dimension of L being
finite). We have for ; (i1 =1,2,...,n)
]TI2|.’E,‘IZ = [Tx,‘2 = (Tl’, . TII,',) - (T*Tflf, ,x,‘) == (T*TT,‘,EZ,;) = (ET*Txi,x,-)
= |ET*Tx || = [ET*T || = [T*]|T] |2 = | T |2

It follows that there is equality everywhere in the above inequalities and
thus we have |ET*T! = |T? and |ET*Tx; = ET*T||z;|. As the trans-
formation (E7T*T), is self-adjoint and completely continuous this implies
(cf. [4] p. 229) that every vector a; is an eigenvector of (ET*T), and
ET*T%; = |T 2x;. Since the vectors a; form a base of L it follows that
(BT*T);, = |TPI,, where I, denotes the identity mapping of L.

Let now « and y bein L. We have

(Tx, Ty) = (T*Tx , y) = (T*Tx . By) = ET*Tx ,y) = |TP(x,y) .

T
The restriction of the transformation - - to L thus maps L isometri-

T
|
cally on the subspace T(L). Q.E.D.

By this lemma we are now able to prove the following
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Theorem 2: Let the vectors x;, %y, ...,x, be linearly independent and
IT|>0. Then G(Tzy,...,Tx) = |T"G(xy,...,x,) if and only if
| Ta;| = |T|a:] 6=1,2,...,n).

!As already stated, the necessity follows from (5).

Sufficiency. By lemma we have 71" = |7T'|V, where the restriction of ¥V
to L = L(x;,%,,...,x,) maps L isometrically on 7'(L). We set again
@, = x; + x,', where z;’ is the orthogonal projection of x; on the subspace
L(xy,2y,...,2;_1) ¢=2,...,n). We have

KTz, ,...,Tx,) = GTx,,Try, ..., Tx,) = |Tx, 2| Ty 2. .. | T, |2
=T Plas . e = TGy, 2, -, 2,)
= TPy, 295 ...,%,).

The proof is thus completed.

6. A remark. The above lemma may have some interest in itself. Let e.g.
A Dbe a contraction of n-dimensional (n is finite) linear space R", that is,
|Az| < |z| for every « € R". Ifthen [Aw;|=|x:| (1 =1, 2,...,n) and
the vectors «; are linearly independent, so, by lemma, A is a unitary
transformation of R".

7. A »geometricy interpretation. The determinant
Gy, oo @yl s ey =det (x,,y,) (QA=i,k=<n)

defines an inner product in the n-th exterior power of H (cf. [5] p. 20).
The above considerations can be properly interpreted in terms of exterior
powers of linear transformations. Thus, for example, the exterior power of
an orthogonal projection is an orthogonal projection (in the metric defined
by the determinant G, cf. [5] p. 36). Interpreted in this way, the Courant-
Hilbert inequality (8) states only the simple fact that the norm of any ortho-
gonal projection of a vector is at most equal to the norm of the vector.
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